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Abstract— Computer vision often uses highly accurate Convo-
lutional Neural Networks (CNNs), but these deep learning models
are associated with ever-increasing energy and computation re-
quirements. Producing more energy-efficient CNNs often requires
model training which can be cost-prohibitive. We propose a novel,
automated method to make a pretrained CNN more energy-
efficient without re-training. Given a pretrained CNN, we insert
a threshold layer that filters activations from the preceding layers
to identify regions of the image that are irrelevant, i.e. can be
ignored by the following layers while maintaining accuracy. Our
modified focused convolution operation saves inference latency
(by up to 25%) and energy costs (by up to 22%) on various
popular pretrained CNNs, with little to no loss in accuracy.

I. INTRODUCTION

Pretrained Convolutional Neural Networks (CNNs) are
prevalent because they enable anyone – even those without
the means to personally train CNNs – to leverage state-of-
the-art computer vision models. CNNs are very computation-
ally intensive and require power-hungry GPUs to execute,
making them difficult to deploy in contexts like battery/solar-
powered, mobile, embedded, and Internet-of-Things systems
when GPUs or cloud offloading are unavailable. Existing
energy-efficient CNN techniques often require either an end-
to-end retrain or a completely new model design. Though
successful, those techniques often require training and thus
cannot be used with pretrained CNNs.

This paper proposes an easy-to-use method to reduce the
energy consumption of pretrained CNNs without retraining.
We insert a threshold layer into the pretrained CNN; this
layer applies a brightness threshold to the activations from
the preceding layers, determining which regions (background,
uninteresting objects, etc.) of a given input image are deemed
irrelevant for an accurate inference. The CNN’s remaining lay-
ers are replaced with focused convolutions which completely
ignore those irrelevant regions, saving computation. Illustrated
in Figure 1, this method modifies a pretrained CNN using the
following steps:

First, to choose the kth layer at which to insert the threshold
layer, we model the energy consumption of the layers in the
CNN as a function of k, allowing us to automatically select
the insertion point.

Next, to choose the brightness threshold τ , we propose an
automated latency-versus-accuracy curve search that yields a
single threshold value to be used on the target dataset.

Finally, we replace the remaining convolutional layers with
our improved focused convolutions [1] to ignore the irrelevant
pixels. In our prior work, the original focused convolution
was a drop-in replacement for the standard General-Matrix
Multiply (GEMM) convolutional technique used by contem-
porary AI libraries. Made to only perform convolutions inside
a predetermined Area of Interest (AoI) mask, our prior method
required a different AoI mask per layer per inference along
with a compute-heavy depth-mapping AoI generation tech-
nique. This rendered their design less suitable for inference
in environments where objects moved about or the scene
changed regularly. In contrast, our improvements use only one
mask for the entire CNN and a hardware-aware block size,
dramatically reducing computational overhead and boosting
parallel processing utilization.

The proposed technique requires no training and in-
stead modifies pretrained CNNs to save computation
in resource-constrained deployments without GPUs or
cloud offloading.
Our method automatically adjusts for different datasets
and trades off accuracy, energy efficiency, and latency
to meet a range of deployment requirements.
In some cases, considerable energy efficiency (up to
22%) and latency improvements (up to 25%) can be
achieved without degrading accuracy.
A notable advantage of this training-free approach is
that improvements can be achieved with little effort.

We test the proposed technique on multiple popular
pretrained models, including ResNet [2], VGG [3], Con-
vNeXt [4], Faster-RCNN [5], and SSDLite [6]. We test
on ImageNet [7] for image classification and on Microsoft
COCO [8] for object detection. Our method can reduce a
pretrained CNN’s inference energy consumption by up to 22%
on different processor types (Intel, AMD, Arm), with little to
no loss of accuracy (0-2% loss). Further, inference latency is
shortened by up to 25%.

