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Abstract: Achieving high-fidelity image transmission through turbid media is a significant
challenge facing both the AI and photonic/optical communities. While this capability holds
promise for a variety of applications, including data transfer, neural endoscopy, and multi-mode
optical fiber-based imaging, conventional deep learning methods struggle to capture the nuances
of light propagation, leading to weak generalization and limited reconstruction performance. To
address this limitation, we investigated the non-locality present in the reconstructed images and
discovered that conventional deep learning methods rely on specific features extracted from the
training dataset rather than meticulously reconstructing each pixel. This suggests that they fail
to effectively capture long-range dependencies between pixels, which are crucial for accurate
image reconstruction. Inspired by the physics of light propagation in turbid media, we developed
a global attention mechanism to approach this problem from a broader perspective. Our network
harnesses information redundancy generated by peculiar non-local features across the input
and output fiber facets. This mechanism enables a two-order-of-magnitude performance boost
and high fidelity to the data context, ensuring accurate representation of intricate details in a
pixel-to-pixel reconstruction rather than mere loss minimization.

1. Introduction

In the realm of multimodal waveguides, understanding the complex relationship between the
input and the output electromagnetic fields is a long standing aim of the scientific community. For
multimode optical fibers, the last decade has seen a strong research effort to solve this problem
by interferomic techniques , with the main aim of widening their application to biomedical
endoscopy and image transmission fields [1–8]. Coherent light injected into a MMF is coupled to
multiple guided modes, which propagate with different phase delays, interfering in an apparently
random fashion. At any arbitrary cross-section of the waveguide sufficiently far from the input,
the distribution of the electric and magnetic fields does not resemble the distribution of the source
in the excitation plane, and it takes the shape of a complex speckle pattern at the output facet.
This happens even when a diffraction-limited point source (e.g. a focused laser beam) is injected
in a specific point of the input facet, generating a speckle pattern on the entire output facet. This
generates what can be referred at as a non-local correlation between the fields on these two
optical planes, since a variation in a point of the input facet strongly affects the entire speckle
pattern detected at the output, hindering the possibility of transmitting an image through a MMF.

A revolution in imaging transmission across these apparently random -strongly aberrating-
media has been represented by the possibility to measure their transmission matrix through
interferomic techniques [1–8]. This breakthrough has unlocked a host of fascinating applications



for MMFs, enabling far-field imaging [9, 10], holographic optical tweezers [11], and endoscopy
[12, 13]. Remarkably, deep learning and machine learning methods have recently shown
promise in leveraging multimodal optical fibers for image transmission, wavefront shaping,
and holography at the distal end without any interferomic measurement. For instance, notable
studies [14–20] demonstrated that a deep convolutional neural network based on a particular
U-Net architecture [21] can be employed to reverse-engineer the distal end’s speckle patterns
back to their original generating phase pattern on a phase-only spatial light modulator (SLM) [14].
Moreover, the versatility of U-Net architecture has been employed in other related research
endeavors, delving into factors influencing image transmission through the fiber, including
bending [22, 23]. More recent research has explored the efficacy of state-of-the-art vision
transformers (ViT) and its variants [24, 25], such as swine transformers [26, 27], in tackling
the problem with improved effectiveness. Another study, [28] revealed that attention-based
convolutional neural network architectures not only enhance the network’s capacity to learn
from smaller datasets but also improve its ability to generalize to unseen datasets through
transfer learning. Additionally, multilayer perceptron architectures have been employed to
address the transmission of natural scenes [16] through the fiber. Utilizing a single-layer neural
network that incorporates complex-valued inputs, these architectures closely mimic the physics
underlying wave propagation through the fiber. However, to circumvent the issue of exploding
gradients and enable effective learning of the inverse transmission model, such networks require
the implementation of additional regularizers. Although multilayer perceptrons are adept at
capturing non-local patterns, they come with increased computational expenses in comparison
to convolutional neural networks and vision transformers, especially in scenarios requiring
deep networks. Therefore, all these deep-learning approaches do not efficiently capture the
global features arising from the non-locality in the input-output relationship generated by light
propagation in MMFs. The result is that currently available deep-learning methods rebuild the
transmitted image on the base of specific features of the training dataset, hindering the possibility
to obtain pixel-to-pixel reconstructions and effective transmission of grid-topology data.

Here, we provide evidence that the non-locality concept is accompanied by a redundancy
in information transmission through turbid media, and that it can be exploited by deep neural
networks to obtain high-fidelity reconstruction of transmitted images in a pixel-wise fashion.
We showcase the redundancy principle describing that even a simple linear regression machine
learning method, if aware of the non-locality, can be employed to reconstruct a transmitted phase
image by probing only a small portion of the speckle patters generated at the fiber output. We
then describe how non-locality alters the perception mechanism of classically employed deep
neural network, showing that the resulting image reconstruction process is based on feature
similarities rather than pixel-by-pixel reconstruction. To tackle this challenge we introduce a
Global Awareness Module (GAM) that brings the notion of non-locality into complex CNN
architectures, enabling pixel-to-pixel transmission and opens the way toward the application of
similar topological non-localities in more general scattering problems.

2. Results

2.1. Non-locality in speckle generation through MMF

To describe the non-locality in speckle generation through MMF we used the optical scheme
depicted in Figure 1 (a more detailed version is presented in Supplementary Figure 1). The phase
of continuous wave laser radiation is modulated by phase-only spatial light modulator (SLM),
and the resulting wavefront coupled to a MMF (numerical aperture NA=0.22, core diameter
50𝜇m) through an objective lens whose back focal plane is optically conjugated with the SLM
screen, so that the Fourier transform of the pattern on SLM screen is projected in the MMF facet.

An alternative perspective on this coupling process is provided by ray optics, where each pixel
of the SLM is uniquely inserted into the fiber at a specific angle with respect to the optical axis.



