Supplementary material for “Semiparametric Bayesian inference for
Yy Y
local extrema of functions in the presence of noise”

In this supplementary material, we present proofs of all results in the main paper, additional

technical lemmas, and additional numerical experiments.

A Proofs

A.1 Proof of Proposition

By Bayes’ theorem, it suffices to show that the likelihood takes the form of Equation (5]).
Recall that y|X,t ~ N(0,%,;), where 3, = 0?(n\) "} (A + B) with A = K(X, X) + nAI, and
B = — Ko (X, ) K (t,)K1o(t, X) = —aaT by letting @ = Ko (X, t)K;"/*(t,t). Note that

the condition &7 (t) > 0 for any ¢ ensures K1;(t,t) > 0 in view of Equation (4).

In view of the Sherman—Morrison formula, we have det (4 + B) = (1 —a? A 'a) det(A) and
(A+B) ' = A1 4 A e A yoquming 1 — a”A 'a # 0. Substituting these two identities

1—aTA-1la

into the multivariate normal density ¢(t) yields

0(t) = {2m0?(n\) 1} 2 det(A + B) V2 exp {— L _1yT(A + B)_ly}

202(n\)
2 \\—11-n/2 ~1/2 y'Aly
= {276%(n\) "1} 2 (det(A)) " exp {_W}
y’Ataa” Ay
“202(nA)"(1 —aT A 'a) }
yT"AlaKy(t,t)a” Ay
202(nA\) 1K (1)(1 — aT A 1a) } ’

-(1—a"Aa) Y2 exp {

= C{o*(n\) (1 —alAra)} 2 exp {

where

C = {27?02(71)\)_1}_”/2(det(A))_l/2 exp {—%} . {02(71)\)_1}1/2

does not depend on t. The proof is completed by noticing that i/ (t) = K2t t)aT Ay
and 67, (t) = o*(nA\) 'K (t,t)(1 — a” A~"a). This completes the proof.
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A.2 Proof of Lemma 1

A one-dimensional version of Theorem 4 in [Liu and Li| (2023)) shows that

~(k k+1
1A% — £ <

VAR folle v/108(9/9) (10 N M) (S1)

VA 3vnA
Co\/FRk41,k410V/ log(3/0)
n

For any bounded f € L2 (X), we define a bias of estimators of f by matrix and integral

operation as

E(K,X,f)=(Lxx +M) "Lgxf— (Lig+ M) 'Lgf
=K, X)K(X,X)+n\L) (X)) — (Lg + M) 'L,

which belongs to H. Consider any j,! > 1 and j + [ < 5, taking f = Ky, yields
VE(K, X, Ky.) = Kjo(-, X)[K(X,X) +n\L,) " Kg(X,2) — & (Lg + M) ' L Ko
Thus,

VE(K, X, Ky.)(z) = Kjo(z, X)[K(X, X) +nA\L,] " Ko(X,2) — & (Lg + M) ' Lg Ko .(2)
= Kjo(z, X)[K (X, X) +nAL) ' Ko(X,z) — (Lx + M) ' LgKj.(z)

We write (Lx + M) 'LgKji.(x) = Kj(2) = MLk + M) Kji.(x) = Kj(x,2) — Apji(x).
Then, by Theorem 16 in|Liu and Li (2023) we have that for any 6 € (0, 1), with Py-probability

S2



at least 1 — ¢ it holds

| Kjo(z, X)[K(X, X) +n\L] ' Ko(X, 2) — Kj(z,7) + Mpji(z)]
S HBJE(K, X7 KOl x)”oo

< VG Koe oo v/108(3/9) ( | 4v/r/10g(3/0) 3/6)

N 3vnA
m,‘io“/log 3/9) 4\/_\/1og (3/9)
VD) 3v/nA

In view of Equation (7)), /0'\J2@$k) (x) is a linear combination of quadratic forms
K(x, ) — Kjo(-, X)[K(X, X) + nAL] " Ko (X, z).

