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Abstract

This preprint introduces in a visual and conceptual
way a model of two intersecting curved fields with a
shared nucleus, whose quantized dynamics offer po-
tential cases of the four-variable Jacobian conjecture
and a nonlinear Hodge cycle.
The Kummer type geometry of the model sug-

gests a unified framework where abstract mathemat-
ical developments like Tomita-Takesaki, Gorenstein,
and Dolbeault theories, can be conceptually linked to
the Jacobian, Hodge, and Riemann conjectures.
Other mathematical physics topics, like the mass

gap problem, reflection positivity, the emergence of
imaginary time, or t-duality, are also considered
within this context.
The fields model also lays the foundation of a novel

deterministic quantum atomic system with a super-
symmetric dual nucleus structure of matter and mir-
ror antimatter.

1 Introduction

1.1 Antisymmetric system

Two intersecting curved fields that vary with oppo-
site phase, when the right field contracts the left ex-
pands and vice versa, form in their intersection two
transverse and two vertical subfields. The transverse
subfields are mirror antisymmetric, meaning that be-
ing mirror reflection of each other, they follow oppo-

∗Independent researcher — ademiguelbueno@gmail.com
Madrid, Spain. Orcid: 0009-0000-5420-3805

site phases: when the right subfield expands the left
contract and vice versa.

Figure 1: Antisymmetric system: at moment A2, the
right transverse subfield contracts and the left trans-
verse subfield expands; the vertical subfield moves
rightward.A4

The curvature of the transverse subfields is half
positive and half negative, and they are determined
by the forces of pressure caused by the inward dis-
placement of the negative curvature of the contract-
ing field, and by the outward displacement of the pos-
itive curvature of the expanding field.

These forces of pressure are represented by four
eigenvectors with eigenvalue 1 or −1, all pointing to-
ward right or toward the left.

An inversion of the system A2, equivalent to a 180
degrees rotation, given by the change of sign of the
four positive eigenvectors, is operated when the right-
hand contracting field expands and the left-hand ex-
panding field contracts. Then, the right contracting
transversal subfield at A2 is mapped to the left con-
tracting transversal subfield at A4, and the left ex-
panding transversal subfield at A2 is mapped to the

1



right expanding transversal subfield of A4.
This operation can be considered as an involution,

which is a type of automorphism. The system at A2

maps to itself at A3 and viceversa.
The complex conjugate function that describes the

continuous evolution from A2 to A4 and from A4 to
A2 is its own inverse.
The yet non-transformed right contracting trans-

verse subfield at time T1 can be interchanged with the
transformed left contracting transversal subfield at
T2, and the non-transformed left expanding transver-
sal subfield at T1 can be interchanged with the trans-
formed right expanding transverse subfield at T2. In
that way, the left and right transversal subfields ex-
hibit chiral mirror symmetry at different times.
This occurs as half of the system A2 (and the sys-

tem A4) follows a purely imaginary time dimension,
delayed with respect to the real time dimension that
follows the other half of the system.
In this context, a time dimension is considered to

be a necessary reference to measure the periodic fluc-
tuation of space, which can be represented by an axis
in the coordinate system.
The top vertical subfield will move left or right, to-

ward the side of the intersecting field that contracts.

Figure 2: Antisymmetric system: at moment A4, the
right transverse subfield expands and the left trans-
verse subfield contracts; the vertical subfield moves
leftward.

Both left and right transverse subfields are here de-
scribed by the same spatial dimensions. These spa-
tial dimensions cannot be the same that are used to
describe the intersecting fields, because the Y coor-
dinate of the transverse subfields will be considered a

diagonal axis from the point of view of the coordinate
system taken as reference to describe the intersecting
fields.

Misleading the different coordinate systems with-
out considering the higher spatial dimensions of the
transverse subfields will result in a relativistic space-
time metric that appears elongated. This effect
would be observed when measuring the transversal
subfields from the location of the intersecting fields,
using their referential coordinates system.

Given that each eigenvector has two possible direc-
tions, pointing toward right or left, the antisymmetric
system formed by A2 and A4 can be described by a
complex function of two variables, and a pair of 2×2
complex matrices whose elements are the mentioned
eigenvectors:

Figure 3: Pair of 2 × 2 complex matrices whose el-
ements are eigenvectors with eigenvalue 1 or −1, re-
lated to the antisymmetric system.

1.2 Symmetric system

In the symmetric system represented by A1 and A3,
the two intersecting fields oscillate in unison: they
contract and expand simultaneously.

The transversal subfields exhibit chiral mirror sym-
metry at the same time. If the system A1 were in-
verted in the same way previously seen for the an-
tisymmetric system, equivalent to a 180-degrees ro-
tation in the horizontal plane, both left and right
transverse subfields would be interchangeable.

However, in the symmetric system, the positive
and negative eigenvectors point upward and down-
ward, respectively. The continuous inversion of sys-
tem A1 performed at A3 implies that all four positive
eigenvectors pointing upward revert their sign, be-
coming negative and pointing downward. In this con-
text, the inversion does not represent a 180-degrees
rotation of the vertical plane, as the curvatures do not
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get inverted. However, the inversion operated at A3

has consequences similar to that type of planar rota-
tion. All the pressure forces at A2 are caused by the
negative curvatures of both intersecting fields moving
inward, and all the pressure forces at A4 are caused
by the positive curvature of both intersecting fields
moving outward. This change in the relevant side of
the curvature in terms of pushing force is equivalent
to an inversion in curvature.
Considering a mapping that takes the system from

a state of expansion at A1 to a state of contraction
at A3, there will exist a reverse mapping that transi-
tions the system from contraction back to expansion.
This transformation is a continuous process, and de-
spite differences in shape, the topological structure
of the curvatures of the transverse subfields is pre-
served. Therefore, this mapping can be considered a
homeomorphism.

Figure 4: Symmetric system: at moment A1, both
left and right transversal subfields expand. The ver-
tical subfield moves upward while contracting.A4

Observing the dynamics determined by the peri-
odic contraction and expansion of the intersecting
fields, it can be observed that at moment A1, when
both intersecting fields undergo contraction, there
is a simultaneous expansion of both transverse sub-
fields. Conversely, at A3, when the previously con-
tracting fields begin to expand, both transverse sub-
fields enter a state of contraction.
The linear, continuous evolution from A1 to A3 and

vice versa, can be modeled by a complex function
of two variables. The changes of the curvatures of
the oscillating spaces and subspaces are indicated by
the variation in the eigenvectors’ direction. The four

Figure 5: Symmetric system: at moment A3, both
left and right transversal subfields contract. The ver-
tical subfield moves downward while expanding.A4

eigenvectors can point upward (at A1) or downward
(at A3), depending on their sign, and they can be
represented in a pair of 2× 2 complex matrices with
eigenvalues of either 1 or −1.

Figure 6: Pair of 2 × 2 complex matrices of eigen-
vectors related to the antisymmetric system.

1.3 Rotational system

Thus far in the article, the symmetric system A1

A3, and the antisymmetric system A2 A4 have been
treated as independent and unrelated systems, lin-
early described by two distinct functions related to
different pairs of matrices.