SLM

Single equivalent lens Multimode fiber Output speckle

(A) Simplified optica setup

(B) Multivariate analysis

(A) Simplified optical setup

(B) Multivariate analysis
Speckle

speckle
speckle

speckle

Fig. 1. Panel A: The simplified version of the optical setup employed in this study
consists of a Spatial Light Modulator (SLM), a single lens forming a 2f system, and a
multimode optical fiber. Panel B: (a1) and (b1) showcase an example of the MNIST
digit dataset used as the SLM pattern and its corresponding speckle pattern, respectively.
(a2) and (b2) display the UMAP projection of the datasets depicted in (a1) and (b1). (c1)
and (d1) presented a random crop from the MNIST and speckle datasets, respectively,
with the cropped section indicated using a red rectangle. (c2) and (d2) illustrate the
UMAP projection of the cropped sections from (c1) and (d1), respectively.

Notably, this insertion must occur within the numerical aperture cone of the fiber to ensure the
effective coupling of the SLM pixels. At the output of this system, a speckle pattern is obtained.
Our goal is to establish a reliable pixel- to-pixel mapping of this speckle pattern back to its
corresponding SLM pattern, exploiting the intrinsic non-locality relationships between the fields
at these two planes.

To mathematically describe the electric field distribution at the distal end of the fiber as
produced by the pixels of the SLM, we employ the following formulation:

𝐸𝐸𝐸 (𝑥, 𝑦) =
𝑁∑︁
𝑛=1

𝑈𝑈𝑈𝑛 (𝑥, 𝑦)𝑒 𝑗 𝜙𝑛 (1)

In this equation, 𝐸𝐸𝐸 represented the total electric field vector at the distal end of the fiber, laying
in (𝑥, 𝑦) plane (see Figure 1A for axes definition). The vector𝑈𝑈𝑈 corresponds to the electric field
produced by the excitation from the n-th pixel in the SLM. Finally, 𝑒, 𝑗 , and 𝜙𝑛, 𝑁 , represent the
Neper number, imaginary unit, the modulated phase corresponding to the n-th pixel in the SLM,
and the total number of SLM’s pixels, respectively. The relationship presented here stems from
the linear time-invariant behavior of the governing Maxwell equations. However, it is essential to



acknowledge that the camera used in our experiments cannot directly capture the electric field
itself; rather, it captures a quantity proportional to the electric field intensity. Consequently, our
measured speckle pattern using the camera is expressed as follows:

|𝐸𝐸𝐸 (𝑥, 𝑦) |2 =

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=1

(𝑈𝑈𝑈𝑛 (𝑥, 𝑦).𝑈𝑈𝑈∗
𝑚 (𝑥, 𝑦))𝑒 𝑗 (𝜙𝑛−𝜙𝑚 ) (2)

In this equation, the superscript * denotes the conjugated fields labeled with a subscript "m"
for the m-th pixel in the SLM. Two crucial points warrant careful consideration. First, equations
(1) and (2) reveal the non-local effect from the SLM screen to the speckle pattern. In this context,
the n-th pixel of the SLM, though situated at a specific location on the SLM screen, can influence
all locations in the generated speckle pattern. Second, the interference term 𝑒 𝑗 (𝜙𝑛−𝜙𝑚 ) assumes
significance. Let’s first assume the phase difference to be small, i.e.,

(𝜙𝑛 − 𝜙𝑚) << 1 (3)

now the equation (2) can be treated as a linear map between the phase pattern on the SLM and
the resultant electric field. This observation prompted us to explore the efficacy of applying linear
regression to establish a tool for image transmission systems through MMF. It is noteworthy that
the existing literature has predominantly employed deep learning models to address this problem,
given its inherently nonlinear and complex nature. To gain a clearer perspective on the validity of
linear regression for this transformation, we can approximate the exponential function using the
first two components of its Taylor expansion. This allows us to reformulate the aforementioned
equation in the following manner:



|𝐸𝐸𝐸 (𝑥1, 𝑦1) |2

|𝐸𝐸𝐸 (𝑥2, 𝑦2) |2
...

|𝐸𝐸𝐸 (𝑥𝑝 , 𝑦𝑝) |2


=



𝑠1,1 (𝑥1, 𝑦1) 𝑠1,2 (𝑥1, 𝑦1) · · · 𝑠1,𝑁 (𝑥1, 𝑦1)

𝑠2,1 (𝑥2, 𝑦2) 𝑠2,2 (𝑥2, 𝑦2) · · · 𝑠2,𝑁 (𝑥2, 𝑦2)
...

...
. . .

...

𝑠𝑝,1 (𝑥𝑝 , 𝑦𝑝) 𝑠𝑝,2 (𝑥𝑝 , 𝑦𝑝) · · · 𝑠𝑝,𝑁 (𝑥𝑝 , 𝑦𝑝)





𝜙1

𝜙2
...

𝜙𝑁


+



𝐵1

𝐵2
...

𝐵𝑝


(4)

Here, the subscript 𝑝 pertains to the pixels captured by the camera in the speckle image. We
sampled points from the (𝑥, 𝑦) space ’p’ times and represented them in the form (𝑥𝑝 ,𝑦𝑝), where
the subscript ’𝑝’ is indicative of the sampling process and does not denote diagonal selection
from the (𝑥, 𝑦) matrix. Now, the real scalar value 𝑠𝑝,𝑛 (𝑥𝑝 , 𝑦𝑝) can be calculated using equation
2, expressed as follows:

𝑠𝑝,𝑛 (𝑥𝑝 , 𝑦𝑝) = 𝑗

𝑁∑︁
𝑚=1

(𝑈𝑈𝑈𝑛 (𝑥𝑝 , 𝑦𝑝).𝑈𝑈𝑈∗
𝑚 (𝑥𝑝 , 𝑦𝑝) −𝑈𝑈𝑈𝑚 (𝑥𝑝 , 𝑦𝑝).𝑈𝑈𝑈∗

𝑛 (𝑥𝑝 , 𝑦𝑝)) (5)

Furthermore, the real value bias vector in Equation 3 can be denoted as:

