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In computer vision, neural networks
need lots of compute



Compute needed to run CNNs (already less

intensive than Vision Transformers)
CNN Measure of Computational Intensity | Value
Number of Parameters 138M
VGG-16 Number of MACs 15.4G
Model Size 553.4 MB
Number of Parameters 11.7M
ResNet-18 Number of MACs 1.81G
Model Size 46.7 MB
Number of Parameters 88.6M
ConvNeXt-B | Number of MACs 15.4G
Model Size 354.2 MB
Number of Parameters 44.4M Power-hungry (~1000 W)
Mask-RCNN | Number of MACs 134.4G GPUs used to run these CNNs
Model Size 177.6 MB
Number of Parameters 34.0M
RetinaNet Number of MACs 151.6G
Model Size 136.1 MB




Driver assist/collision avoidance

But what about when GPUs and
network access is unavailable?
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Most methods of making CNNs more
efficient require re-training

MIHIO?S Sguire Hours of GPU time Costs lots of money
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Focused convolutions for a
pretrained CNN

Maintains accuracy M
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No re-trainin Drop-in, more efficient
5 replacement for Conv2D
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Apply threshold
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Proposed design:
Fully self-
contained
“TfCNN”
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Top Layers
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How to choose the k layersin NN. top

N total layers

| Lo
_ |

k layersin NN.top
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How to choose the layersin NN. top

Overhead from
focused conv  [REZEEG Ity 2 Eci+ 2 Ef;

i=n+1

Aol Area . . . . .
a X ——————— Adjust k until E;,¢,; estimate is satisfactory

Image Area
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How to choose the threshold T

C ) Failif T, A
Start unsatisfiable after

enough tries

\ 4

On dataset, generate B €|A — NN. al
» Aols by thresholding | €= A
NN.top output with t T=T—€

No, too inaccurate

Avg. latency
NN.t <T?

No, too slow

T=T++¢€ ( Success )
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This method searches along a curve

2. Then tries to recover lost accuracy
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1. Searches for better latency

Accuracy

Latency

© 2023 HELPS Purdue. All rights reserved. 15



VGG ( VGG (

(0): Conv2d(3, 64, kernel_size=(3, 3), ) (0): Sequential(

(1) : ReLU(inplace=True) (0): Conv2d(3, 64, kernel_size=(3, 3), )
(2): Conv2d(64, 64, kernel_size=(3, 3), ) (1) : ReLU(inplace=True)

(3): ReLU(inplace=True) (2): Conv2d(64, 64, kernel_size=(3, 3), )

(3): ReLU(inplace=True)

# Aol threshold layer will be imnserted here )

# Layers 4-30 currently operating on (1): AoIThresholder()

# irrelevant pizels (2): Sequential(

(4) : MaxPool2d(kernel_size=2, stride=2, ) (4) : MaxPool2d(kernel_size=2, stride=2, )

(5): Conv2d(64, 128, kernel_size=(3, 3), ) (5): FocusedConv2d(64, 128, kernel_size=(3, 3), )
(6): ReLU(inplace=True) (6): ReLU(inplace=True)

(7): Conv2d (128, 128, kernel_size=(3, 3), ) (7): FocusedConv2d (128, 128, kernel_size=(3, 3), )
(8): ReLU(inplace=True) (8): ReLU(inplace=True)

(9) : MaxPool2d(kernel_size=2, stride=2, ) (9) : MaxPool2d(kernel_size=2, stride=2, )

(10): Conv2d(128, 256, kernel_size=(3, 3), ) (10) : FocusedConv2d(128, 256, kernel_size=(3, 3), )
(11): ReLU(inplace=True) (11): ReLU(inplace=True)

(12): Conv2d(256, 256, kernel_size=(3, 3), ) (12): FocusedConv2d (256, 256, kernel_size=(3, 3), )
(13): ReLU(inplace=True) (13): ReLU(inplace=True)

(14): Conv2d(256, 256, kernel_size=(3, 3), ) (14) : FocusedConv2d(256, 256, kernel_size=(3, 3), )



Results
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A qualitative look

Microsoft COCO
image

fFaster-RCNN

fSSDLite
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Without training, compared to original
CNN...

VGG-16, ResNet-18, ConvNext-T Faster-RCNN, SSD-Lite

ImageNet

12% energy savings

15% faster

28% energy savings

30% faster

arm AMD 0-3%

Accuracy

(intel* MONSOON HV Power Loss

Meter
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fCNNs are faster and comparably accurate

ResNet-18: 18ms ConvNexXt-T: 42ms WEIEIEE TS Circled points are
fResNet-18: 16ms fConvNeXt-T: 37ms fVGG-16: T7Tms unmodified
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fResNet-18 VS State-of-the-Art ResNet-18
modifications
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