However, within a rotational framework, the sym-
metric and antisymmetric systems may in fact turn
out to be the same system that undergoes topological
transformations with each 90-degree rotation, alter-
nating between symmetric and antisymmetric states.
The nonlinear evolution of such a rotational system
would need to be described by two interpolated func-
tions: a complex function and a harmonic partial
complex conjugate function.

However, in a rotational framework, the symmet-
ric and the antisymmetric systems may turn to be
the same system which is topologically transformed
after each 90-degrees rotation, becoming periodically
symmetric or antisymmetric.
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This would imply that the smooth but non-linear
evolution of the system given by A1 +A2 +A3 +A4

, must be described by two interpolated functions,
a complex function (related to the symmetric mo-
ments of the system) and its harmonic partial com-
plex conjugate function (related to the antisymmetric
moments of the system).

Figure 7: Rotational interpolation of the vector sym-
metric and antisymmetric systems represented in a
2D scheme

The evolution of that interpolated rotational sys-
tem can be represented by a set of four 2×2 complex
rotational matrices of eigenvectors with eigenvalue 1
or −1:

The rotational system’s evolution progresses
through four stages, each corresponding to a 90-
degrees rotation. This evolution is associated with
the periodic interpolation of symmetric and antisym-
metric moments of the system. In each stage, only
two of the four eigenvectors, which signify the vari-
ation in the curvature of half of the system, change

Figure 8: Set of 2 × 2 rotational matrices related
by pairs to the complex symmetric (A1 and A3) and
the partial complex conjugate antisymmetric (A2 and
A4) systems.

Figure 9: Actual rotation of the vectors in the context
of the rotational matrices, changing their position af-
ter each 90-degrees rotation.

their sign according to their eigenvalues of 1 or −1.

The variation observed in half of the eigenvectors
can be interpreted as a partial derivative, suggest-
ing a half-order derivative. The complete first-order
derivative is achieved when all four eigenvectors alter
their signs following two successive 90-degrees rota-
tions. The eigenvectors that change represent the dif-
ferentiated complex variables, while the eigenvectors
that remain constant represent the undifferentiated
complex variables.

The partial derivative also represents a partial
complex conjugation.

However, by assigning specific letters to the eigen-
vectors, it can be observed that all four eigenvectors
change their direction at each stage, effectively dis-
placing after each 90-degrees rotation.

The four eigenvectors actually rotate in the com-
plex plane, altering their position and direction four
times, each time by 90 degrees. In this context, the
function describing the system’s evolution can be in-
terpreted as a function of four variables. These four
variables represent the four potential directions or
positions in the complex plane that the eigenvectors
can assume during the system’s non linear rotational
evolution.

When only two of the four eigenvectors change
their sign, the system’s evolution will be represented
by a function of two variables.
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On the other hand, the set of transformation ma-
trices A1, A2, A3, A4 that describe the evolution of
the rotational system result from the operations of
transposition, complex conjugation (as the sum of
two partial complex conjugations), and inversion:

• A1 (0-degrees rotation) represents the eigenvec-
tors in the symmetric system, when both in-
tersecting fields contract. The transversal sub-
spaces have mirror symmetry at the same mo-
ment and the top vertical contracting subfield
experiences a double force of compression while
ascending. A1 can be taken as the identity ma-
trix.

• A1 (90-degrees rotation) represents the eigen-
vectors when half of the system has delayed its
phase, introducing a purely imaginary time di-
mension. The transversal subfields have mir-
ror antisymmetry (the left expands while the
right contracts), and the vertical subfield moves
right. A2 represents the transposition of A1.
The change of sign of half of eigenvectors im-
plies a partial complex conjugation of A1, and
its 1

2 order derivative.

• A1 (180-degrees rotation) represents the partial
conjugation of A2, changing sign the two eigen-
vectors that had not changed sign at A2). As its
four eigenvectors have already commuted their
sign with respect to A1, A3 represents the neg-
ative reflection of A1 and its whole first order
( 12 + 1

2 ) derivative; (A3 represents the 1
2 order

derivative of A2).

• A1 (270-degrees rotation with respect to A1,
180-degrees with respect to A2, and 90-degrees
with respect to A3) represents the transpose of
A3, the

1
2 order antiderivative of A3, the second

transposition of A1, and the first order (12 + 1
2 )

derivative of A2; A4 is also the negative mirror
reflection of A2, having commuted sign its four
eigenvectors.

• An additional 90-degrees rotation produces A1

which represents the positive reflection of A3, a
1
2 order antiderivative of A4, and the first order
( 12 + 1

2 ) antiderivative of A3.

2 Jacobian conjecture

The Jacobian conjecture [1] formulated by Keller in
1939 states that if a polynomial map from an n-
dimensional space to itself has Jacobian determinant
which is a non-zero constant, then, the function has
a polynomial inverse.

Expressed in terms of vectorial functions, it would
state that if a vector-valued function map from an n-
dimensional space to itself has Jacobian determinant
which is a non-zero constant, then the function has a
vector-valued inverse.

The Jacobian determinant is a measure of how
much a transformation stretches or shrinks the space
it maps to, and it is defined for continuous transfor-
mations. The Jacobian conjecture applies to maps
between homeomorphic spaces.

In the context of the rotational system, the trans-
formations are continuous but not in a linear way.
The smooth continuity passes through the interpola-
tion of the complex and the complex partial conjugate
function spaces after each 90-degrees rotation.

In that context, the topological structure of the
transverse subfields is preserved, being automorphic,
even when their size is not identical as it happens in
the symmetric system when the contracting subfields
map the expanding subfields. Their curvatures are
always half positive and half negative, as they are
formed by the inner curvature of an intersecting field
and by the outer curvature of the other intersecting
field.

In the antisymmetric system, the topological struc-
ture of the automorphic vertical subfield that maps
to itself when moving leftward or rightward is also
preserved because it’s always formed by a negative
curvature formed by the inner curvatures of both left
and right intersecting fields.

The top vertical subfield in the antisymmetric sys-
tem that moves upward while contracting (when both
intersecting fields contract), or downward while ex-
panding (when both intersecting fields expand), has
a negative curvature. However, the inverted subfield
that at moment A3 exists at the convex side of the
system, mapping the top vertical subfield that exists
in the concave side at A1, has a double positive cur-
vature.
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Figure 10: Antisymmetric system: at moment A3,
when the top vertical subfieldd descends while expand-
ing it has negative curvatures; but its mirror counter-
part at the convex side has positive curvatures.

In that sense, the topological structure of the con-
cave vertical subfield of A1 is not preserved in the
inverse convex subfield of A3. That would represent
that the top vertical subfield is not mapped when the
inversion is operated at A3.

Still in that case, the ascending contracting vertical
subfield with negative curvature of A1 can be consid-
ered being mapped to itself at A3, when it descends
while expanding. However, in that case, the mirror
reflection property of the vertical subfield would not
be being considered by the Jacobian conjecture.
An additional complexity could be introduced if

the intersecting fields periodically synchronize and
desynchronize their phases of fluctuation while the
whole system rotates.