𝐵𝑝 =
1
2

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=1

(𝑈𝑈𝑈𝑛 (𝑥𝑝 , 𝑦𝑝).𝑈𝑈𝑈∗
𝑚 (𝑥𝑝 , 𝑦𝑝) +𝑈𝑈𝑈𝑚 (𝑥𝑝 , 𝑦𝑝).𝑈𝑈𝑈∗

𝑛 (𝑥𝑝 , 𝑦𝑝)) (6)

These equations highlight the presence of a linear relationship between the measured
|𝐸 (𝑥𝑝 , 𝑦𝑝) |2 and the phase within the Spatial Light Modulator (SLM). Consequently, the
application of linear regression emerges as a viable approach for deducing the inverse trans-
formation. It’s crucial to underscore that this connection holds valid when the disparities in
phase among SLM pixels remain relatively minor. Another significant insight derived from



Equations 3-5 is that if the number of pixels in the speckle image (𝑝) surpasses the count of
independently modulated phases (𝑁), a definite linear correlation emerges among the elements
in the electric field norm. Consequently, not all the p-th electric field norms detected by the
camera catching the speckle patterns are required for reconstructing the modulated phase. This is
a direct consequence of the intrinsic non-locality in the speckles generation.

This analytical observation can be further substantiated through experimental methods and
data-driven techniques to showcase the general non-local behavior of the problem, depicted in
Figure 1B. For this experiment, we propagated MNIST data through a 5 cm-long MMF fiber and
captured the corresponding speckles generated at the distal end. Subsequently, we performed
Uniform Manifold Approximation and Projection (UMAP), a form of unsupervised manifold
learning, on both the MNIST dataset and its corresponding speckle data. As depicted in Figure
1B(top raw), it becomes evident that the data’s underlying structure is retained through the fiber
transmission.

However, a significant difference arises when we apply UMAP exclusively to a subset of both
MNIST images and a similar portion of the speckle data, as shown in the bottom row of Figure
1B. In the UMAP projection of the MNIST dataset, the clusters representing each individual
digit, as produced by the UMAP applied to the complete MNIST images, lose their integrity
and collapse. This starkly contrasts with the UMAP projection of the cropped speckle data,
where distinct clusters for each digit still persist. This phenomenon highlights redundancy in the
speckle data and underscores its non-locality, as it encapsulates information from all pixels of the
SLM across various sections of the speckle image. Supplementary Figure 2-4 highlight how this
non-local correlation is distributed across the speckle pattern to the extent that the the ability to
cluster the transmitted digit does not depend on the position of the employed speckles portion,
and it still persists in the case of randomly selected points on the (x,y) plane.

2.2. Linear Regression

In this section we describe to what extent the above-described non-locality can be exploited to
obtain SLM image reconstruction with computational-efficient linear-regression, avoiding the
use of complex deep learning models. To this aim, the speckle image was randomly sampled on a
number of points equal to the count of independently modulated phases (N), being the minimum
number that allows to reconstruct the phase of the SLM pixels based on equation (4). These
points were utilized as inputs for the linear regression process, while their corresponding outputs
were designated as the images that had generated the corresponding speckle patterns. This
strategy of multivariate linear regression can be likened to the structure of a single-layer neural
network, visually presented in Figure 2A(left). Subsequently, the reconstructed phase shifts at
the output of the linear regression were organized into a two-dimensional array. This reshaping
step was undertaken using our prior knowledge about the pixel locations on the SLM, resulting
in the creation of comprehensible images. It’s noteworthy that due to the inherent independence
characterizing the reconstruction of each individual point, we were able to reconfigure the
equations governing the reconstruction of each pixel. This reformulation was carried out in terms
of the inner product of vectors, as depicted in Figure 2A(right). To train the linear regression we
only employed 4000 images from each dataset and serve another 6000 as the testing set.

In Figure 2B, C, and D, we present the performance of linear regression in reconstructing
three distinct datasets (MNIST, CIFAR, and a randomly generated dataset), each characterized
by a unique phase distribution. Each linear regression model is individually trained on its
respective dataset. For example, the linear regression model for MNIST is trained on 4000
MNIST data points and then tested on the remaining 6000 MNIST datasets. The employed figure
of merit to evaluate the suitability of linear regression for this application is the R-score. R-score
represents the proportion of the variation in the dependent variable collectively explained by the
independent variables. The R-squared score ranges from 0 to 1, with 1 indicating a perfect fit for
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Fig. 2. Panel A: Schematic representation of multivariate linear regression applied to
randomly selected points from the speckle image and the pixel values of the Spatial
Light Modulator (SLM). The reconstructed SLM pixel values are then reshaped into a
two-dimensional array to create a comprehensible image. Alternatively, we can consider
each pixel’s reconstruction as a univariate problem. Panel B, C, and D: Examples
of SLM pattern reconstruction using multivariate regression, the distribution of pixel
value differences, the R-score distribution of the linear reconstruction, and the resulting
transformation matrix for the MNIST, CIFAR, and Random datasets, respectively.
Please note that both the CIFAR and Random image datasets contain images with a size
of 32x32 pixels, while the MNIST dataset contains images with a size of 28x28 pixels.
This is reflected in their transformation matrices. The transformation matrices for the
CIFAR and random images are 1024 by 1024, while the MNIST matrix is 784 by 784.

the linear regression model and 0 indicating a poor fit. The obtained R-score is displayed in its
statistical distribution as well as in a 2D array, illustrating the relationship between the quality of
reconstruction and the pixel’s position within the input image.

Through an analysis of the reconstructed image quality, it becomes evident that linear regression
performed relatively well for the MNIST and CIFAR datasets. However, the reconstruction of
randomly generated images showed limitations. This trend is also corroborated by the R-score
distribution in these three datasets. While both MNIST and CIFAR exhibit an average R-score
greater than 0.9, the randomly generated images yield an average R-score of around 0.6. This
discrepancy is also visible in the distribution of pixel differences in these datasets. The randomly



generated images exhibit the broadest phase difference distribution. Interestingly, the linear
regression technique displays even better performance for the CIFAR dataset compared to MNIST.
This is likely due to the fact that pixel value changes in natural scene images are expected to be
smoother than those in handwritten digits.