We also compare our technique’s inference accuracy and
latency with that of similarly inspired energy-efficient CNNs,
showing that our method is either competitive or better than
those techniques, all without needing the training that the
other techniques require. Code is open-sourced on GitHub at
https://github.com/purdueseris/focused-convolutions/.
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Fig. 1: (a) A pretrained CNN does computation on 100% of the input pixels for all N layers. The proposed method makes the
CNN more efficient by: (b) First, only do 100% computation during the first k layers to collect contextual features. Second,
apply a brightness threshold τ on the feature map from the kth layer to identify an Area of Interest (AoI) mask. As illustrated,
white regions are relevant for an accurate prediction, black regions are irrelevant. Note: Select k, τ beforehand via a CNN
energy consumption projection and an accuracy-vs-latency curve search, respectively. (c) Finally, in the last N − k layers,
completely ignore the irrelevant regions using focused convolutions. This saves computation with little to no loss in accuracy.

II. RELATED WORK AND BACKGROUND

There are many efforts to improve CNN efficiency [9].
They typically focus on: (1) reducing the model size (al-
lowing it to fit more effectively into processor caches), (2)
reducing the number of operations (reducing the load on the
processor) [10]. Specialized hardware, such as neural acceler-
ators [11], can also run CNNs more efficiently. However, this
paper focuses on software-side improvements.

A. Similarly Inspired Methods to Our Technique

Some techniques also use the concept of identifying un-
necessary computation to skip at inference time. Early Exit
architectures decide if the CNN is confident enough to make
a prediction before it finishes executing all the layers. The
Spatially Adaptive Computation (SAC) family of models can
be trained end-to-end to identify regions of interest and
then use special blocks to reduce computation outside those
regions [12]. We compare our technique with these methods
in Section IV.

B. Other Energy-Efficient, Low-Latency Methods

Traditional techniques make alterations to existing CNN
architectures before training. Quantization shrinks the size of
a CNN by reducing the CNN’s precision (e.g. storing numbers
as 8-bit integers instead of 32-bit floats) [13]. Pruning reduces
both computation and model size by deleting channels/features
or neurons that are not activating often; the smaller model
is then retrained [9]. Knowledge Distillation uses a large,
trained model to “teach” a smaller, more efficient model
for deployment [9]. Neural Architecture Search automatically
searches a space of CNN building blocks for energy-efficient
architecture.

C. Irrelevant Pixels and Areas of Interest

Irrelevant pixels in an image do not contribute to the CNN’s
ability to make an accurate prediction. Pixels that are useful
to the CNN comprise “Areas of Interest” (AoI) of Relevant
Pixels; irrelevant pixels fall outside the AoI [1]. An image can
have multiple, disjoint regions that comprise the image’s AoI.

The existing approach of generating AoIs using depth
mapping neural networks [14] is accurate but is too computa-
tionally expensive to deploy on resource-constrained systems.

D. How Focused Convolutions Work

In our prior work, the focused convolution [1] is based
on the popular General-Matrix Multiply (GEMM) technique
for doing convolutions [15]. In GEMM, an input image is
segmented into convolution kernel-sized patches. Each patch
is then vectorized into a matrix’s column or row. That matrix
is then multiplied with the weights matrix to produce the
convolution output.

The focused convolution, a drop-in-replacement for a
GEMM convolution, applies an AoI that was generated in
advance. Any patches not found inside the AoI are deemed
irrelevant and then excluded from the matrix. That results in
a smaller matrix and thus a less computation-intense matrix
multiplication. The AoI not being generated at inference time
keeps the CNN from being able to truly replace existing
models for any application.

E. Novelty of Our Contributions to Literature

The related techniques described above all require varying
degrees of training or otherwise completely redesigning the
CNN. This means that considerable human expertise and
compute is required to apply those other techniques. Our
method, in contrast, requires no training and can be used on
a pre-trained CNN.



III. AUTOMATICALLY IDENTIFYING AND REMOVING
IRRELEVANT PIXELS AT INFERENCE TIME

The proposed technique takes a pretrained CNN and then
produces the fCNN, a modified version of the CNN that applies
a threshold to the early layers of the CNN to automatically
generate AoIs and use focused convolutions for the remainder
of the network with those AoIs. An fCNN behaves as follows:

1) Process input image using only the beginning k layers
(k chosen in Section III-A) of the CNN (referred to as
NN.top). Produces feature map X .

2) Sum X along the channels. Produces Xsum.
3) Filter Xsum with the activation brightness threshold τ (τ

chosen in Section III-B) to produce the AoI. Activations
bright enough to clear the τ threshold are allowed through
as corresponding regions of relevant AoI pixels; the rest
are discarded. Produces Xthresh.

