
 
 

Supplementary information:  Unwrapping Non-
Locality in the Image Transmission Through Turbid 
Media  

Mohammadrahim kazemzadeh1,2, Liam John Collard1,2,3, Filippo Pisano1,4, Linda Piscopo1,5, 
Massimo De Vittorio1,5,6, Ferruccio Pisanello1,6 
 
1 stituto Italiano di Tecnologia Center for Biomolecular Nanotechnologies 

2 These two authors contributed equally 
3 RAISE Ecosystem, Genova, Italy  
4 Department of Physics and Astronomy, University of Padua, Via F. Marzolo, 8, 35131 Padua (Italy) 
5 Dipartimento di Ingegneria dell’Innovazione, Università del Salento 
6 These two authors are co-last authors 
 
Email: mohammadrahim.kazemzadeh@iit.it, liam.collard@iit.it , Ferruccio.Pisanello@iit.it, 
Massimo.DeVittorio@iit.it  
  
 
 
 
 

Optical setup 
 

The detailed configuration of the optical setup utilized in this study is illustrated in Supplementary 
Figure 1. This system comprises three telescopic systems, a half-wave plate (HWP), a spatial light 
modulator (SLM), two reflecting flat mirrors, a beam splitter, a multimode optical fiber (MMF), and 
two microscope objectives (MO), each paired with a CCD camera. Lenses denoted as L1 and L2 (in this 
figure) are employed to couple the laser light into the SLM screen. The reflected light from the SLM is 
then directed into the first microscope objective (MO1), effectively conjugating the SLM screen onto 
the proximal side of the MMF. 
 
Monitoring the proximal side is achieved using CCD1 and a telescope setup (L4 and MO1). The 
generated spackle, as well as the distal side of the fiber, is recorded using CCD2, facilitated by a 
telescopic arrangement (MO2 and L5). The SLM pattern is commanded, and the spackle pattern is 
recorded using a computer in this setup. 
 

 
Supplementary Figure 1: detailed schematic of the optical setup used in this study. 
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Additional showcasing of non-locality 
 
All the multivariate and deep learning regarding the study of MMF has been done through the pair 
data saved on this computer. In addition to the UMAP presented for the cropped section of MNIST and 
its corresponding spackle data in the manuscript, we conducted a similar analysis over additional 
cropped sections of both datasets. These results are showcased in supplementary Figures 2 and 3 for 
the actual digit images and their corresponding spackle, respectively. 
It is evident that in the digit images, cropping leads to a complete collapse of digit clustering in the 2D 
UMAP projection. However, this phenomenon does not occur in the UMAP projection of the cropped 
spackle data. As explained in the manuscript, this effect is due to the introduced non-locality that 
stems from the physics of the multimode fiber. 

 
Supplementary Figure 2: showcases the cropped section of the MNIST image datasets, outlined by a 
red square within the digit image. The UMAP projection of this cropped section is depicted, where 
each individual dot represents an image of handwritten digits, color-coded according to the image 
label. 
 

 
Supplementary Figure 3:  the cropped section of the spackle generated with the MNIST dataset using 
our optical setup, delineated by a red square within the spackle image. The UMAP projection of this 
cropped section is showcased, with each individual dot representing a spackle and color-coded 
according to the image label. 

 
 
 



To delve further into this matter, we applied this non-linear projection to a few randomly selected 
points from the spackle, as illustrated in supplementary Figure 4. The UMAP applied to these randomly 
selected points from the spackle image, marked by the red dots on the left side of the figure, reveals 
distinct clusters of digits. This observation supports the application of linear regression in 
reconstructing images through randomly selected points from the spackle datasets. As these points, 
despite their far spatial location, carries the topology of the digits in the MNIST datasets and possibly 
provides enough data for the image reconstruction throught them.  

 

 
Supplementary Figure 4: left, shows the location of the sampled pixels in the spackle datasets. Right, the UMAP 
projection of the data from sampled points on the right. Each projected data is color coded based on their 
corresponding labels in the MNIST dataset. 

 
 

 
Supplementary Figure 5: (a1)-(a2) UMAP projections of the Transformation Matrices in Figure 2 (main 
manuscript) for the MNIST datasets. The projected points are color-coded based on the horizontal (a1) and 
vertical (a2) positions of the pixels on the SLM screen. (b1) and (b2) Representation of the reconstructed image 
using linear regression based on the grid obtained in (a1) and (a2). (c1) and (c2) Cosine similarity matrices 
comparing the transformation matrix of the MNIST dataset with a closer look at its details, respectively. (d1) 
Reshaped version of the 500th row of the cosine similarity matrix in (c1). (d2) The average cosine similarity based 
on the distances between pixels. 