The 2D R-score distribution of these datasets holds critical information about both the dataset
itself and the optical setup. In the R-score image of the MNIST dataset, we can identify an
area with an R-score of 1. This arises because the digits in MNIST are absent from the corners
of the images, meaning the linear regression process requires no effort for reconstruction in
those regions. Conversely, an inner boundary area is visible with a weaker R-score (around 0.2),
corresponding to the boundary between the white digits and the black background. In this region,
where phase differences are pronounced, linear regression struggles because of the condition
described by equation (3), leading to statistically weaker reconstruction.

For the CIFAR R-score image, a distinct observation is the presence of relatively weak
reconstructions in the two top corners. This arises from the fact that as we approach the image
corners, the angle of insertion for each pixel on the SLM gets closer to the Numerical Aperture
(NA) cone of the fiber, resulting in diminished reconstruction quality. This behavior has been
observed experimentally by physically moving the SLM perpendicular to the optical axis of the
system. Additionally, the R-score image of the randomly generated data also displays weaker
reconstruction scores in its top two corners. The reason this phenomenon is not apparent in the
MNIST dataset reconstruction is that those areas do not contain meaningful information, leading
to artificially high R-scores.
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Fig. 3. (a1)-(a2) UMAP projections of the Transformation Matrices in Figure 2 for the
CIFAR datasets. The projected points are color-coded based on the horizontal (a1) and
vertical (a2) positions of the pixels on the SLM screen. (b1) and (b2) Representation of
the reconstructed image using linear regression based on the grid obtained in (a1) and
(a2). (c1) and (c2) Cosine similarity matrices comparing the transformation matrix
of the CIFAR dataset with a closer look at its details, respectively. (d1) Reshaped
version of the 500th row of the cosine similarity matrix in (c1). (d2) The average cosine
similarity based on the distances between pixels.

2.2.1. The role of the transformation matrix

The transformation matrix T links the input and the output of the linear regression networks and
it contains information about the learning process. T is visualized as as a heat map in Figure 2



(right column), with the horizontal axis indicating the index of the randomly selected point from
the speckle, and the vertical axis representing the pixel index on the SLM. By analyzing T, in
this section we assess how much a linear regression based on the non-locality hypothesis can
learn about the the optical system when trained with the different datasets employed in this work.

We employed UMAP to visualize the rows of the transformation matrix, utilizing cosine
distance as the metric. The results for the CIFAR transformation matrix are depicted in Figure 3
(a1) and (a2), where each projected row’s point is color-coded based on its horizontal and vertical
position on the SLM screen, respectively. Interestingly we observed a two-dimensional manifold
harmoniously aligned with the grid topology of the SLM. This realization let us hypothesize that
the linear regression can glean a substantial amount of information from the underlying physics
of the system.

This is supported by multiple evidences. Firstly, the manifold can be used for data visualization
purposes. This is exemplified in Figure 3 (b1) and (b2), where the distinct features of a dog and
an airplane in the CIFAR dataset reconstruction from Figure 2 are readily discernible through the
UMAP-defined points. A second supportive observation is given by how each row of the obtained
transformation matrix correlates with one another. This is visualized by the cosine similarity
matrix (CS) in Figure 3 (c1) and (c2), depicted at two zoom levels. Interestingly CS shows
several features, apart for the unit diagonal: (i) the main diagonal appears to be thicker than one
pixel and (ii) multiple parallel lines to the diagonal. These features refer to the adjacent pixels on
the SLM screen. To obtain a clearer evidence, a single row of CS can be reshaped to match the
size of an image on the SLM screen. This rearrangement portrays the level of similarity between
all rows of the transformation matrix and the chosen row, with represented result displayed in
Figure 3D-left. Considering that each row of the transformation matrix corresponds to a pixel on
the SLM, we can readily observe that the pixels in close proximity to the selected pixel (which is
the one with maximum value) exhibit notably high similarity. Additionally, we can compute the
average value of cosine similarity based on the physical distances between pixels. This result is
depicted in Figure 3D-right. The graph illustrates that when the distance between pixels exceeds
four pixels, their cosine similarity index decreases significantly, approaching nearly zero. This
trend signifies effective perpendicularity between those distant pixels.

This highlights how the transformation matrix has learned an effective range for interactive
pixels on the SLM screen despite that it is constructed on a subset of speckle patterns. Together
with the obtained 2D manifold, this supports the hypothesis that the linear regression model
based on non-locality can gain insights from specific properties of the optical system.

The efficiency at which this happens depends on the extent at which the condition in equation
(3) is verified. For instance for the MNIST dataset, which features strong phase variations
between the digit and the background, the cosine similarity matrix show less prominent similarity
features, e.g. a thinner diagonal as well as a lower number of diagonal lines (Supplementary
Figure 5). The random dataset, on the other hand, which has highest possible randomness of
phase variations, show no similarity features in CS. For both these datasets the 2D manifold of
the SLM screen through the transmission matrix cannot be retrieved (Supplementary Figure
6). All this results in the lower R-score values found for MNIST and random datasets in Figure
2, highlighting how the processing of datasets not fullfilling the linearity criteria in equation
(3) should be demanded to advanced deep learning models. In the following we introduce a
non-locality based global attention mechanism that allows achieving high performance and high
fidelity reconstruction also in the case of random dataset.

2.3. Enhanced image transmission fidelity with global attention

Although classical CNN can handle datasets featuring the above-described non-linearity, they are
deceived by non-locality. In this section we first describe this limitation highlighting how the
presence of non-locality makes CNN operating on features extraction rather than on pixel-by-pixel
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Fig. 4. Comparing the reconstruction performance of a network trained on three distinct
datasets—specifically MNIST, CIFAR, and celebrity faces. A subset of each dataset is
separated before training for testing purposes. The celebrity faces dataset used for this
analysis was obtained from the source [29].

reconstruction of the transmitted grid topology data. We then introduce a novel global attention
mechanism that makes CNN operating efficiently in the presence of both non-locality and
non-linearity in the problem.