3 Gorenstein Liaison

In algebraic geometry, the Gorenstein theory [2] es-
tablishes that two modules in projective space are
linked if they are isomorphic.
These isomorphic modules contain curved with a

same deficiency. The curvature singularity reflects a
lack of regularity. For instance, a curve exhibiting a
change in its sign, inverting its direction, represents
a defect in that curve.
The deficiency module of a curve is isomorphic to

the deficiency module of any other curve with the
same deficiency. Consequently, if two curves share
the same deficiency, then the modules that encom-
pass them in the projective space will also exhibit

the same deficiency module.
This establishes that the two modules are ”linked”

by their deficiency in a Gorenstein sense.

Figure 11: The left and right modulus, represented by
the mirror transversal subfields, encompas curvatures
that exhibit a same irregularity, being half + and half
− from the point of intersection between the left and
right fields.

To be linked in projective space, it suffices for two
modules to preserve the algebraic structure imparted
by the deficiency in the curves.

Under the model of intersecting fields proposed in
this article, the modules that contain the curves of
the Gorenstein theory are interpreted as the trans-
verse subfields in both the symmetric and antisym-
metric systems.

The projective space scenario is represented by the
left and right intersecting curved fields. These fields
have a different weight in regard to the creation of the
singularity in the curvature of the transversal sub-
fields.

In that way, the left transverse subfield, embed-
ded in the left intersecting field, exhibits a negative
curvature up to a point of inflection, where that cur-
vature inverts its sign becoming positive. That point
of singularity is the point of intersection of the left
and right fielfds.

That deficient by irregular positive sign of the cur-
vature is given because it corresponds the the outer
side of the curvature of the right intersecting field.
In that context, the right field has a relevant or de-
termining weight or in the inversion of the sign that
causes the singularity.

The same occurs in regard to the right transverse
subspace, embedded in the right intersecting field. Its
curvature exhibits the same dual structure as the left
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transversal subfield, being half positive and half nega-
tive. In this case, the relevant weight in the curvature
singularity will be attributed to the left intersecting
field.
In this context, both left and right modular trans-

verse subspaces are isomorphic because the structure
of their deficiency is preserved under the map to each
other that occurs during the evolution of the project-
ing arena, creating a Gorenstein-style linkage, as a
short of entanglement.
Considered in these terms, the Gorenstein modular

linkage can be connected to the Jacobian conjecture
previously exposed, in the framework of the intersect-
ing fields model.

4 Tomita-Takesaki theory

Considering the rotational fields system as a specific
case of the Jacobian conjecture, it is also possible to
conceptually infer some relations to Tomita-Takesaki
(TT) modular theory [3].
In TT theory two intersecting algebras form two

shared “modular inclusions” (with + and − half sided
subalgebras) and a “modular intersection” (with an
integer sided subalgebra).
The left and right half handed subalgebras will be

images of each other, when they are commutative, or
they will not be their mirror image when they are
noncommutative.
Mapping the modular inclusion to its reflection im-

age, the left and right subalgebras will be the oppo-
site image of each other (reverting their initial signs)
if they are commutative; if they are noncommutative,
the initial left sided subalgebra will be the image of
the right sided mapped subalgebra, and the initial
right-handed subalgebra will be the image of the left
sided mapped subalgebra.
TT theory decomposes a linear transformation into

its modular building blocks, revealing its automor-
phisms.
Decomposing the bounded operator, it obtains the

modular operator and the modular conjugation (or
modular involution) which is a transformation that
reverses the orientation, preserving distances and an-
gles.

Translating the abstract algebraic terms to the
fields model, two intersecting algebras would repre-
sent the two intersecting fields fluctuating with the
same or opposite phase.

The half handed subalgebras (or “modular inclu-
sions”) will be the transversal subfields of the nucleus
shared by the intersecting fields, while the integer
handed subalgebra (or “intersection inclusion”) will
be our vertical subfields. In this context, we iden-
tify commutativity and noncommutativity with mir-
ror symmetry and mirror antisymmetry, respectively.

The bounded operator that is decomposed will be
the 90-degrees rotational matrix; The modular build-
ing blocks are the set of matrices that are obtained
when applying the operator.

The modular operator will be the 1
2 partial com-

plex conjugate A2 matrix; And the modular conjuga-
tion will be its conjugate matrix A4, which forms the
whole conjugation by adding the partial conjugations
( 12 + 1

2 ) of A2 and A3.
Therefore, by separating the partial complex con-

jugate matrix from the complex one, the automor-
phism of the antisymmetric partial conjugate system
is found.

The half sided algebras that form a modular in-
clusion are noncommutative, it means we are in the
antisymmetric system where the left intersecting field
contracts while the right one contracts and vice versa;
in that system, the left transversal subfield will be
the mirror symmetric image (it will be the mapped
image) of the right transversal subfield when, later,
the left intersecting field expands and the right one
contracts.

In that sense, a past half handed subalgebra is be-
ing mapped with its future image. A time delay will
exist between both subalgebras.

Considering ∆ as the modular operator A2, J the
modular conjugation A4, and M the intersection of
two Von Neumann algebras, ∆−Y tM∆it will repre-
sent the positive and negative 1

2 sided modular in-
clusions of the modular operator, being t a real time
dimension and it an imaginary time dimension given
by the partial conjugation of A1 or A3.
It is this different time dimension what makes non-

commutative, as non-interchangeable, the modular +
and − inclusions related to ∆ in the antisymmetric
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system.
Applying the modular involution, yields

JytM ′J−it.
∆−yt is transformed into Jyt and ∆it is trans-

formed into J−it, being JytM ′J−it the involutive au-
tomorphism of ∆−ytM∆it.
The noncommutative, as non-interchangeable,

∆−yt and ∆it become commutative or interchange-
able through time at JytM ′J−it, fixing their antisym-
metry (restoring the lost mirror symmetry) in that
way .

5 Reflection positivity

Related to the delay in time in the antisymmetric
system, it can also be mentioned a property that all
unitary quantum field theories are expected to hold:
“reflection positivity” (RP). [4]
The positive increasing energy that appears in one

side of the mirror system should also be reflected in
the other side. However, in the context of the anti-
symmetric system, the positive or increasing energy
of the contracting right transverse subfield does not
mirror simultaneously in the expanding left trans-
verse subfield, which exhibits negative or decreasing
energy.
Therefore, to obtain a positive energy reflected at

the left side, making the sides of the system virtually
symmetric, a time reversal operation is needed.
To observe the positive energy reflected at the left

side, it will be needed to go back in time to the mo-
ment where the left transversal subfield was contract-
ing and had a positive energy. This operation is per-
formed by a type of “Wick rotation”. [5] The main
time phase of the symmetric system can be repre-
sented with the Y coordinate.
By performing a partial conjugation that involves

a fractional derivative, the time coordinate Y under-
goes a rotation into the purely imaginary dimension
within the complex plane. At that moment, the mir-
ror system becomes antisymmetric as one side of the
system keeps following the imaginary time of Y while
the other side follows a harmonic phase. A positive
or negative time lag has been introduced.
Reversion time on one side of the system serves

Figure 12: Reflection positivity in the antisymmetric
system.

as a symbolic tool to virtually restore symmetry to
the time phases. To revert to the previous time, one
could perform a reverse rotation of the complex time
axis (X + iY ) to achieve a full complex conjugation
at (−X − iY ).
In the A matrix context, that time backward rota-

tion represents an antiderivative of −A.
When the time reverse has been symbolically com-

pleted, in the left side of the mirror system the left
subfield will be contracting, having an increased pos-
itive energy; this is a past reflection of the future
positive energy that will emerge a moment later in
the right side.