Therefore, for any 0 < k£ < 3, we have

F0w) Y (k) et i(2) (2)
i( ) VAR kor-i0"/108(3/0) ([ 4/ \/log 3/9)
ny/nA? Vv

The above Equations and can hold simultaneously with Py-probability 1 — 8). Let
86 = n~!% and A, be the corresponding event. We immediately have Py(A,) > 1 —n~10
with log(3/d) < 10logn +4 and log(9/d) < 10logn + 5 in the upper bound. This completes

the proof.

A.3 Proof of Lemma [2

First we prove that for any local extremum ¢,, of fj, there exists a local extremum ¢ ,, of f
such that ty,, — t,, as A = 0. There exists ¢ > 0 such that for any 0 < e < 4, it holds that
fotm —€) <0, fi(tm +€) > 0and fJ(t, +e€) # 0 without loss of generality. By Assumption

C, we have

|f§\(tm - 5) - fé(tm - €)| SJ AL
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Hence, for sufficiently small A, it holds f{ (¢, —9/2) < 0. Similarly, we have f}(¢,,+9/2) > 0.
According to the continuity of f, there exists a ty,, € (t, — 6/2,t, + 0/2) such that
fi(trm) = 0. It can also be shown that f{(t) # 0 for any t € (¢, — 6/2,t,, + 6/2) and
sufficiently small A\, which implies f{(¢xm) # 0. Finally, we have ¢, ,, — ¢, as § — 0 and

A — 0.

Again by Assumption C we can see that

| A3 (Eram) — fo(tam)] S A

Since fi(txm) =0, in view of the mean value theorem, we have

’f(g(tm) + f(;/(€1>(t)\7m - tm)’ S.J )‘Tla

where ; lies between and t, ,, and t,,. Since §; — t,,, and f{(t,,) # 0 by Assumption A, we
obtain

[Exm — tm| S A

Under A, the existence and convergence rate of %,, can be shown similarly by applying

Equation . This completes the proof.

A.4 Proof of Theorem [1I

The proof is based on the high probability event A,, defined in Lemma [I] Conditions of
Theorem (1| imply né*mwllm = o(1), yielding 67 (txm) > 0 in view of Equation (11). In-
voking the likelihood function ¢(t) in Equation (j5)), which holds at t,,, and in its small

neighborhood, we have

0t+At) () (t)e(t) — 0'(t)?
A(t, At) = log D) = D) At + TIOE

(At)” + Ry(&)(At)°,
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3U(E"(£)0(€)}/{60(€)3} and £ is bewteen t and ¢+ At.

where R3(&) = {20/()*+£"(£)€(£)* -
Thus,
A(t i) _ | /O-\J20,1<t>\,m) B ﬁf’(t)\,m)ﬁ,f'@)\,m) ﬁf’(t)\,m)Za-\]%l’(tk,m) ﬂ
A 262 (tam) 52, (tam) 207 (tam)®> | 0°

201t ) s (Erm )T (B m)
52 (tam)?

~o!

1 6'\2i tam 2 0% (tam
[f( ) 7 )+

2 26% (tam)? 2of,(tx,m)
W (tam)? + fip (Exm) 1 ()
812“(t>\,m)
1. o (26 (tam)? 8fi’(tm) u?
St (B - o) |
3
+éR3(§)%-

Based on the rates given by Equations @D, , and , we obtain

_ —a ~(k
n~"(logn) ™, |M§u><tm>|51,

|ﬁf’(t>\,m)| 5
Gk t,\m N 2 “F(logn %_“,
f

|8]2u (tram)| S0 011m,

A2//
for 1 < k < 3. Further calculation gives R3(§) < f’(gl = O< s P (logn) "2~ “gpﬁ%m)

Substituting these into the above A(tx ., ~5) yields

Brtny(tn) | Byl o
2n250f, (trm) P1im
2677 2
:uf/(tk,m) 2 §_46 —92
— +o(n? m
2”0’?‘/(25)\77%) u”+ofn Piim)

u
Ay, —) = —H
(B nﬁ) 1853, (txm)

0 PR () 1 (Erm)
u R
7\tam
Wy (tom)?u? 0 i (tam)
B -1 =2 + 0(1)7
NP11,mO g (t/\,m>

1-28 —1
n - AN
“01“"{ 2001785 5 (Erm)

= 0(1).

when n2 48 gpfﬁm
According to Equations @D and , we

Then we study the convergence of p, ,, and o,
—a

< (logn)™,

have
0L (tam)| S
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15 (Exm) — S (Erxm)| S n~"(logn) ™.