Classically employed CNN architectures are based on U-Net, owing to their established
capability for image-to-image transformations in tasks like medical image segmentation. However,
CNN-based architectures are constrained by their filter sizes when capturing non-local patterns
within grid topology data. While using larger filter sizes can enhance performances , it also comes
at the cost of increased computational demands. Another avenue to augment their effectiveness
involves increasing the depth of the network, enabling deeper layers to gain a more comprehensive
understanding of global patterns in the image data. To describe CNN limits we re-implemented
a U-Net architecture incorporating nested residual networks in each stage of both the encoder
and decoder sections (ResUNet, full network in Supplementary Figure 7). The inclusion of
residual networks assists in achieving greater network depth while mitigating issues like accuracy
saturation and gradient vanishing. For training, we employed the mean absolute error (MAE)
as the cost function. This choice ensures that the training criterion centers around pixel-wise
reconstruction, in contrast to other loss functions like the structural similarity index (SSIM),
which consider image structure and features. The network is fed by the speckle patterns and



the outcomes of image reconstruction are displayed in Figure 4. The network was trained three
times using distinctive datasets—MNIST, CIFAR-10, and celebrity faces [29]. From each dataset,
50,000 images were considered, with the first 40,000 for training, the next 5,000 for validation,
and the final 5,000 for testing. The celebrity faces dataset consists of images of celebrities with
pixel dimensions of 128x128. This increased freedom in image size compared to the number of
guiding modes in the fiber (approximately 1600) suggests a likelihood of information loss during
the reconstruction process.

Figure 4 illustrates the performance of each trained network when tested with different datasets.
The network trained on MNIST excels at reconstructing MNIST images but struggles when
applied to the testing set of other datasets, revealing a lack of generality. This behavior arises
because deep learning methods for image reconstruction tend to rely on image features rather
than pixel-wise reconstruction. The CIFAR-trained network performs significantly better than
the MNIST counterpart in terms of generalization, likely due to the absence of obvious image
features in CIFAR compared to MNIST. As for the celebrity faces dataset, resembling MNIST
in terms of distinctive features, the network’s performance is hindered by its exclusive focus
on facial features. An intriguing observation with the celebrity faces network is that while the
reconstructed faces are visually appealing, they represent different individuals with respect to
the ground truth. While some features like facial orientation are reconstructed, others such as
ethnicity, lips’ shape, or background are not. This becomes more evident when the network is
tested on MNIST and CIFAR datasets, where facial features emerge in both digits and CIFAR
image reconstructions.

Therefore addressing this feature-based reconstruction challenge could involve using feature-
less datasets in the training process, such as randomly generated images used in the linear
regression problem. However our experiments reveal that the ResUNet network struggles to
perform well with feature-free datasets (see red line in the benchmark in Figure 5A). Indeed,
in ResUNet the input image undergoes a series of convolution operations, each generating a
feature map from the input. These feature maps are then stacked in the third dimension (channel
dimension) to create a three-dimensional tensor (excluding the batch dimension). This makes the
features extracted constrained by the used filter size.

To enable the ResUNet network to take advantage of non-locality in general datasets we
introduced a global awareness module (GAM). The GAM is added to the longest skips connection
in the ResUNet algorithm (Figure 5A), enabling significantly high performances with respect to
other employed models, while using a much smaller number of parameters (see benchmark in
Figure 5A).

Our implementation of GAM is depicted in Figure 5B: it develops in upper and lower pathways,
both exploiting non-locality. In the upper pathway, a single two-dimensional convolution operator
with a filter size of (1x1) is applied to the tensor, resulting in a 2D feature map. It’s important
to note that this technique involves weighted averaging across the channels in the tensor. As
observed from the linear regression results, not all components of this 2D feature map are fully
independent, especially when the feature map size significantly exceeds the intended SLM pattern.
For instance, in the CIFAR dataset, where the SLM screen data size is 32x32 pixels and the
recorded speckle’s size is 128x128, a scenario akin to the linear regression case arises, enabling
random selection of specific points while ignoring others. To achieve this, a custom layer is
designed to identify indices of the selected components in the feature map, converting them into
a one-dimensional array. This reduced array then passes through a single-layer MLP with linear
activation, yielding the first linear embedding (LE1 in Figure 5) derived from our input tensor.
Notably, as the network delves deeper, this feature size converges with the intended SLM pattern,
rendering input reduction unnecessary. In fact, this reduction aims to streamline the complexity
of the linear embedding technique.

In the lower pathway, the three-dimensional tensor is permuted (rotated) to allow another
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Fig. 5. Panel A illustrates how the GAM block can be incorporated into the ResUNet
architecture. It also demonstrates how the proposed network operates in comparison
to other architectures, particularly when networks with varying complexities are
considered. Panel B: Schematic of the GAM block. The upper path extracts a linear
embedding of the input tensor using a 1x1 convolution filter. Subsequently, a portion
of the data is randomly selected and passed through a single-layer fully connected layer
(MLP1) with linear activation, resulting in the first linear embedding (LE1). On the
bottom path, the input tensor is initially permuted to enable convolutional filters to
traverse across channels. Following this, (N) convolutional filters with a size of 1xH are
applied. The output then passes through MLP2 and MLP3, resulting in two additional
linear embeddings of the input tensor, namely LE2 and LE3. LE1 and LE2 undergo
element-wise multiplication and, after normalization, pass through a sigmoid activation
function, constraining the output of each node between 0 and 1. Subsequently, after
reshaping into a two-dimensional tensor and scaling, it is multiplied and casted to the
reshaped version of LE3, yielding the output tensor.