In the reverse past time, at the right side of the
system the right subfield will be expanding, having a
decreased negative energy.

In regard to the symmetric system, positivity is re-
flected between the right and left transverse subfields
at the same time. In that sense, it’s not necessary to
use the Wick operation to reverse time.

Both left and right transversal subfields will be the
mirror reflection of each other at the same time. How-
ever, in the case of the strong interaction in the sym-
metric system, when the contracting vertical subfield
has an increased positive energy while ascending to
emit a pushing force, it will be necessary to virtually
visit a past moment to look for a previous state where
positivity could be reflected.

Going back in time, the vertical subfield will be los-

8



Figure 13: Reflection positivity the symmetric sys-
tem.

ing its energy while expanding, moving downwards.
Therefore, at that past moment, the vertical subfield
will not display a positive energy.
Reflection positivity, however, can be found at that

past moment in the convex side of the system of
the two intersecting fields, where an inverted sub-
field with convex curvatures will be experiencing an
increased energy.
That inverted subfield can mirror the vertical sub-

field which in a future state will be ascending in the
concave side of the system through the Y axis.

The missing reflection positivity in the concave side
of the system in the strong interaction can be related
to a mass gap problem when it comes to the weak
interaction.

6 Mass gap problem

There will be a mass gap [6] in the system when the
two intersecting fields simultaneously expand, and
the vertical subfield experiences a decay of energy.
This case represents the ground state with the low-

est possible energy of the vertical subfield, which is
always greater than 0 because the highest rate of ex-
pansion of the intersecting fields prevents them from
having zero curvature.
The zero point of the vacuum, where there should

be no energy or mass, is placed at the point of in-
tersection of the XY coordinates, and that point is

never reached by the vertical subfield that descends
through the Y axis while expanding during its decay.

An “upper” mass gap would refer to the highest
possible mass of a particle in the strong interaction.
Its limit would be given by the greatest rate of con-
traction of the intersecting spaces.

Figure 14: Mass gap in the symmetric system; the
upper gap occurs in the compressed photonic subfield
when both intersecting fields contract, while the lower
gap occurs in the decompressed subfield when both in-
tersecting fields expand.

The zero point of the vertical subfield is marked in
yellow on the above diagram, at the point of inter-
section of the left and right intersecting fields.

The gap is given by the distance from that point
to the zero point where the X and Y coordinates
intersect, represented by a red mark. An arrow shows
the gap distance between those critical points.

However, in this model, the zero point does not
represent a vacuum where neither energy nor mass
exists.

When the mass and energy of the vertical subfield
reach their weakest level in the concave side of the
symmetric system, an equivalent amount of energy
and mass arises in the convex side, where the zero
point is located, as the result of the double pushing
force caused by the displacement of the positive cur-
vature of the expanding intersecting fields.

That mass and energy at this zero point will be
considered dark from the point of view of the concave
side of the system.

In the antisymmetric system, the lowest energy
level occurs when a transverse subfield experiences
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Figure 15: Mass gap in the antisymmetric system,
with the left and right displacements of the point of
intersection.

a double decompression due to the displacement of
the concave curvature of the contracting intersecting
field and the displacement of the positive curvature
of the expanding intersecting field.

The corresponding double compression is then ex-
perienced by its mirror antisymmetric transverse sub-
field.

7 N=1 Supersymmetric atomic
model with dual nucleus of
matter and antimatter

The fields model emerges in the context of the heuris-
tic development of a novel supersymmetric quan-
tum model of an atom composed of two intersecting
curved fields. These fields share a nucleus consisting
of two transverse and two vertical subfields, symbol-
izing the mirror matter and antimatter of this dual
structure. [7]

The following sections describe in a general way the
dual nature of the nucleus, treating its symmetric and
antisymmetric states as separate systems.

The atomic antisymmetric nucleus’s composition
varies based on the system’s evolutionary stage. It
could comprise a proton, a positron, and a antineu-
trino, or conversely, a neutrino, an electron, and an
antiproton.

7.1 Fermionic antisymmetric system:
the left intersecting field expands
while the right one contracts: A2

• The right contracting transversal subspace rep-
resents a proton.

• The left expanding transversal subspace repre-
sents a neutrino.

• The vertical subspace moving toward the right
represents a positron.

7.2 Antisymmetric system, the left in-
tersecting field contracts while the
right one expands: A4

• The right contracting proton expands, becoming
a right expanding antineutrino.

• The left expanding neutrino contracts, becoming
a left-handed contracting antiproton.

• The vertical positron moves toward the left, be-
coming an electron.

The right transverse proton at moment A2, and
the left transverse antiproton at moment A4 are con-
tracting subspaces that experience a dual compres-
sion force, originating from the positive curvature of
the expanding field and the negative curvature of the
encompassing contracting field.

When the expanding field contracts and the con-
tracting field expands, the side of the curvature that
determines the force of pressure of the field changes,
inverting the dynamics of the forces and the direction
of the energies of the system.

It implies that when the right contracting proton of
A2 is transformed into a right expanding neutrino at
A4, and the left contracting antiproton of A4 is trans-
formed into a left expanding antineutrino at A2, the
neutrino and antineutrino will experience a double
decompression force.

The topological transformation of the contracting
proton in an expanding neutrino (and also of the ex-
panding antineutrino in a contracting antiproton) can
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be described as an automorphic map, as the trans-
verse subfield maps to itself through its periodic con-
traction and expansion, preserving the structure of
its double curvature even though its size and physi-
cal properties change.
The curvature of each transverse subfield is half

positive and half negative, and this irregular singu-
larity is preserved during the whole evolution of the
antisymmetric and symmetric systems.
The A1 Proton and the A3 antiproton exhibit chi-

ral mirror reflection symmetry at different moments.
Being identical with an inverse sign, they can be con-
sidered as the homeomorphic map of each other. The
same applies to neutrino and antineutrino.
In this context, proton and antiproton, (and neu-

trino and antineutrino), are considered to be Dirac
antiparticles at different times.
When the right intersecting field contracts and the

left expands, the top vertical subfield will move right-
ward, acting as a positron at A2. When the left in-
tersecting field contracts and the right expands, the
top vertical subfield will move leftward, acting as a
positron at A4.
In this dual fields model, the electron and positron

are the same automorphic subfield that maps onto
itself at different moments, while oscillating left or
right in a pendulum-like motion. Being their own
antiparticles, they are modeled as Majorana antimat-
ter.
When the vertical subfield moves toward the left

acting as electron, it can be considered that it simul-
taneously exists in a virtual way on the system’s right
side, in the Aristotelian sense that although it actu-
ally does not exist yet it has the potential of becoming
existent a moment later, when the right intersecting
field contracts and the right field expands.
The existence of an electron and a positron in the

same atom, also known as positronium, was predicted
by Dirac in 1928. However, the positronium was for-
mulated as an exotic atom with no proton in its nu-
cleus.
In a similar way, the coexistence of proton and an-

tiproton in the same atom is currently accepted as an
exotic structure called protonium, with no electrons
or positrons.
In the dual model introduced in this article, matter

and antimatter would coexist in any electromagnetic
nucleus, being related to each other by means of their
chiral mirror reflection symmetry or antisymmetry.