In view of Lemma |2, Assumption A2, and Assumption C, we obtain that 1z (5 ,) converges

to f{(tm), and thus is bounded away from zero and infinity for sufficiently large n. Therefore,

nPLipr (tym)

= i /(T < 1 -,
,L/Z/f/(t)\,m) |’I’L #’f ( )\,m)| ~ ( Ogn)

|:un,m| =

From Equation (11}) we have

< n2 2 (logn) ol

—1 A2 2
n‘Pu,me'(tXM) -0
Therefore,

- ”901_11,m‘/7\]2“ (tam) o?

() Bn)?

0'2 - a
R )

: ’

=S (i) * 011 0 (baim) — B (Erm) 0

< |t [0 52 () — 7] \ | [ ltam)? = F )] 0
< b (log n) 15, +n~?(logn)~"
<2 P (logn) 2l (S3)

On the other hand,

o? o?

Wtam)? i (tm)

2| =< 10 (tm)* = S ()| S [f5 (tn) — £ (Erm)] - (S4)

Since K € C8(X, X), we have fy € C*(X). Then the mean value theorem gives

0 (tm) = SX(txm) = o/ (tm) = SN (Em) = SN () (Eam — tm).-
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By Assumption C and Lemma [2] we have
[fo (tm) = SX(Eam)| S A + A7 <207 (S5)

Combining Equations , and , we obtain

2
2 0—

nm (/)/(tm)g

o A

~Y

This completes the proof.

A.5 Proof of Theorem [2I

We first present a technical lemma and leave its proof to Section [A.10]

Lemma S1. Suppose Assumption B1 holds and let A\ = n’%+5(10g n)%“‘ for some }L <p< %

and a > 0. Under event A,,, there exists C' > 0 such that

< n%_zﬁ(log n)~t e,

2
1 4 o8 1 M C
n"20% Uty /| exp | —nt Pl )
Soll,m ( A, )/ p ( Soll,m 20,72%”1 ’f6,<tm>|0':n
For any x > 0, define the error function as

2 x
Erf(z) = —/ e~ dt.
0

By changing of variable, we have

/BAanp <—a2@) du = \/? [Erf (“(A—ng)> + Enf <“<B—\;b))} . (S6)

where a,c, A, B > 0 and b € R.

A.5.1 Proof of (i)

The proof will follow three steps.
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Step 1: According to Theorem 1.3 in Devroye et al.| (2018) and Lemma [2| we have that for

any z € R,
M M
> Tm®@(z |t 11mon) = > T ®(z | 0 011 mon)
m=1 m=1
M M
< drv (Z T (- | trxm, ™ 011m00), ZM@(‘ | tm,nlson,ma;f))
m=1 m=1

M
S Y Tmltam = tal S X7 = o(1),
m=1
where dry is the total variation distance between two distributions. Thus, we only need to
show

’Hn<t <z | X7 y) - qu)(z ’ tk,manilgoll,mo':f) — 0

111=

for any z € R in Py-probability.

Step 2: We work under the high probability event A,, henceforth in this proof, that is, all

convergence rates and bounding integrals only hold under A,,.

Define a sequence of functions

M

where

In this step, we will prove that

' /_ ;f(t)ﬂ(t)dt— / ) ﬁn(t)dt’ 50 (S8)

—00

for any z € R. That is, ﬁn(t) approximates the unnormalized limit density where each

mixture component is properly rescaled. In line with the LAN condition , we expand
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ho(t) at t = ty,, +u/nf for m =1,..., M, transforming ¢, ,,(t) to
2 2
_ 125 -1 (__ U Pnm
Vﬂ,m(u) exXp ( (pllm ( 20_212 + 20_721’m>) '

We consider three cases for z: (1) 2 <0, (2) 0< 2z <1, and (3) z > 1.