convolution operation to traverse the channels. Unlike the previous pass, where the 1x1
convolution layer computed channel averages, in this phase, the convolution aims to directly
extract non-local information from the channels. The size of this convolution operator is carefully
chosen to encompass information from all elements within the feature map. The number of
these filters remains a hyperparameter within this technique. This operation directly yields
a one-dimensional tensor as its output. This output subsequently passes through two MLP
networks, resulting in two linear embeddings of the input tensor—designated as LE2 and LE3 in
Figure 5B. LE1 and LE2 undergo element-wise multiplication, followed by normalization and



softmax activation. The results are then reshaped into a two-dimensional tensor. Size equality
between LE1 and LE2 is crucial for valid element-wise multiplication, and their dimensions are
considered hyperparameters of this technique. The reshaped two-dimensional tensor is upscaled
to match the feature map size of the original three-dimensional input tensor. However, LE3 is
reshaped to form a three-dimensional tensor with a 1x1 feature map size, and this tensor is then
multiplied with the upscaled tensor. This multiplication and casting result in a three-dimensional
tensor identical in feature map size to the input tensor, but with the channel size determined by
LE3 — another hyperparameter of this technique.

The input tensor’s size for the GAM operator varies based on the skip connection it receives as
input. For the top skip connection in the ResUNet architecture, the feature map size is 128x128.
As a result, a sampling operation from the two-dimensional feature map is employed to mitigate
complexity and reduce the parameters in MLP1. LE1 can also match the SLM pattern’s size
in this context—32x32. This choice, in turn, determines LE2’s size, given that both LE1 and
LE2 share identical dimensions. However, as the ResUNet deepens, feature map sizes decrease
due to max-pooling layers in the encoder section, rendering random data point selection in the
reduced tensor increasingly unnecessary. Of note, the output of GAM undergoes element-wise
multiplication with the concatenation of the skip connection and the previous decoder layer’s
upscaling in ResUNet.

To demonstrate the effectiveness of the aforementioned technique in enhancing ResUNet
performance, we conducted a benchmark using randomly generated images as training daset. For
each network in this benchmark, we implemented 20 training epochs, maintaining consistent
network hyperparameters including batch size and learning rate. The results are depicted in
Figure 5 (top-right), where the x-axis logarithmically represents the number of parameters in
each network. The y-axis illustrates the minimum validation set loss, presented as the mean
absolute error.

The ResUNet used for data in Figure 4 is represented by the red line. This network’s parameter
count increased by doubling the number of filters in each layer, commencing with 8 filters in the
initial ResUNet layer. The ResUNet enhanced by the GAM block is shown in green. Similar
to ResUNet, The parameter count enhancement in the GAM-enhanced model was achieved by
simply adding more filters to the convolutional operators. Each addition doubled the previous
count. However, in this case, it began with 2 filters in the initial layer and then doubled up.
Notably, the complexity and parameter count of the GAM block remained constant for the sake of
simplicity of the comparison. The results reveal that the GAM-enhanced ResUNet outperforms
ResUNet, even with more than ten times smaller parameter size. For the sake of completeness
we have represented in the same graph the results obtained for the linear regression method
described in previous section (magenta dot). Interestingly, it outperforms the ResUNet for the
same number of parameters. However, increasing the number of layers (e.g. transforming the
linear regression into a multilayer perceptron with a reduced input) decreases the effectiveness of
the method (orange line). GAM-ResUNet also improves the performances with respect to the
MLP, similar to the one in ref [15], which resulted to be the closest to our non-locality awareness
approach in terms of loss but employing a more than 100 times larger network.

2.4. Transfer learning and pixel wise reconstruction

Now equipped with a network that exhibits relatively strong reconstruction performance on
randomly generated datasets, we can leverage its capabilities to transfer pixel-wise reconstructions
from these randomly generated images to other datasets. For this we propose a post-training
phase, in which the trained network on randomly generated datasets continues its training with
additional data on a specific dataset, such as CIFAR and celebrity faces.

The outcomes of this transfer learning are depicted in Figure 6 (with more examples in the
supplementary figures 8 and 9). Interestingly, even before the post-training process on any of



Fig. 6. Panel A displays speckle pattern examples from the testing sets of MNIST,
CIFAR, and faces in (a1), (a2), and (a3), respectively. The reconstructions of these
testing speckle using the proposed network, trained on a random dataset, are shown
in (b1), (b2), and (b3). (c1), (c2), and (c3) present the Mean Absolute Error (MAE)
distribution for the entire testing data in MNIST, CIFAR, and faces, respectively. (d1),
(d2), and (d3) showcase the reconstructions of the same data in (a1)-(a3) when the
network, initially trained on a random dataset, undergoes post-training on MNIST,
CIFAR, and faces, respectively. (e1), (e2), and (e3) display the MAE error distribution
for the entire testing datasets of MNIST, CIFAR, and faces, respectively. Lastly, (f1),
(f2), and (f3) represent the ground truth for the presented reconstructions. Panel B
illustrates the quantitative performance of the post-trained network and compares it to
Res-UNET and the presented linear regression. It’s important to note that to enhance
the results of linear regression, we applied a smoothing filter to mitigate noise in the
linear regression output, serving as an additional improvement for a fairer comparison.
Additionally, higher SSIM values indicate better performance, while lower MAE values
signify improved performance. The celebrity faces dataset used for this analysis was
obtained from the source [29].

these datasets, the network demonstrated a relative capability to reconstruct the overall image
context. A notable example is evident with MNIST, where all the individual digits are distinctly
recognizable. Importantly, the distribution of loss across all reconstructed pixels does not reveal
any dataset-specific information. This emphasis on pixel-wise reconstruction highlights the
network’s ability to retain its focus on feature-based reconstruction rather than capturing specific
dataset patterns.

Following the second training step, the quality of reconstruction significantly improves. Of
particular significance, facial reconstructions are now representing the exact individuals – a
striking contrast to the results of the ResUNet model, where the reconstructed faces enhanced
fidelity but did not resemble the ground truth (Figure 4). The slight blurriness in the facial
reconstructions is a result of the inherent limitation that the fiber carries fewer modes than



number of pixels in faces dataset. This introduces a physical constraint that hampers the complete
transmission of information.