That mirror symmetry would operate at different
times in the fermionic antisymmetric system A2 A4,
or at the same time in the bosonic symmetric system
A1 and A3.

Fig. 16 visually represents the limit states of the
evolution of the antisymmetric system; however, they
do not reflect the moment when the curvatures of
the intersecting fields, having an opposite phase, are
coincident. At that moment, the top vertical subfield
will be passing through the central Y axis, which is
the reference zero center of symmetry of the system,
and the left and right transverse subfields will exhibit
the same curvature and charge, canceling each other.

Figure 16: Fermionic antisymmetric system, lineal
evolution.
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This state of neutrality can be considered analo-
gous to a balance scale, where the equal weights on
each side cancel each other. It is at this moment that
the neutron concept would emerge.

All the subfields in the antisymmetric system are
considered fermions with noninteger 1

2 spin.

Each field is determined by two forces of pressure
or decompression, each one being represented by a
vector in the fields model. The spin of each subfield
is determined by the force of pressure of only one of
the intersecting fields, which is represented only by
the vector that changes its sign.

These fermionic subfields are governed by the Pauli
exclusion principle: when at the right side of the sys-
tem the transverse subfield contracts acting as a pro-
ton, the left transverse subfield cannot be contracting
acting as an antiproton, it must be expanding, acting
as an antineutrino, as a consequence of the opposite
phases that govern the antisymmetric system.

Similarly, when the vertical subfield moves toward
the left, acting as an electron, it cannot simultane-
ously move toward the right, acting as a positron.

Although this unconventional fields model is causal
and deterministic, it should be possible to be de-
scribed in probabilistic terms. In that case, these
fermionic fields should follow Fermi-Dirac statistics.

In that same context, considering Schrödinger’s cat
in the context of the dual atom model, it could be fig-
uratively said that the right alive contracting cat will
be the delayed reflection of the left dead expanding
cat, and vice versa.

Here, there will not be a single alive and dead cat,
but two identical cats with opposite states and posi-
tions that are mirror reflections of each other.

Considering there is a unique cat, the simultaneous
states of being “alive” and “dead” will be considered
“superposed”. But in the context of two mirroring
cats, their opposite states will be considered entan-
gled with an opposite phase.

7.3 Bosonic symmetric system, when
the left and right intersecting
fields contract: A1

• The right and left expanding transversal sub-
spaces represent a right-handed positive and a
left-handed negative gluon.

• The top vertical ascending subspace that con-
tracts receiving a double force of compression
will be the electromagnetic subfield that emits
a photon while pushing upward.

• The inverted bottom vertical subspace at the
convex side of the system represents the dark
decay of a previous dark antiphoton.

Figure 17: Bosonic Symmetric system, lineal evolu-
tion.

12



7.4 Symmetric system, when the left
and right intersecting fields ex-
pand: A3

• The right and left expanding transverse sub-
spaces may represent −W and +W bosons.

• The top vertical descending subspace will be the
electromagnetic subfield losing its previous en-
ergy, after having emitted a photon.

• The inverted bottom vertical subspace at the
convex side of the system is the dark anti electro-
magnetic subfield that emits a dark antiphoton.

The identity of the symmetric transversal subfields,
labeled before as “W bosons” and “gluons”, requires
further clarification in this model.

The left and right transversal subspaces will be
mirror symmetric antimatters at the same time. As
both experience simultaneously the same state of be-
ing contracting (or later being expanding), they are
considered to be bosons not ruled by the Pauli ex-
clusion principle. They should then obey the Fermi-
Dirac statistics.

However, photons and antiphotons cannot exist si-
multaneously in the same state. When a photon
emerges in the concave side at A1, an antiphoton de-
cays in the convex side. Conversely, when a photon
decays at A3, an antiphoton emerges. From here, it
is inferred that photon and antiphoton are governed
by the Pauli exclusion principle.

This occurs because the curvatures of both the left
and right transverse bosonic subfields follow the same
phase of variation, which is opposite to the phase of
the intersecting fields that encompass them.

7.5 Supersymmetric system

While the Standard Model describes fermions and
bosons as fundamentally distinct particles, string the-
ory suggests a connection between them through ad-
ditional supersymmetric particles that would act as
superpartners between them.

In the two intersecting fields model proposed in this
article, supersymmetry emerges from the dynamic

evolution of intersecting fields. As the system ro-
tates, the same four subfields manifest as fermions or
bosons according to the phase difference between the
intersecting fields. This phase difference determines
the fermionic or bosonic topological states that the
subfields manifest at different stages of the rotational
evolution.

This rotational framework seamlessly unifies
fermionic and bosonic systems through achieving a
N=1 supersymmetry.

Although in this model the fermionic partners of
the photonic subfield are the electron and positron
subfields, it still can be considered as an N=1 cor-
respondence. This is because in this model positron
and electron are the same subfield placed at opposite
sides at different moments. In that sense, the 1

2 top
spin of the positron at A2 and the − 1

2 top spin of
the electron at A4 simultaneously converge at A1 in
the vertical photonic field.

Supersymmetry could also be explained in terms
of the periodic synchronization and desynchroniza-
tionm of the intersecting fields. However, the interpo-
lation caused by the rotational dynamics still seems
necessary to introduce a quantization of the space
time. When considered independently, the bosonic
symmetric and the fermionic antisymmetric systems
exhibit the classical linear continuity of longitudinal
waves. However, when interpolated within the ro-
tational context, an apparent quantum discontinuity
arises, periodically breaking and restoring the sym-
metry of the rotational system. This smooth quan-
tum phenomenon can be interpreted as a non-linear
rotational continuity.

However, the nonlinear interpolation introduced by
rotational dynamics seems to play a crucial role in
introducing quantization to spacetime. When con-
sidered independently, the bosonic symmetric and
fermionic antisymmetric systems exhibit a classical
continuity. However, within the rotational context,
a quantum discontinuity arises, periodically break-
ing and restoring the symmetry of the system. This
smooth quantum phenomenon can be interpreted as
a non-linear rotational continuity.

In that context, a single complex function or, sep-
arately, its harmonic complex function, cannot de-
scribe in a non probabilistic way the whole dynam-
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ics of this rotational system, as the fermionic states
appear as the harmonic partial conjugation of the
bosonic states, and vice versa, being the symmet-
ric and the antisymmetric systems essentially inter-
twined.

In the context of this rotational system, a single
complex function or its harmoic partial complex con-
jugate cannot capture the complete dynamics in a
non-probabilistic manner. This is due to the har-
monic partial conjugation of fermionic and bosonic
states, which renders the symmetric and antisymmet-
ric moments of the system inherently interdependent
through time.

The bosonic and the fermionic states can be con-
sidered as the intertwined electric and magnetic mo-
ments of the system, respectively.

The next diagram represents the signs of the cur-
vatures of the four nuclear subfields. A colored cur-
vature indicates the intersecting field that changes its
curvature, contracting or expanding, creating a force
of pressure from the side of the curve represented by
a circle on one of the curvature’s sign.

Figure 18: Vector forces of pressure and signs of
curvatures in the nuclear subfields of the interpolated
symmetric and antisymmetric systems.