4) All convolutional layers after NN.top use our improved
focused convolutions (Section III-C) on Xthresh, sav-
ing energy by discarding irrelevant pixels. The focused
convolutions use the same weights and biases as the
convolutions they replace.

To generate this modified fCNN, we need to choose k and
τ , and replace the convolutional layers after the k-th layer
with focused convolutions.

A. Choosing the k Layers in NN.top

The beginning k layers of an fCNN will process every pixel
of the input image, gathering information that can then be
filtered by an inserted layer which applies activation brightness
threshold τ to generate an AoI part-way through inference.
This AoI will then be used by the later layers’ focused
convolutions.

The smaller k is, the earlier the τ -threshold will get applied.
This also implies that more layers remain in the CNN to
take advantage of the energy improvements of the focused
convolution. Therefore, a smaller k is beneficial. Meanwhile,
k cannot be too small: too early on in the CNN, there is
insufficient information encoded within the features to make a
useful threshold AoI [9]. CNNs generally collect basic features
about the input image in the first few layers. Deeper layers
accumulate those into more complex features later in the
network [3]. Therefore k must be large enough to capture
useful information in the features produced at the kth layer.

To choose k, we use a heuristic: choose the latest layer (i.e.,
largest k) that is still small enough such that the resulting
fCNN can meet the deployment energy requirement.

Focused convolution energy savings were determined to
be approximately linear with respect to AoI size [1] and
CNN computation is known to scale linearly with respect
to input size [16]. Therefore, we linearly model the energy
consumption of the CNN, and then use that information to
project the energy savings of its fCNN equivalent, selecting k.

Let the energy consumption of the ith convolutional layer be
Ec,i, the expected AoI size be a as a percentage of the original
input size, and the measured energy from the computational
overhead introduced by the focused convolution be c (this can
be measured by manually setting the focused convolution AoI
size to 100% and then subtracting Ec,i). Then, the energy

use of the corresponding focused convolutional layer Ef,i is
modeled linearly as Ef,i = aEc,i+ c. For a CNN with k total
conv layers, of which k belong to NN.top, then there will be
N−k focused convolutional layers. We model the total energy
consumed by the convolutions in the fCNN in Equation 1.

Etotal = (N − k)c+

k∑
i=1

Ec,i +

N∑
i=k+1

aEf,i (1)

Thus, k can be selected such that Etotal just meets the
deployment constraint. Note: if the deployment constraint is
lower than the overhead costs, then our technique determines
that a suitable fCNN is unachievable.

B. Choosing Activation Brightness Threshold τ

The activation brightness threshold τ determines which
pixels are considered relevant inside the AoI and which are
deemed irrelevant. Our method tries the CNN with different τ
values over a few iterations on the training dataset. After each
full iteration over the dataset, it measures the average accuracy
and inference latency to see if it meets the deployment
requirements. If not, it iterates again with an adjusted τ -value.
Although this bears similarity to training, our method does not
backpropagate or modify any model weights at all, whereas
training requires many epochs and backpropagation [2].

As shown in Figure 2, the proposed technique chooses the
activation brightness threshold τ as follows: τ is used to filter
the output of NN.top, the top k layers of the CNN. If a given
region is brighter than the threshold, then it is allowed through
as relevant pixels in the AoI. The higher τ is, the fewer pixels
are allowed through and the smaller the AoI is (keep in mind
that the AoI can be comprised of multiple distinct regions). τ
is initialized to the minimum value of the sum of all NN.top
features, ensuring that any NN.top output will pass through
the threshold (i.e. 100% AoI). We wish to achieve a maximum
target T for the CNN’s inference latency NN.t, as well as a
minimum target A for the CNN’s accuracy NN.a.

The proposed technique increases τ by increments of some
ϵ, shrinking the AoI and improving latency, until the latency
target is met. Then, it checks to see if the accuracy target
is also satisfied. If not, it begins reducing τ to attempt to
find a smaller τ that can satisfy both targets. The size of the
increment is adjusted based on the relative distance of NN.a
from A, getting smaller the closer the search gets to the target
(i.e. as |A−NN.a| shrinks in size, relative to A). The search
succeeds if both T,A are both attainable, and times out if the
search cannot succeed after a pre-set period of time. Thus,
the search explores along the accuracy-latency tradeoff curve,
succeeding when (T,A) is a point on or within the curve.