To further demonstrate how the second training step enhances feature-based reconstruction over
pixel-wise reconstruction, we calculated error distributions across all reconstructed pixels. The
results compellingly illustrate that the error distribution correlates with distinctive features unique
to each dataset, showcasing the added feature-based reconstruction. For instance, the errors in
celebrity face reconstructions predominantly align with discrepancies in facial features like eyes
and facial boundaries. This effect is observed while a significant portion of other information,
such as background details and overall facial structure, is reconstructed more accurately.

A comprehensive quantitative assessment of the proposed method, in comparison to other
techniques introduced in this study, is illustrated in Figure 6. This visualization provides a clear
demonstration of how our method outperforms ResUNet across all tested datasets, both in terms
of image fidelity and Mean Absolute Error (MAE) loss. Notably, the performance of our linear
regression models in the CIFAR dataset is relatively strong, resulting in outcomes comparable to
ResUNet. For all cases of reduced input linear regression, an image denoising step was applied to
enhance the quality of the reconstructed images, as linear regression inherently lacks denoising
capabilities. This denoising step significantly improved the output of linear regression for all
datasets.

Furthermore, we computed the Structural Similarity Index (SSIM) for the outputs of all
employed methods. Once again, the proposed method exhibited better performance. Another
noteworthy observation arises when applying image denoising to the faces reconstructed through
linear regression. This additional step leads to a substantial improvement in SSIM index compared
to the original linear regression output.

However, the excellence of the proposed method goes beyond numerical comparisons. Notably,
the reconstructed faces from ResUNet, despite achieving acceptable quantitative measures such
as MAE and SSIM, are not visually convincing and do not faithfully represent the individuals
depicted in the SLM screen (Figure 4). In stark contrast, our proposed method effectively
overcomes this limitation, resulting in highly accurate facial reconstructions that closely resemble
the actual individuals (Figure 6A).

2.5. Amplitude and phase Modulation

With a small modification, the entire presented method can be applied to the more general case
of amplitude and phase modulation. The equation for the combined modulation reads as follows:

𝐸𝐸𝐸 (𝑥, 𝑦) =
∑︁
𝑛

𝐴(𝜙𝑛)𝑈𝑈𝑈𝑛 (𝑥, 𝑦)𝑒 𝑗𝛽 (𝜙𝑛 ) (7)

where 𝐴(𝜙𝑛) represents amplitude modulation, and 𝛽(𝜙𝑛) represents phase modulation. If
we consider small deviations for both of these functions around a specific modulation point
𝜙0 (𝜙𝑛 = 𝜙0 + 𝜖𝑛), we can approximate both amplitude and phase modulation functions as
𝐴(𝜙𝑛) ≈ 𝐴(𝜙0) + 𝐴

′ (𝜙0)𝜖𝑛 and 𝛽(𝜙𝑛) ≈ 𝛽(𝜙0) + 𝛽
′ (𝜙0)𝜖𝑛, respectively. Here, 𝐴′ (𝜙0) and

𝛽
′ (𝜙0) denote the first derivatives of 𝐴 and 𝛽 with respect to 𝜙 at the 𝜙0 point.
By using the Taylor expansion of the exponential function in equation 7 and rewriting the

formula for the intensity of the electric field, we obtain the following expression:

|𝐸𝐸𝐸 (𝑥, 𝑦) |2 =
∑︁
𝑛

∑︁
𝑚

(𝐴2 (𝜙0) + 𝜖𝑛 (𝐴
′ (𝜙0)𝐴(𝜙0) + 𝑗 𝐴2 (𝜙0)𝛽

′ (𝜙0))

+𝜖𝑚 (𝐴
′ (𝜙0)𝐴(𝜙0) − 𝑗 𝐴2 (𝜙0)𝛽

′ (𝜙0))𝑈𝑈𝑈𝑛 (𝑥, 𝑦).𝑈𝑈𝑈∗
𝑚 (𝑥, 𝑦)

(8)

This relationship indicates a clear linear correlation between the modulating factor (𝜖𝑛) and
the intensity of the electric field. Similar to the phase-only case, this correlation holds as long as



the value of (𝜖𝑛) is relatively small.
In this context, we applied both linear regression and GAM methods to analyze the data

provided in the study by Caramazza et al. (2019) on transmission characteristics. The
experimental setup utilized a one-meter-long step index fiber with a core size of 105 𝜇𝑚, capable
of carrying approximately 9000 optical modes. The researchers imprinted images onto the fiber
by representing the intensity of the electric field using an SLM, a polarizing beam splitter (PBS),
and a half-wave plate.

The dataset employed in their experiment consisted of 45,000 images with a resolution of
92 × 92 pixels sourced from the ImageNet dataset, featuring natural scenes like plants and
animals. This specific image selection aimed to avoid apparent geometric features found in
handwritten digits of the MNIST dataset. The deliberate choice of this dataset positions it as an
ideal candidate for our GAM method, as we aspire to achieve pixel-wise reconstruction without
the two-step training process outlined in the previous section. This approach eliminates the
need for transfer learning and allows us to leverage the network’s pixel-wise reconstruction
capabilities in a single-step training process. However, the testing set is considered to be part of
the Muybridge motion data, comprising sequences featuring a horse, parrot, punch, and a cat.

However, due to the optical setup in Caramazza et al.’s method involving more modes than
our setup, we introduced slight modifications to both linear regression methods and GAM.
Specifically, for the case of the linear regression, we randomly selected 8468 points (equivalent
to 92 × 92 pixels) from the speckle. For the GAM method, we expanded the dimensionality of
the randomly selected points in MLP1 of Figure 5 to 2500, where random selection is necessary.
It’s important to note that as the size of the feature map decreases in the deeper layers of the
network, random selection becomes unnecessary.