On the other hand, the nuclear subfield in the sym-
metric and antisymmetric subfields can be described
as cobordant [8] subspaces.

The vertical subspaces share borders with the left
and right transversal subspaces, and they all share
borders with the two intersecting spaces.

These borders can be thought of as one-
dimensional lines described by the curvatures of the
intersecting fields.

From that point of view, the fields model could be
related to string theories.

7.6 T-duality and SYZ conjecture

In string theory, the SYZ conjecture [9] states that
there exists a special type of Calabi-Yau manifold [10]
that is related to another Calabi-Yau manifold by a
T-duality [11] transformation.

T-duality is a concept that relates the spaces de-
scribed by type IIA and type IIB string theories.

In Type IIA string theory, the strings can move
freely in the Calabi-Yau transverse space with a
larger radius, while in type IIB string theory, the
strings are confined to the boundaries of the trans-
verse space of smaller radius. This means that a
string theory compactified on a large Calabi-Yau
space is equivalent to a string theory compactified
on a small Calabi-Yau space.

T-duality relates these two different types of larger
and smaller transversal spaces by means of a type of
inversion that exchanges the roles of the large and
small radii transverse spaces.

In the context of the dual fields model, the Calabi-
Yau spaces of smaller or larger radius can be con-
sidered equivalent to the transverse contracting or
expanding subspaces that are mapped to each other
by means of their topological transformation through
time, as described before in the antisymmetric rota-
tional system.

The elliptic orbits inside of the transversal sub-
fields, caused by their periodic expansion and con-
traction, can be visually related to the notion of el-
liptic fibrations.

The inner orbits of the transverse subfields would
be elliptic fibrations.

7.7 Unified interactions. Higgs fields

When one of the subfields contracts, its internal ki-
netic energy increases, and when it expands, its in-
ternal kinetic energy decreases, accelerating or decel-
erating its inner orbital motion.

This increase or decrease in energy is considered
here to be a strong or weak interaction, forming the
stronger or weaker bond that unites the nuclear sub-
fields and the whole dual system.

The electromagnetic interaction is represented by
the vertical subfield, which moves left or right in the
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antisymmetric magnetic moment or upward or down-
ward in the symmetric electric moment.

The gravitational interaction is represented by the
fluctuating curvatures of the intersecting fields, which
determine the mass of the subfields acting as a Higgs
mechanism.

8 Two-genus geometry and
Kummer surfaces

The geometry of intersecting fields model can also be
described in terms of a two-genus torus or two related
tori.

The outer positive and the inner negative curva-
tures of the torus can be interpreted as simultaneous
representations of the expanding or contracting mo-
ments of the oscillating fields. This can be observed
when looking at them from above in a top view, using
an orthographic projection.

Furthermore, the transversal subspaces in the fields
model could be considered equivalent to the transver-
sal lattices in a Weil-type torus model.

On another note, K3 surfaces represent another
type of geometry that can be related to the inter-
secting fields model. Specifically, the subfields that
constitute the nuclear manifold of the intersecting
fields system could be considered analogous to Kum-
mer surfaces [12].

A main characteristic of Kummer surfaces is that
they have a maximum of 16 double points, each rep-
resenting a singularity that arises from the conver-
gence of two branches of the system. These double
points participate in the Kummer inversion, where
each double point maps to its inverse.

In the context of the intersecting fields model, each
subfield arises from the convergence of the left or right
”branches” of the curved intersecting fields, and their
double curvature given by that convergence can be
interpreted as a double point.

In the symmetric system, where both fields con-
tract, a double point will appear in each of the
four subfields. When both fields expand a moment
later, four additional double points emerge. Simi-
larly, when the right field contracts while the left

field expands, four distinct double points appear; and
when the left field contracts while the right field ex-
pands, four more double points are formed.

In this way, the dynamics of the system encompass
16 double points, each associated with one of the four
subfields and their periodic transformations. Each
double point in these subfields maps to its inverse
during the evolution or involution of the system, as
it has been seen before.

Figure 19: Two intersecting fields that expand and
contract are mapped onto two static intersecting tori
using orthographic projection.

9 Appendix 1. Hodge cycles.

The supersymmetric dual nucleus model, previously
described as a Kummer-type system with 16 double
points, may also be linked to Hodge theory.
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Kummer surfaces are classified as algebraic vari-
eties. In this context, the transversal subfields of A1

could be interpreted as a projective algebraic variety.
This variety is related to another projective algebraic
variety represented by the transversal subfields of A3.

Both varieties are interconnected in a cohomology
group through an algebraic cycle.

The same can be said with respect to the cohomol-
ogy group of the the transversal subfields of A2 and
A3, and their respective algebraic cycle.

The algebraic cycle within each cohomology group
would establish a cyclic mapping between its respec-
tive varieties, making each variety the inverse of the
other.

By combining the algebraic cycles of both groups,
it can be constructed a type of super-cycle that re-
lates in a smooth way all the associated algebraic
varieties and the distinct symmetries they carry.

Following the rotational context described earlier,
the algebraic cycles would be smoothly combined or
interpolated through 90-degrees rotations of the com-
plex plane, giving rise to the cycle A1 + A2 + A3 +
A4 + A1+..., where each algebraic cycle is the har-
monic partial conjugation of the other.

The cycle formed by combining in this way those
algebraic varieties would constitute a Hodge cycle,
which links the symmetry of each cohomology group
in a dual Hodge structure.

In this sense, the mechanics of the dual atomic
model can represent a specific case of the Hodge
conjecture, which states that ”for particularly nice
types of spaces called projective algebraic varieties,
the pieces called Hodge cycles are actually rational
linear combinations of geometric pieces called alge-
braic cycles”. [13]

However, as it was previously seen, the combina-
tion of systems in the rotational fields model, al-
though smooth, cannot be considered linear.

This suggests that the supersymmetric dual nu-
cleus model may point towards a broader interpre-
tation of the Hodge conjecture beyond the classical
linearity.

However, as it was previously seen, the combina-
tion of systems in the rotational fields model, al-
though smooth, cannot be considered linear.

This suggests that the supersymmetric dual nu-
cleus model may point towards a broader interpre-
tation of the Hodge conjecture beyond the classical
linearity.

Figure 20: Algebraic varieties and Hodge cycle. The
left- and right-transverse subfields of the dual nucleus
can be considered as algebraic varieties of projective
spaces. An algebraic variety and its inverse form a
cohomology group of symmetry and are linked by a
linear cycle of mapping that connects them through
time. The nonlinear combination of the algebraic va-
rieties of two groups of cohomology gives rise to a
supergroup of cohomology whose cycle would repre-
sent a nonlinear quantized Hodge cycle.

16



10 Appendix 2. Wirtinger Par-
tial Derivatives. Dolbeault
Cohomology.

10.1 Wirtinger Partial Derivatives.

In the framework of the rotational model of inter-
secting fields, the partial derivatives performed by
the rotational operator exhibit properties analogous
to those of Wirtinger partial derivatives [cite], intro-
duced by W. Wirtinger in 1927 in the context of func-
tions of several complex variables.

Figure 21: Wirtinger partial derivatives derivatives
in the context of two intersecting functions.