Case (1) (z <0). Since £(t) = 0 in R\[0, 1], the left hand side of Equation becomes

/_oo Xﬂi: /_ (Exm) B (£)7 (b
:mzﬂi:/ C(txm) Vi (W) T () du

where we let t = ty,,+u/n” and L, ,, = (—o0, (z—txm)n’]. By Lemmaand Equation

, we have

_ 153 -1 Ul
/ n Bf(tx,m)’/n,m(u)ﬁ(tm)duﬁ/ n2 59011?meXp( - 2ﬂ@111m2 *2) du

&*2 1 gt [ YV m —2)
2 \/20m9011m

< ex —(t)‘m —2)°
~ €Xp 20m Orim )

where we use the well known inequality that 1 — Erf(z) < % e Therefore, there holds

that for z <0,
z (t/\ 1 — Z)2
hy(t)dt < M exp —=- ] = 0. (S9)

o 4% P11,m

Case (2) (0 < z <1). Now the left hand side of Equation becomes

om0

Taking z = 0 in Equation (S9)) gives that fi)oo B (t)dt — 0. We next bound the second term.
We divide [0, 1] into M disjoint intervals (up to overlapping endpoints that do not affect
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estimates of integrals), each of which centering around ¢, ,:

M
0 ]. = U Inm; [t)\,m _€n7m—17t)\’m+§n’m]7 m = 1"._7M’

where &,0 = ta1, Sam = (amer —tam)/2 for m =1,..., M — 1, and {0 = 1 — ty -
Suppose z € I, pm, for some 1 < mg < M and let I} . = [trxm — Enmo—1, 2). By the triangle

n,mo

inequality, we have

‘/ dt—/ozizn(t)dt‘ =

S| [ [tt0m0) - s bnn(trm0)] ]| (510

+

/p [é(t)w(t) — £(tA,m)qz~5n,m(t)7r(tm)} dt‘ (S12)

n,mq

T / tam) B () (L) . (513)
0,21\1;

n,mq

Again, after changing of variable with ¢ = t, ,,, +u/n”, each term in Equation (S10)) becomes

/I - [e(t)w(t) - £(m,m)<;3n,m<t)ﬂ<tm)} dt‘

[ [+ /)1t 0/0) = a0 (0] 0P

= / n_ﬁf(tA,m) [Zn,m(u)ﬂ(b\,m + u/nﬁ> - Vnm(u)ﬂ(tm)} duy,

where Z,, (1) = L(tym +u/n)l(trm) and Jpm = [-1°Em_1,7PE0m]. Applying the tri-
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angle inequality yields an upper bound of the preceding display:

‘ / NPl x ) Znn (W) [T (a4 u/n°) — 7(t,)]du

+

/, Bt Zoon (1) — v ()] (En) s

- [1 -+ IQ.
By Lemma [ST] and Theorem [I], we have

2 9 2
13 —3 1-28 -1 Hnm 1-28, 1 (v + fnm) Hon,m
[1 S ‘ /n’m n2 goll?m exp <_n gpll,m2O_TQL’m) €xp (n goll,m <_ 20_%7m + 20_%7m

[t +u/n?) — 7(tm)]du

_1 U+ hym 2
<| [ wteten (oo, R b ufn) - wle)li

20721,m
L. 1 op 1 (U pm)?
S tam — i n2 ’880112,meXP <—n1 2B90111,m( 952 ) )du
Jn,m Tnm
_1 (% n,m 2
+ / n%_%gplfmu exp (—nl_wsﬁil,m—( ;L/; m) ) d“'
Jn,m O-n,m
= I11 + .