It is worth noting here that the k selection process can be
rolled into the τ selection framework: an outer loop can try
different k values, while the inner loop selects τ as shown.
However, this paper recommends k be pre-estimated using a
simple mathematical calculation based on energy predictions
because it achieves energy usage and latency improvements
with fewer iterations over the training dataset.

C. Improving Focused Convolution Parallelization

Modern computer architectures implement specialized hard-
ware (e.g., “Neon” vector registers on Arm CPUs and “CUDA”
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Fig. 2: (a) Training-free process to choose activation bright-
ness threshold τ , given a maximum inference latency threshold
of T and a minimum accuracy threshold of A. This proposed
method will succeed if latency and accuracy targets T,A are
simultaneously attainable, and fails otherwise. (b) This tech-
nique searches along the accuracy-latency curve, succeeding
if (T,A) is on the curve.

(a) (b) (c)

Fig. 3: Example of our technique’s memory alignment. (a)
2 × 4 input data, where the three elements A, B, C belong
to the AoI. (b) On hardware that can parallelize the data
processing in blocks of 4, the original focused convolution’s
sliding-window patch selection sends two blocks of size-4 data
for processing: B is contained in the first block, while A, C
are contained in the second block. (c) The proposed technique
downsamples to multiples of the hardware blocksize, resulting
in only one size-4 block of data being sent with A, B, C, thus
saving processing on one block.

cores on NVIDIA GPUs) used to parallelize operations on
multiple, independent pieces of data. These parallel operations
are supported by Single-Instruction-Multiple-Data (SIMD) in-
structions. The data is collated into blocks that perfectly fit the
size of a vector register on the processor. The processor then
uses specialized instructions to process the entire register’s
data in parallel. For example, a GEMM convolution operating
on an entire input tensor could send multiple patches for
simultaneous processing to improve inference latency.

Contemporary machine learning frameworks like PyTorch
and TensorFlow already rely on C-native libraries to use
parallel processing for built-in operations like “Conv2d”. The
focused convolution already uses these libraries [1]. However,

we observe that the generic sliding-window indexing approach
used by the original focused convolution results in inefficient
utilization of the parallel processing cores. An example is
illustrated in Figure 3: our technique will only select a single
block of data instead of two, thus saving the processing.

To achieve this, we design the focused convolution to use
a common computer architecture technique called memory
alignment [17]. We pre-divide the input into a grid, where
each cell is divided in multiples of the parallel processing
block size. If a cell contains part of the AoI, the entire cell
is sent for parallel processing. Memory alignment ensures a
more efficient usage of the processor than the original focused
convolution. Because we do not need to directly change the
kernel parallelization primitives, and only change the way the
data is laid out, the proposed technique is instantly compatible
with any libraries using optimizations for SIMD, CUDA, etc.

IV. RESULTS AND DISCUSSION

To demonstrate the utility of our method, we measure vari-
ous performance aspects of different pretrained models when
modified using our technique. We choose three pretrained
image classifier models (VGG-16, ResNet-18, ConvNeXt-T)
and two pretrained object detection models (Faster-RCNN and
SSDLite) from Meta AI Research’s Torchvision library. We
then use the proposed technique, with ImageNet for image
classification and Microsoft COCO for object detection, to
determine k and τ . Then, we modify each model to use
focused convolutions, and we measure energy consumption,
inference latency, accuracy, and Multiply-Accumulate (MAC),
comparing the focused convolution models with the unmodi-
fied ones.

Note: In this section, we often compare the perfomance of
an unmodified, pretrained CNN with the focused-convolution
fCNN version using “% improvement” or “% degradation”.
This is calculated using the formula |unmodified−focused conv|

unmodified .