They are defined in terms of the complex variable
z = x + yi and its complex conjugate z̄ = x − yi as

follows:

∂
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=
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∂
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∂
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)
The derivative ∂

∂z acts on the complex variable z =
x + yi while treating its conjugate z̄ = x − yi as a
constant. Conversely, the derivative ∂

∂z̄ acts on the
conjugate variable z̄ while treating z as a constant.

Geometrically, the complex conjugate z̄ represents
the reflection of the complex variable z across the real
x axis.

Wirtinger differentiation separates the real and
imaginary components of the complex variables.
When differentiating z, it uses the real part d

dx of

the complex variable and the imaginary part −id
dy of

its conjugate variable. Conversely, differentiating z̄
uses the real part d

dy of the conjugate variable and

the imaginary part +id
dx of the complex variable itself.

In the context of the dual model of intersecting
fields, two additional complex variables represented
by −X + iY and −X − iY are also considered.

The 1
2 differentiating of Wirtinger derivatives can

be represented in the intersecting fields model using
two intersecting functions, a right f and a left g func-
tion.

When applying the differential operator, only one
function f or g is differentiated: the function related
to the expanding field in the holomorphic differenti-
ation, or the function related to the contracting field
in the anti-holomorphic direction.

This can be represented using two coordinate sys-
tems related to the f and g functions, each contain-
ing two variables. The variables of this dual system
are clockwise identify as follows: Z1(a) = X + Y i,
Z2(a∗) = X − Y i, Z3(b∗) = X − −Y i, Z4(b) =
−X + Y i,
These variables are related to the double curvature

of the transversal subspaces which are determined
by the expansion and contraction of the intersecting
spaces.

The f variables are Z2 and Z4, and the g variables
are Z1 and Z3.

Z2(f) is the conjugate of the complex Z1(g), being
its reflection across the real axis in the right side of
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the dual system. Z3(g) is the conjugate of Z4(f) at
the left side of the system.

When the contracting field related to the left func-
tion g expands and the contracting field of the right
f function remains contracting, only the variables Z1
and Z3 of the g function are differentiated, while the
variables Z2 and Z4 of f remain constant.

Figure 22: Dual functions and their Wirtinger type
partial derivatives.

The consequence of this is that, at the right side
of the dual system, the complex variable Z1 is dif-
ferentiated while its conjugate variable Z2 remains
constant. This aligns with the 1

2 Wirtinger deriva-
tive:

∂g

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)

Similarly, at the left side of the system, the con-
jugate variable Z3 is differentiated while its complex
variable Z4 remains constant. This relates to the 1

2
Wirtinger derivative:

∂g

∂z̄
=
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2
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∂

∂x
+ i

∂

∂y

)
From the point of view of a single complex function

of two variables, the 1
2 + 1

2 Wirtinger derivatives op-
erate a complete order of differentiation. But in the
context of a composite system with four variables,
half of the system still remains undifferentiated.

To operate the complete first order of differentia-
tion of the whole system, it’s necessary to apply the
differential operator again. A second differentiation
given by the rotational operator will imply that the
left expanding field of g will remain expanding, and
the contracting field of f will expand. In this way,
only the variables Z2 and Z4 of the f function will
change while the Z1 and Z3 variables of g remain
constant. Consequently, the 1

2 derivative will be ap-
plied on the Z2 conjugate variable of f while its re-
lated complex variable z1 of g remains constant at the
right side of the system. Conversely, at the left side,
the other 1

2 derivative will be applied on the complex
Z4 (using a clockwise notation) while its conjugate
variable Z3 remains constant.

This second differential operation inverts the roles
of f and g. This inversion stems from the conjuga-
tion of the f and g functions that has been com-
pleted at this stage. From this point on, subse-
quent applications of partial derivatives introduce
an anti-holomorphic differentiation pattern, revers-
ing the previous changes with the same alternating
structure by means of partial integrals.

This is the same reversion mentioned before related
to the partial anti-derivative that A4 operates on A3
and that A1 operates on A4.

Z2(f) is the conjugate of the complex Z1(g), and
Z3(g) is the conjugate of the complex Z4(f). Func-
tion f enters inside of function g and vice versa, cre-
ating a mirror interplay between the complex and
conjugate variables of the interrelated harmonic func-
tions.

This implies that when differentiating Z1, which
belongs to g, the value of Z2 does not change be-
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cause it belongs to f . In the rotational framework, f
remains unchanged while g changes, and vice versa.

When Z1(g) is differentiated at the right side of the
system, Z3(g) is also differentiated at the left side, as
they belong to the same changing function, g. This
explains why the value of Z3(g) will not change when
Z4(f) is differentiated.

Figure 23: Interplay between complex and conjugate
variables of functions f and g.

10.2 Dolbeault Cohomology.

In algebraic geometry, Dolbeault cohomology [14]
employs Wirtinger partial derivatives in the role of
differential operators.

In that sense, ∂
∂z derivative is related to the Dol-

beaut p index, and ∂
∂z̄ is related to the q index.

The (p,q) notation is used to denote the degree of a
differential form, where p is the number of holomor-
phic differentials and q is the number of antiholomor-
phic differentials.

(p, q) represents the degree of differentition of a
differential form in the holomorphic and antiholo-
morphic directions. Specifically, it represents the in-
stances or number of times that the partial deriva-
tives have been applied. The p index is the number
of applications in the holomorphic direction (increas-
ing when applied to ∂

∂z ), and q index is the number
of applications in the antiholomorphic direction (in-
creasing when applied to ∂

∂z̄ .

In that way, (p+1, q) means that a partial deriva-
tive has been applied once in the holomorphic direc-
tion, while (p, q + 1) means that a partial derivative
has been applied once in the antiholomorphic direc-
tion.

(p+ 2, q + 1) will mean that the operator that ap-
plies the partial derivative has been performed twice
in the holomorphic direction and once in the anti-
holomorphic direction.

These indices are used in The Dolbeault theory
[14] to form groups of cohomology that are used in
the study of Hodge theory.

In Doulbeaut theory the partial derivatives are ap-
plied to differential forms. The nuclear manifold
of curved subspaces in the intersecting fields model
would be equivalent to these differentiable forms. In
the fields model the operator is represented by the 90
degrees rotation, that will be applied four times: two
in the holomorphic directions as two partial deriva-
tives of the previous stage, and two in the antiholo-
morphic direction as two partial derivatives in the
antiholomorphic direction, which will be partial an-
tiderivatives from the holomorphioc point of view.

In that sense, when a first 90-degrees rotation is
operated at A2, the upper right vector of A1 related
to X+Y i and the lower left vectors related to −X−
Y i are differentiated. It impliesd the transposition of
matrix A1 by matrix A2is changed at A2, while the
lower right vector related to X − Y i and the upper
left vector related to −X + Y i remain unchanged at
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A2.
In the Doulbeault notation, it could be said that

A2 represent a (p + 1, q) partial differentiation with
respect to A1 in the holomorphic direction.
An additional 90-degrees rotation operates a sec-

ond partial derivative, changing at A3 the two vec-
tors that remained unchanged at A2. A3 represents
a (p+ 2, q) partial differentiation in the holomorphic
direction, and a complete differentiation with respect
to A1. A3 is the complete conjugate solution of A1.