Fig. 7. (Top) Reconstruction examples featuring linear regression (LR), GAM, and
their corresponding ground truth. (Bottom) Parameter comparison among ComplexNet
[16], linear regression, and GAM. Additionally, the SSIM comparison evaluates the
reconstructed images against the ground truth for each testing set separately when
utilizing ComplexNet, linear regression, and GAM for image reconstruction. The data
for this analysis was obtained from the source [16].



Figure 7 (top) showcases the reconstructed samples obtained through both linear regression
and GAM techniques. In-depth quantitative comparisons among linear regression, GAM, and the
ComplexNet proposed in [16] are presented in Figure 7 (bottom). Remarkably, both GAM and
linear regression exhibit superior reconstruction performance while utilizing a significantly lower
number of parameters compared to the ComplexNet models proposed in the referenced work.

It is noteworthy that the GAM, in particular, stands out by employing 25 times fewer network
parameters than the ComplexNet model. Despite this substantial reduction in parameter count,
the GAM achieves the best performance, surpassing both linear regression and ComplexNet
models. Specifically, the GAM outperforms the ComplexNet by approximately two times in terms
of Structural Similarity Index (SSIM), highlighting its remarkable efficiency and effectiveness in
image reconstruction.

3. Discussions and conclusion

In the preceding sections, we demonstrated that leveraging a non-locality notion arising from
the light propagation in MMFs enables the development of a novel global attention mechanism.
This mechanism not only significantly enhances the performance of deep convolutional neural
networks in image reconstruction through the produced speckles, but it also facilitates pixel-wise
reconstruction, contributing to the accurate reconstruction of the transmitted data.
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Fig. 8. pannel A show the schematic of the simulated scenario using FEM algorithm.
top, shows the a rectangular waveguide boundaries with perfect electrical conductor at
its boundaries. The fundamental mode is propagating from the bottom of the structure
and hits a material distribution with varying relative permitivity between 1 to 3 as
shown. bottom shows the norm of electric field distribution on the excitation port, near
the material distribution and one meter away from it. panel B and C show the transverse
electric field components and the material distribution reconstruction based on them
for both propagated(far) and near fields, respectively. panel D show the reconstruction
fidelity of obtained from the near and far field.

The GAM-enhanced method can find a wide applicability in scattering problems, since in
photonic systems scattering often induce a non-locality in the input-output relationship, which
can compensate data loss. Such a problem is known as inverse design as one is trying to find a



geometry of the problem based on the given electromagnetic response. To give an example on
this respect, we have conducted data-driven analysis on the interaction of electromagnetic waves
with material distributions, followed by their subsequent scattering and coupling in a guiding
system which can account for a much smaller number of modes with respect to MMFs. In this
instance, we utilized finite element (FEM) simulations to delve into the subject in the simulation
scenario depicted in Figure 8A. At the upper part of this panel, a permittivity distribution is
positioned within a perfect electric conductor waveguide. The waveguide is excited using its
fundamental mode from the structure’s bottom. For this square cross-sectional waveguide, with a
side length of 1 meter, it can be determined that 40 distinct modes are capable of propagation.
Once the fundamental mode encounters the permittivity distribution, the resulting scattered wave
then triggers the excitation of other waveguide modes in both directions. This occurrence leads to
the generation of an electric field distribution, as shown at the bottom of Figure 8B. The electric
field distribution at the input port, near the permittivity distribution, and half a meter away from it
is illustrated. Evidently, the back reflected wave distorts the electric field distribution at the input
port. Additionally, both the near field and the propagated field experience distortion, carrying
information from the material distribution.

Importantly, this problem is inherently different from our previous investigation on MMFs,
where the propagating medium remained constant while the source varied. In contrast, in this
case, the propagating medium can change by adjusting the permittivity distribution, while the
excitation source remains fixed. Still non-local effect arise due to potential coupling between
distinct segments of the material distribution and, akin to the MMFs problem, there is an added
non-locality due to the interaction between the different modes after the scattering events.

Figures 8, Panel B and C, exhibit the reconstruction of the permittivity distribution based on the
electric field distribution in the propagated field (0.5 meters from the material distribution) and
the near field. In this case, both transverse electric field components are utilized, as knowledge
of their profiles guarantees comprehension of the electric field across other cross sections of the
waveguide, following the principles of electrodynamic theory. Given that four different field
distributions are now under consideration —comprising the real and imaginary parts of both
the x and y electric field distributions— adaptations are required in the network architecture
with respect to the MMFs case. These two-dimensional field distributions are vertically stacked
into the third dimension, resulting in a unified three-dimensional input. Our GAM-enhanced
method adeptly processes this three-dimensional input and endeavors to map it to the permittivity
distribution throughout the learning process. It is evident that the reconstruction of the near field
surpasses that of the propagated field. This disparity stems from the fact that the waveguide can
only accommodate 40 propagating modes, resulting in information loss as the wave propagates
and leading to a less precise reconstruction. Similar to prior challenges, this reconstruction is
anchored in MNIST’s features, acknowledging the limited generality of the trained network. Yet,
there exists potential to improve generalization by running simulations using randomly generated
material distributions.

The central objective of this scattering endeavor revolves around identifying an inverse
transformation for the FEM simulation. Such an inverse design bears relevance in numerous
realms of electromagnetic engineering, including the design of metamaterials and solving inverse
scattering problems. These scenarios also involve non-local effects [30], and for instance can
be extended to the case of light propagation in highly scattering media. This is the case of the
brain, with neural endoscopy applications being limited by a very short photons mean free path
(<20𝜇𝑚 in some regions). The here-presented GAM-enhanced method can therefore represent a
complementary tool for engineering brain imaging methods, and can find applications in the
more general context of biological tissues where scattering hinder light propagation more than
direct absorption of photons.



4. Data and Code Availability

For the phase-only modulation, this study utilized 120,000 randomly generated images along
with their corresponding speckle patterns. Additionally, for each of the three datasets (faces,
CIFAR, and MNIST), we obtained pairs of 10,000 data points.

The dataset for phase-only modulation and the code example for reproducing the results of
the GAM and linear regression on ImageNet data in [16], are publicly available at the time of
publication.
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