 

Analysis of linear transformation matrices of MNIST and randomly generated 
images datasets 



 
In addition to the multivariate analysis conducted on the linear transformation matrix derived 
from the CIFAR dataset (main manuscript), similar analyses were performed on the 
transformation matrices obtained from the MNIST and randomly generated datasets. The 
outcomes of these analyses are presented in Supplementary Figures 5 and 6 for the MNIST 
and randomly generated datasets, respectively. 
 
 
In Supplementary Figure 5, it is evident that the UMAP projection of the transformation matrix 
fails to capture the two-dimensional manifold of the spatial light modulator (SLM), in contrast 
to the CIFAR dataset. This is particularly pronounced when using the projection points for data 
visualization in (b1) and (b2), where the digits do not appear as clearly as in the CIFAR case. 
This discrepancy arises from the unused pixels on the SLM screen (corners of the digit images), 
resulting in trivial solutions of the linear regression matrix (zero lines in the obtained 
transmission matrix) and sharp pixel value changes compared to CIFAR.  
 

 
 
Supplementary Figure 6: (a1)-(a2) UMAP projections of the Transformation Matrices in Figure 2 (main 
manuscript) for the randomly generated datasets. The projected points are color-coded based on the 
horizontal (a1) and vertical (a2) positions of the pixels on the SLM screen. (b1) and (b2) Representation of the 
reconstructed image using linear regression based on the grid obtained in (a1) and (a2). (c1) and (c2) Cosine 
similarity matrices comparing the transformation matrix of the randomly generated dataset with a closer look 
at its details, respectively. (d1) Reshaped version of the 500th row of the cosine similarity matrix in (c1). (d2) 
The average cosine similarity based on the distances between pixels. 

 
Another significant observation in this figure is the presence of large areas with perfect 
similarity away from the main diagonal elements, corresponding to the zero lines in the MNIST 
transformation matrix. The CS matrix in this case exhibits fewer similarity features compared 
to that of the CIFAR, notably lacking the second parallel line to the main diagonal (shown in 
Supplementary Figure 5 (c2)), a clear contrast to the CIFAR dataset. This difference may be 
attributed to the more nonlinear behavior of the MNIST dataset, as discussed in the 
manuscript. 
 



Supplementary Figure 6 illustrates a parallel analysis for randomly generated datasets. While 
this dataset doesn't encounter the blind spots observed in the transformation matrix of the 
MNIST dataset, its heightened nonlinearity prevents a successful reconstruction of the spatial 
light modulator (SLM) manifold through the acquired transformation matrix. Additionally, in 
this instance, the cosine similarity (CS) matrix does not manifest any similarity features. 
 

 
Supplementary Figure 7: a detailed version of the ResUNet architecture. A, schematic of the 
employed network. B, the detailed layers used in the convolutional operator.  

 
Detailed ResUNet architecture 
 
The employed ResUNet in this study is depicted in Supplementary Figure 7. On the left side of 
this figure, we observe the schematic of the UNet, while the inner structure of the 
convolutional operator (illustrated by a red arrow) is displayed on the right side. This 
convolutional operator serves as a nested ResNet backbone, forming the ResUNet. It 
comprises 5 convolutional layers, each succeeded by batch normalization and a rectified linear 
(ReLU) activation layer. Additionally, the output of the first activation layer is skipped and 
added to the output of the last batch normalization layer to create the skip connection in the 
ResNet architecture. As mentioned earlier, this approach addresses issues such as accuracy 
degradation and gradient vanishing in a deep neural network. 
 
The number of filters utilized in each of these convolutional layers is illustrated in panel A of 
this figure. For instance, the size of the tensor on the upper layers of the ResUNet is denoted 
as (128, 128, 16). This signifies that the feature map size in this layer is 128x128, with a channel 
size of 16. This channel essentially indicates the number of filters employed in the 
convolutional layer at that stage of the ResUNet. It's important to note that as we progress 
deeper into the network, the feature map size diminishes due to the presence of max-pooling 
layers, while we simultaneously employ more filters to capture additional features and 
prevent information loss. 
 



 
 
Supplementary Figure 8: More examples of the image reconstruction through the proposed 
method. The celebrity faces dataset used for this analysis was obtained from the source [1]. 
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Supplementary Figure 9: More examples of the image reconstruction through the proposed 
method. The celebrity faces dataset used for this analysis was obtained from the source [1]. 
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