
P1 P2 P3 P4 P5 P6 P7 P8

Categories RE-Elicitation RE-Process Process RE-Awareness RE-Documentation RE-Management RE-Challenges Quality Requirements Stakeholders Tradeoff Practice Purpose/ Goal Testing Workflow Context Characteristics of RS
Codes No user feedback Ad-hoc RE due to

low number of
contributors (-> no
need/possibility to
discuss design
decisions)

Opportunistic,
exploratory,
unplanned

RE term unclear Unstrcutured
documentation in
Google Docs

Project-Driven, no
shared set of
requirements

Reproducibility
problematic for
software written
for large
HPC/Supercomput
er

Extensibility Multiple
stakeholders

Understandabaility
vs. Performace

Prototyping Implement and test
scientific methods

Testing by
example (no
relation to
requirements)

New patch every
two weeks; no
plan

No permanent
positions

Organic growth

Project plans must be
broken down to
requirements

"Non-scientific"
requirements
addressed first to
ensure functional
correctness

Weekly meetings RE term not known Changes docuemnted
in PRs

No requirements
backlog

Ad-hoc RE due to
low number of
contributors (-> no
need/possibility to
discuss design
decisions)

Interoperability Many scientists as
users, worldwide;
more people
working on it; high
turnover

Delivering features
vs. refactoring
software

Prototyping RS as base asset Quantified
simulation errors
as test oracles

No initial plan on
which release
should include
which features

No direct reward
for SW

RS is vital to research
group

Requirements defined
based on research
interests

Requirements
discussed with
colleagues

Software mainly
developed alone
(during dissertation)

Realized
requirements
managemnt and
planning is more
central than he
thought

Documentation with
Kanban board; Issues
with labels

Issues mainly used
as notepad

Requirements
change constantly
(due to external
factors); good
base required

Performance User need: Rapid
response for a
scientific question

Features vs. intern
maintenance

Automatic
documentation
generation

No defined goals,
features, or project
work

Regression
Testing

(Shortterm)
Roadmap with
deadlines

Majority of time
spend developing
software (80-100
%)

Often no special
releases

Requirements were
implemented to
answer current RQs

Requirements
collected (in form
of issues), then
implemented when
they became
relevant

Software
documentation fell
short due to lack of
time (esp. during
dissertation)

Wants to invest more
in RE

Scope of
documentation
depends on number
of
participants/develope
rs

RE-prioritization
initially via Gitlab
milestones, then
locally on a list on
computer

Quality-
requirements
suffer due to need
for quick research
results

Installability User
Demonstrations

Development for own
purposes

Automated tests
& coverage
calculation

Feature-branch
workflow applied

> 10 years
experience

Research-driven

Need for something
more modular,
reeingineering; born
from dissertation;
dynamically evolved

Ad-hoc
requirements
discussion

Reproducibility must
be considered early
in development
process

No RE awareness Progress documented
in changelog

Priority changes
weekly - depending
on the features that
are needed to make
scientific progress

Not all
requirements
known in the
beginning -> leads
to
disadvantageous
decisions

Reproducibility Devs are not users Produce scientific
results quickly

No testing due to
time

No release 50 % time spend
developing
software

Complexity

Requirements based on
research needs

SE practices driven
by personal interest

As-is works out good,
do not see need for
improvement

No RE documentation No backlog Reproducibility
requirement must
be considered
from the start -> if
not leads to
problems later

Installability Software
development is only a
means to gain
scientific results

Test based on
expericne

No defined
milestones

Importance of results,
not code quality

Observation Important to handle
one requirement at a
time, otherwise
negative effect on
quality

Missing
documentation

Requirement for
reproducibility by
publishers can be
problematic due to
massive amounts
of data

Platform independence Software is a means
not a product

Testing based on
experience

Rolling releases Central asset

Discussion with
experienced people

No meetings Progess in Change Log SE-techniques are
not taught

Scalability Involve researchers in
SW dev

No idea on how to
derive test cases
from data

Rolling releases Focus on results

Interviews Not much
comunication,
everyone just pushes
what they need

Documentation
behavior emerged
over time

Changing
requirements
might be a
"danger"

Conformance to
software-stack

Software just to see
theoretic ideas in
action

Not enough time
to do more testing

Not much time

Prototyping Upcoming changes,
might need more
communication

Missing
documentation
hinders onboarding

Time; deadlines Performance Initial goal: next
publication

Confusion how to
test

Need to convince
supervisors etc.

Driven by a research
question

Additions from
outside users; certain
changes can happen
without review,
others not

Issues and PR as doc Lack of knowlede Maintainability No extensive
testing, only major
functions, no
higher testing
than unit testing

No formal
requirements

No systematic
requirement elicitation

Manual backlog Use issues as
changelog

Breaking down a
scientific question
into requirements

Reproducibility Redundancy

Focus groups Agile not possible
because working
mostly alone

Ad-hoc requirements
discussion, todos in
code

No clear benefit
becasue of small
teams

Good dependency
handling

Dynamic growth

Mainly requirements on
the fly, but more
planning will be
important for new
project

No regular dev
meetings

Word document for
personal todos (not
team!)

Fixed time
iterations

Reproducibility Research-driven

Plans to make some
kind of questionnaire
(maybe not as
structured)

Monthly sprint
meetings with issue
board

Publication more
importatnt than
SW

Performance Focus on results

Ad-hoc requirements No scheduled
meetings, but
planned to

More feature
requests in less
time

Reusability Working software >
quality

No onboarding, but
documentation

Technical debt Reproducibility No awareness for
quality

Discussions about
software often
"emotional"

Performance No releases

Attempt to establish
code reviews

Portability Research-driven

Warn others when
pushing

Reproducibility is
important but no one
does anything for it

Focus on results

Rarely talk about the
code as such

Portability

No managed
integration Performance

Platform independence
Reproducibility