A. Experimental Setup

We test using three devices with different levels of power
consumption and different operating systems. We demonstrate
improvements in energy consumption and inference latency
without using any GPUs, hardware accelerators, or cloud
offloading:

• Embedded (5 W): Broadcom Arm Cortex-A5, Debian
• Laptop PC (28 W): Intel Core i7, Ubuntu
• Desktop PC (142 W): AMD Ryzen 9, Windows
On the Arm embedded device, energy consumption is

physically measured using a Monsoon Solutions HV Power
Monitor. On the Intel laptop PC, measurements are taken
using Intel’s “Power Gadget” software, and on the AMD
desktop, measurements are recorded with ASUS’ “Armoury
Crate” software. Baseline steady-state power consumption is
recorded and subtracted from the numbers measured during
inference.

The focused convolutions are compiled to use with Pytorch.
On each device, the SIMD blocksize Section III is set accord-
ing to the specifications from the processor’s documentation.

We measure inference accuracy and MAC on ImageNet and
Microsoft COCO using averaged numbers from the “torch-
bench” and “ptflops” libraries.



CNN Dataset Accuracy MAC/inf Energy/inference (J) Latency/inference (ms)
Intel AMD Arm Intel AMD Arm

VGG-16 ImageNet-1K 0.716 15.50G 6.9 11.2 10.1 242.1 83.2 2020.9
fVGG-16 ImageNet-1K 0.716 14.19G 6.4 10.9 8.9 222.8 77.1 1799.0
ResNet-18 ImageNet-1K 0.698 1.82G 2.0 3.1 2.3 54.2 18.2 457.7
fResNet-18 ImageNet-1K 0.697 1.60G 1.5 2.6 2.1 50.19 16.4 410.8
ConvNeXt-T ImageNet-1K 0.821 4.47G 3.4 6.5 5.1 112.4 41.6 960.4
fConvNeXt-T ImageNet-1K 0.818 4.05G 2.9 5.2 4.3 99.9 37.0 854.3
Faster-RCNN COCO 0.370 120.87G 68.1 106.8 - 2390.1 751.9 -
fFaster-RCNN COCO 0.370 101.30G 57.7 88.9 - 2011.5 616.6 -
SSDLite COCO 0.210 716.42M 3.0 7.2 5.7 100.5 48.6 1083.7
fSSDLite COCO 0.192 599.06M 2.3 5.8 4.5 79.4 39.7 876.4

TABLE I: Pretrained CNNs are compared with their corresponding “fCNNs” (in bold) using our method on an Intel laptop,
an AMD desktop, and an Arm embedded device. Latency improvements can be achieved with little to no accuracy loss. Cells
with “-” indicate that the model could not run on the device (exceeded memory capacity).

We report accuracy using the Top-1 ImageNet accuracy
metric [7] and the Box mAP COCO accuracy metric [8].

B. Activation Brightness Threshold Selection

We follow the method described in Section III to create
fCNNs from the pretrained CNNs and select k and τ .

For each model, several convolutional layers come before
the first downsampling point, at which the input size shrinks
due to either striding or pooling. k is selected at the first
downsample point of the model. This allows for enough
flexibility to choose a τ while retaining sufficient image-wide
information from the early layers.

For image classification, we start the automated τ search
for a latency target T that is 10% better than the pretrained
CNN, with an accuracy target A matching the accuracy of
the original CNN. As the τ value increases, fewer pixels are
allowed past the threshold, shrinking the size of the AoI.
This also causes the model’s accuracy to begin dropping
linearly. However, there are cases (e.g. VGG-16) where the
accuracy holds steady while latency drops, indicating that it
is possible to achieve the accuracy of the original models
while improving latency.

The technique selects the best point, where the most latency
is saved while dropping the least accuracy. Those models using
our technique are denoted as the “fCNN” models. The same
process is repeated to determine the “fCNN” models for the
object detectors on Microsoft COCO.

To choose the τ for our “fCNN” models, we do not need to
retrain. Although our curve search will iterate over the training
dataset, it is much faster than retraining a model, since we do
not do backpropagation and only use 7 iterations to select a
τ for each model.

C. Improvements On Pretrained CNNs

We compare our “fCNN” models with their corresponding
unmodified pretrained CNNs in Table I. As shown, across
desktop, laptop, and embedded processors, the technique suc-
cessfully converts pretrained CNNs into faster, more energy-
efficient models that still achieve the same or mildly degraded
accuracy. Object detection models achieve more improvements
because the COCO images often have smaller AoIs than the
ImageNet images.

