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In computer vision, neural networks 
need lots of compute
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Compute needed to run CNNs (already less 
intensive than Vision Transformers) 
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Power-hungry  (~1000 W) 
GPUs used to run these CNNs



But what about when GPUs and 
network access is unavailable?
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Driver assist/collision avoidance

UAV deploymentsTrap cameras



Most methods of making CNNs more 
efficient require re-training
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Millions of training 
images Hours of GPU time Costs lots of money



Focused convolutions for a 
pretrained CNN
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No re-training Drop-in, more efficient 
replacement for Conv2D Maintains accuracy



A pretrained CNN
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Proposed design:
Fully self-
contained
“fCNN”
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How to choose the 𝒌 layers in 𝑵𝑵. 𝒕𝒐𝒑
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𝑁 total layers

𝑘 layers in 𝑁𝑁. 𝑡𝑜𝑝



How to choose the layers in 𝑵𝑵. 𝒕𝒐𝒑
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Adjust 𝑘 until 𝐸!"!#$  estimate is satisfactory



How to choose the threshold 𝝉
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Start

On dataset, generate 
AoIs by thresholding 
𝑁𝑁. 𝑡𝑜𝑝 output with 𝜏

Avg. latency 
𝑁𝑁. 𝑡 ≤ 𝑇?

𝜏 = 𝜏 + 𝜖

Avg. acc 
𝑁𝑁. 𝑎 ≥ 𝐴?

𝜖 =
𝜖 𝐴 − 𝑁𝑁. 𝑎

𝐴
𝜏 = 𝜏 − 𝜖

Success

Yes

No, too slow Yes

No, too inaccurate

Fail if 𝑇, 𝐴 
unsatisfiable after 
enough tries



This method searches along a curve
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Latency

1. Searches for better latency

2. Then tries to recover lost accuracy

Accuracy



This method searches along a curve
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Latency

1. Searches for better latency

2. Then tries to recover lost accuracy

Accuracy

Original Focused



Results
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A qualitative look
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fSSDLite

fFaster-RCNN

Microsoft COCO 
image



Without training, compared to original 
CNN…
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12% energy savings
15% faster 28% energy savings

30% faster

ImageNet COCO

MONSOON HV Power 
Meter

VGG-16, ResNet-18, ConvNext-T Faster-RCNN, SSD-Lite

0-3% 
Accuracy 

Loss



fCNNs are faster and comparably accurate
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fResNet-18 VS State-of-the-Art ResNet-18 
modifications
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