In view of Equations , , , and Lemma , it follows that

]11 S |t)\,m - tm| A/ 27T0-72L,m S |t)\,m - tm| 5 )\Tl7

S11



and

_1 u
Iy = n_ﬁ‘ / n%_ﬁgpnfmu exp (—nl_%(pﬁl’ —> du
Jl

n,m " 20—7%,77’1
8 ~3 1-28 1 u?
— Hnm / n2 "o eXp | —n Qoll,m 202 du
';L,m n,m
B nﬁ(ﬁn,mflvfn,m) 1 ﬁ 1 1 26 1 u2
5 n 2/ n2 @11?mu exXp (_n a Sol_l,mz 2 ) du
0 Jn,m
15 —3 1—2p 1 (U pin, )’
+ | n:z ﬁ%fm exp (—n B¢11,m—2 Qnm du
Jn,m Un,m

N

L n n,m— \/ n,m 2 =
TL_B 0-72Lm<10121m 1—exp|— (6 ;m—1 5 ) ) n—%-f—ﬁ + /27{-0—121m
’ ' 202 . P11m 7 ’

where J), . = [—nP&nm1 + s 0P Enm + tnm). Hence, I} S A™ A Sl A n=? — 0 under
Assumption B2. By Lemma ST and Theorem [I we have

2 2 2
5 -3 - — H — — U+ fn,m H
I 5 ‘/ né B@ll?m exp (—nl 2’890111,7712;27”1_) {exp (nl 2690111,771 (_( = o ))

2 m 207 207
o )
= ‘ / n%_ﬁgp;ém {exp (—nl_zﬁgpfﬁm—m ;U/;n’m>2) —exp (—nl_w@ﬁl,m QZL)] du
< ‘/ n%_f”(pl—ém {exp (—nl_%gol_ﬁm—(u ;f;n’m)z) — exp <—n1_25¥71—11,m2;22 )} du
+ /J o iAo, {eXp (—n”ﬁ Prim 2:;m) — exp (—n”ﬁ Prim 23;)} du
= Iy + Ip.

Without loss of generality we assume g, ,, > 0. Then, combining Equations (15), and
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gives that

2 — B % %_ﬂ
[21 _ Erf gnm 1n Hn, mn + Erf gn,mn + Hn,mM
v V202 o1im 207 mP11m
71'02 fn m—1T2 é.n mn%
Erf | —— | 4+ Erf | ——
2 [ ( V 20-721,m9011,m> ( \Y 20-121,m3011,m
b P :
Erf gn,m—ln /vbn,mn _ Erf fn,m—ln
20%,m9011,m \/ 20’%7m9011,m
1 _ 1
Erf gn,mn§ + ,U/n,mn§ A — Exrf fn,an
\/203 m¥P1lm \/203,m<ﬁ11,m

2

2
1 n 1 n
20—n,m9011,m 20—n,m9011,m

-1
< eicnsollﬂn
~

for some ¢ > 0. In view of Equations , , and Theorem , we obtain

Sl

gnm ln gnmn% ]
Erf + Erf | ———
[ ( 20721 m§011 m V 20721,m9011,m i
L -
- Erf | —mmcll ) o4 frf | 'g\o—;—anm\gx.
2 [ (\/2 7712(;011,m> <\/20§39011,m>_ ’

Therefore, I — 0.

Similarly, by changing of variable and Lemma each term in Equation (S11)) becomes

[3 :/ g(t)\,m)én,m(t)ﬂ(tm)dt
0,2\ I, m
= / niﬁg(t)\,m)yn,m(u)ﬂ-(tm>du

< i -3 1-28, -1 N%m 128 -1 u? i ,u,%m d
n exp [ —n ex — U
~~ - P11,m €XP P11, mo %m p P11,m 2572 2072%77I

18,3 nl=28 ,-1 u’
= nz "P11m €Xp 8011m2 2 du,
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where K, = [=n°ty 1, —1P&m1] U [0P&m, P (2 — tam)] Tt then follows that

PR og 1 NPz —tam)?
I3 < n’ - n2 69011?m exp (‘nl 2’890111,mT27m — 0.
m

Following the same arguments, we can show that Equations (S12) and (S13) converge to
zero. This proves Equation for 0 <z <1.