It can be thought as a first order derivative in the
sense that it implies

(
1
2

)
+
(
1
2

)
derivatives.

A third 90-degrees rotation operates a first partial
derivative at A4 in the antiholomorphic direction re-
lated to the complex variables of A3, which is the
conjugate form of A1. It will notated as (p+2, q+1),
or just as (p, q + 1) if considering A3 as a reverse
starting point.
From the point of view of A1, (q + 1) represents a

partial antiderivative.
A last 90-degrees rotation operates a second partial

derivative at A4 in the antiholomorphic direction as
it operates on the complex variables of A3. It will be
represented as (p+2, q+2) or just as (p, q+2) from
the pint of view of A3.
This way of representing the partial differentiations

allows us to relate two forms in the same cohomology
group whose instances have the same number: (p +
1, q) and its inverse (p, q + 1) for the antisymmetric
group A2 A4; and to relate in a second cohomology
group (p+2, q) and (p, q+2) referred to the symmetric
group A1 A3.
In Dolbeault theory, the holomorphic (p+1, q) and

the antiholomorphic (p, q + 1) differential forms are
considered to belong to different cohomology groups.
However, in the context of the rotational fields

model, the holomorphic and antiholomorphic forms
or stages are combined by pairs in the same coho-
mology group:
The antisymmetric group implies a combination of

the holomorphic and antiholomorphic partial differ-
entiations given by A2 and A4 respectively, with A4

being the negative reflection of A2 around the imag-
inary y axis.
Similarly, to form a mapping cycle between A1 and

A3, and vice versa, it will be necessary to combine

the holomorphic and antiholomorphic partial differ-
entiations, as the mapping of A3 to A1 necessarily
passes through the antiholomorphic inversion repre-
sented by the partial antiderivatives performed by A4

on A3 and by A1 on A4.

This combination could be related to a nonlinear
case of Hodge conjecture as mentioned before.

11 Appendix 3. Riemann Z
function.

The Riemann zeta function [15] is a complex-valued
function introduced by Bernhard Riemann. He
showed that the zeros of this function are intricately
connected to the distribution of prime numbers.

In the context of the Riemann Zeta function, the
critical strip refers to a vertical strip parallel to the
imaginary axis Y . The width of the critical strip is 1.
The critical line is a vertical line that cuts through
the middle of the critical strip, also parallel to the
imaginary Y axis. In that sense, the real value (the
value measured on the real axis X) of the critical line
is 1

2 or 0.5.

The real zeros are placed on the critical line, while
complex zeros are in the critical strip.

Non-trivial zeros are those that lie within the crit-
ical strip.

Riemann conjectured that only the non-trivial ze-
ros that lie on the critical line, where the real part
of the complex number is 1

2 , are related to the prime
numbers distribution. This conjecture is known as
the ”Riemann hypothesis”.

From the perspective of the intersecting fields
model previously presented, which is based on mir-
ror reflection across the X and Y coordinates, a dual
interpretation of the Riemann Z function can be pro-
posed.

Let f and g be two intersecting functions posi-
tioned respectively on the right and left sides of a
vertical axis denoted as Y . The imaginary axis of f ,
Y (f), can be represented as Y + 1, and the imagi-
nary axis of g, Y (g), can be represented as Y − 1.
Consecuwently, Y represents the center of reflective
symmetry between both functions.
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Figure 24: Dual Riemann Zeta function. The Zero
point colored in yellow on the Critical line, in the
middle of the critical strip, has a 1

2 value projected on
the real coordinate with respect to the right f func-
tion, and it has projected 1

2 real value with respect
to the left g function. The real zero of the right f
function corresponds to the right border of the criti-
cal strip where the left g function has a +1 real value.
The real zero of the g function corresponds to the left
border of the critical strip where the right f function
has a −1 real value. This zero point on the critical
line, being relevant to the prime numbers distribu-
tion, is the same previously mentioned as the point
that determines the gap mass in both the symmetric
and antisymmetric systems.

The vertical strip between Y − 1 and Y + 1 rep-
resents the ”critical strip”, where complex zeros are
distributed, extending to infinity. The vertical line
Y that divides in the middle the critical strip repre-
sents a ”critical line” of the system extending from
an initial point on the real X = 0.5 axis to infinity.

In this dual function system, the zeros are repre-
sented by the points of intersection of the left and
right intersecting functions. The positions of these
zeros will change depending on the transformations
of the left and right functions.

In the fields context, f and g are associated with
changes in the curvature of the left and right inter-
secting fields. These changes create four subfields at
their intersection, each with a double point singular-
ity in its curvature given by the point of intersection
of the two fields.

As previously explained, these curvatures will
transform through four different possible stages, de-
pending on the phases of variation of the intersecting
fields:

• When the intersecting fields vary with the same
phase, the intersecting zero point will be located
on the vertical critical line of the system, moving
upwards or downwards.

• When the intersecting fields vary with opposite
phases, the intersecting zero point will be located
on the right or left sides of the critical line, al-
ways within the critical strip.

Some authors [16] have already researched the
connection between the Riemann zeta function and
prime distributions with the dynamics of quantum
mechanics and string models. This connection would
also be present in the dual atomic nucleus model pre-
sented in this article.

The non-trivial zeros that lie on the critical line are
only those related to the symmetric system, where
the left and right transverse subfields simultaneously
contract, or when they both simultaneously expand,
and the vertical subfield moves upward or downward.

The non-trivial zeros that lie in the critical strip
but at the left or right side of the critical line, not
over it, are those related to the antisymmetric system,
where the right and left transverse subfields vary with
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opposite phase, and the vertical subfield moves left or
right.

This zero point determines the singularity of the
double curvature of the four subfields, and the critical
line marks the centre of symmetry or asymmetry of
the dual system.

The symmetric system is related to the nuclear
bosonic particles not governed by the Pauli exclusion
principle. The bosonic transverse subfields expand-
ing (or later contracting) at the same time have a
strong duality, being isometric mirror subspaces with
the same shape and size.

The antisymmetric system is related to the nu-
clear fermionic particles not governed by the Pauli
exclusion principle. The transverse subfields have a
delayed duality, being isometric mirror subspaces at
different, past or future, times.

In relation to the Riemann hypothesis, only the
non-trivial zeros related to the positive and negative
symmetric system would be strongly connected to the
distribution of prime numbers, although the reason is
not clear.

In the dual context of two intersecting or overlap-
ping functions, the reason may be related to the isom-
etry of the mirror transverse subspaces. Being iden-
tical elements, dividing the left and right transverse
subfields by each other is equivalent to dividing a
transverse subfield by itself or by 1.

In the rotational framework, as mentioned before,
the dual system alternates between symmetric and
antisymmetric states every 90 degrees. That would
imply a rotation of the critical line and strip along
with the complex plane.

Keywords: Jacobian, Gorenstein, supersymmetry,
mirror symmetry, Tomita-Takesaki, modularity, mass
gap, reflection positivity, quantum field theory, dual
nucleus, antimatter, t-duality, SYZ conjecture, ellip-
tic fibration, Calabi-yau, Higgs field, Hodge cycles,
Kummer surfaces, Wirtinger derivatives, Dolbeault
cohomology, Riemann Z function.
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