We also demonstrate qualitative results. In Figure 4, we
show examples of the AoIs selected by our τ -thresholds in
the different CNNs on images from COCO and ImageNet.

Often, the selected AoIs draw the CNN’s focus to the same
areas that human eyes would focus on, although sometimes,
the pretrained CNN seems to focus on areas of the image
that seem less relevant. As shown, the technique can identify
multiple AoIs in the pictures.

A notable regression is fSSDLite. The Torchvision pre-
trained SSDLite model is noted as more sensitive to pertur-
bations in pixel values, so we suspect that the deletion of
pixels marked irrelevant still negatively impacts the model.
Additionally, SSDLite does not use the multi-scale Feature
Pyramid Network from the Torchvision Faster-RCNN [5],
struggling more when objects are smaller.

We also note that as more aggressive τ thresholds are
selected, the energy consumption of the models improves
more quickly than the accuracy degrades; for a more extreme
example, it is possible to achieve a 28% energy consumption
improvement on ConvNeXt-T with only a 15% loss in accu-
racy (accuracy dropped by 0.003, from 0.821 to 0.818).

In summary, our technique allows some latency and energy
consumption improvements to be gained without suffering
accuracy loss, and then allows accuracy and latency to be
further traded off as the deployment scenario requires. We
maintain this versatility without requiring any training.

D. Comparison with Similarly Inspired Techniques

While not an apples-to-apples comparison since our tech-
nique does not require the training that the other methods do,
we provide a comparison with similarly inspired techniques
(Section II) and an INT8-quantized baseline for ResNet-18.

Our focused fResNet-18 is both faster and more accurate
than the Early Exit neural network [18], is faster than the
standard ResNet-18 [2], is more accurate than quantized
ResNet-18 [13], and is faster than the Spatially Adaptive
Computation model (SAC) [12].

It is worth noting that although quantized ResNet-18 is
shown to be roughly 15ms faster than our focused ResNet-
18, the speedup from quantization may be challenging to
achieve in practice. Quantization requires a time-consuming,
often difficult-to-understand calibration process on the dataset.
Meanwhile, the focused ResNet-18 achieves its speedup with-
out any such training.

In short, our technique either outperforms or stays compet-
itive with similarly inspired techniques (Figure 5), all while
being easy to implement because it requires no training.
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Fig. 4: The proposed technique can ignore regions of irrelevant
pixels (marked in blue in the thresholded saliency maps)
from the original images. The resulting Area of Interest (AoI)
focuses on parts of the image that the human eye would. (a)
Original COCO image. (b) fFaster-RCNN. (c) fSSDLite. (d)
Original ImageNet image. (e) fResNet-18. (f) fVGG-16. By
ignoring computation on the blue regions, fCNNs save up
to 12% energy on ImageNet and up to 22% energy on
COCO.

Fig. 5: Our technique “(focused)” compared with similarly
inspired techniques on our Intel CPU. SAC [12] and Early
Exit [18] CNNs require training and a complete redesign of
the CNN; our technique beats them or stays competitive,
and also requires zero training, keeping the pretrained
CNN intact. Static-quantized [13] and unmodified ResNet-18
are shown to provide a baseline reference.

V. CONCLUSION

This paper presents a novel technique for converting a
pretrained computer vision model into a more energy-efficient
model, with no additional training. We apply a threshold
(determined using an accuracy-latency curve search method)
to the features produced by the few early layers of the
CNN to automatically generate an Area of Interest (AoI)
for the given input image. Pixels inside the AoI are rel-
evant, the rest are irrelevant. Irrelevant pixels are ignored,
reducing computational cost and energy expenditure while
improving inference latency. The proposed technique uses
a memory alignment method to ensure full utilization of
parallel processing. By keeping the weights and biases of
the original pretrained model, a CNN pretrained on one
dataset can still use our method for computation savings on
a different dataset. We achieve an average of 8%-12% energy
savings with popular image classifiers (VGG, ConvNeXt) on

ImageNet, and 15%-22% energy savings with popular object
detectors (Faster-RCNN, RetinaNet) on COCO, with little
to no loss in accuracy. Code is open-sourced on GitHub at
https://github.com/purdueseris/focused-convolutions/.
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