Case (3) (z > 1). From Case (2) we can see that

‘/_;f(t)w(t)dt—/_l ﬁn(t)dt‘ — 0.

o0

Note that £(t) = 0 in R\[0,1]. Using similar arguments as in Case (1), it holds that
IN h,(t)dt — 0, proving Equation for z > 1.

Step 3: We normalize h,(t) to a density

Note that Equation (S8) implies

' (/R f(t)w(t)dt) o (/R En(t)dt) B

Hence, for any z € R, we have

’/Oo Tt | X, y)dt — /OO ho () du

— 0. (S14)

< </R€(t)7r(t)dt)l /;z(t)w(t)dt_/;ﬁn(t)dt‘
+/_Oo (/R E(t)w(t)dt>_1 B (/R ﬁn(t)dt) L

— 0, (S15)

B (t)dt

where the last line follows from Equations and (S14])).
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Rewrite h,(t) defined in Equation to

M
:unm — *
= Z m(t t/\m exXp ( 90111m2 2 ) \/27T7171()0117m0212¢(t | t)\ﬂrwn 19011,m0—n3)7
=1

which is a linear combination of ¢(t | tx.m,n ‘p11.,072). Hence, the density function after

normalization is

M
Zﬁnmgh t ’ t)\man Sollmo- 2)

with weights

T (tm ) (tam) exp <n1_2590f1 mgljj-an ) \/27m D11,m0 2
Sy 7t} tam) exp (1201, ) VI e
1
Rl 5ot ul(tam)/ exp (—nt=pr, e )

)
M v =1 3 1-28,,—1 Him
Zm:l (tm)opn 290117m€(t>\7m)/exp -n 8011,mm
)
(

ﬂ'n’m =

3

() C1fS (t) ! + Com
Zr]\r/{:lﬂ— tm)CUN( m)|_1 + Cnm

where the existence of sequences ¢, ,, = O(nz=*(log n)~17%) is guaranteed by Lemma .

Hence, we arrive at

_ 7 (tm ) £ (b))~ :

. /
Tn,m = + Cn,m =Ty + Cn,m’

> et Tt |G (tn) 1

for some ¢, ,,, = O(nz=2(logn)~17). Tt then holds that

Py M
‘ / t)dt _/ Z T ®(t | Erm, ™ 11mos )dt

m=1

Z/ |Trm — Tn| @t | tram, M P11,m02)dt — 0. (S16)

m=1Y X

Combining Equations (S15) and (S16[), we obtain that for any z,

4 z M
Ep, / ot | X, y)dt — / S 6 (t | a7 P m02 ) |14, 5 0.

O m=1
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This together with Ep,(14c) = Po(AS) < n™ 'Y gives that

S

I,(t<z|X,y) — Z Tm®(2 | tam, 07 011.m0 52 ) | — 0

m=1

for any z € R in Py-probability. This completes the proof.
A.5.2 Proof of (ii)

Denote (o = t1, Gn = %(th —tm),m=1,....M —1,(yy =1—tp. Then,

0,1] = Ly, I =T[tm—Cu1,tm+Cn], m=1,..., M.

1 Cx

We first bound the unnormalized difference

‘/_z E(t)ljm(t)w(t)dt—/z () Drmn ()T (L )t (S17)

—0o0

under A,, by considering three cases for z: (1) 2 <t — Gno1, (2) tin — Gt < 2 <ty + Gy
and (3) z >ty + (n.

Case 1 (2 < t,, — (n-1). Since z ¢ I, Equation (S17) becomes

z B (z—tx,m)nP
/ g(t)\,m>¢n,m<t>7r<tm)dt :/ E(t)\,m)yn,m(u)ﬂ'(tm)du
(thk,m)nﬁ 1 1 u2
1.3 —3 1-28 _—1
S /_Oo n2 (pll?m exp (_n Soll,m 20_;2) du
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Case 2 (t,, — Gn-1 < 2 <ty + (). In this case, we consider

/tz N €O7(E) = Ut )b ()7 (L) | dt‘

_ / [E(tam + w0/n)(tam + 10/0%) — Utrm) Vi (W) (t)] 1P

_ / 0Pt [Zonn ()Tt + 0f1) — V() ()] dd

IN

| 0 ) Za )it + /) = ()

‘/ T m) i () = v () () e

=1+ I,

where H,, ., = [(tm — tam — Gno1)n?, (2 — ta,m)n?]. Following similar arguments as used in

the proof of Part (i), it can be shown that I] < A™ and

(z — tk,m)%) .

1
Iy S o7 - exp (—
n,m 20%’m¢11,m

Case 3 (z > t,, + (). Again, z ¢ I,,, and Equation (S17)) becomes

z B (z=tx,m) B
/t Ut ) B (Bt )t = / )V ()7 ()t

m+Cm (tm_tk,m‘f‘Cm)nﬁ

OO 1.5 —3 n1-26 ,—1 u?
5/ n2 o, exp | — 9011m2 2 du
(

tm—tx,m+Cm )0

_ ’7'('0"l<2 1 — Fuf \/ﬁ@ _tAm+<m>
2 \V4 20m8011m

< oxp (_n(t — tam + Gm)” ) ‘

20m8011m

Combining the three cases, we obtain that under A,,,

(z — tk,m)%) ‘

2
20n,m8011,m

‘ / 15, () (t)dt — / e(m,m)q}n,m(t)w(tm>dt‘ <AV o (_

o0

Let II,,,,(- | X,vy) be the posterior of t1;,. Following the same arguments as in part (i)
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again, we can show that

—tam 2
Hn,m(t, S z | Xay) (Z | t/\ mvn ()011 mU ) < ATV n%_ﬁ - €Xp (_M)

20—721,771901177”

in Pyp-probability.
By Lemma 2, we have |t,, — b, — txn| S n?vIogn VnPlogn = n~?logn. Thus,

(z —tam)*n

/
Hn,m(t S z | Xv y)—(I)(Z | t bn’n 9011 mO' ) 20—721,7719011,771

< Aypzh -exp ( )\/n_ﬁ log n.

Now we consider the posterior of | /—H—(t1,, (¢) — tm + b,). By changing of variable, it

follows that

\Hg,ma' <) Xy)— (=] 0,02)

— ’H (t' Piim 2 +1t, — b, | X, y) —® ( SOlﬂz +t, — bn|7fm — bn,n_lgon,majf) ‘
\/ V' n

. Lp“”z—kt —tam — bn)’n
<n2P.exp 207
n,1 11,m
80 ’ n
<n%_5~ex 11,m \/fm—tm\/bn _—
~Y p ( >\7 ) 20_72L’m()0117m
SJ n%_ﬂ . eXp { 202 (}0 }
n,m 11,m
1=28(1ogn
< n%_ﬁ . eXp —g) — 0
~ QUZ,mSDH,m

This completes the proof.

A.6 Proof of Theorem [3
A.6.1 Proof of (i)

Let Fo(2) = IL(t < 2 | X,y) and Go(2) = M 1,®(2 | ty,n " 011.m072). Note that
G,(-) is a deterministic function, and its derivative G/ () is the density function of a Gaus-

sian mixture. The variance of each component distribution in G, goes to zero in view of
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Assumption B2 and conditions in Theorem 2] For sufficiently large n, using the analytical
expression of G/ (-) and elementary calculus, we can show that G/ () has at least M local
modes, denoted by t,, ¢, such that ¢,, ¢ — t,,. On the other hand, G/,(-) cannot have more
than M local modes in view of Corollary 2.4 in (Carreira-Perpinan and Williams| (2003));
hence, {t;1,-..,tmc} are the only local modes of G (-). For large enough n and each m,
we consider an interval (¢, ¢ — Om, tm.c + ) for some 6, > 0 such that G/ (z) > 0 when

2 € (tma — Omstme) and G (2) < 0 when z € (tm.g, tm.c + Om)-

By Theorem 2 (i), we have |F,,(2) —G,(z)| — 0 for any z € R in Py-probability. The following
arguments and conclusions in Step 1-4 hold with Py-probability tending to 1 because of this

convergence in Py-probability.

Step 1: We first show that there exists a ¢,, r in the neighborhood of ¢,, s such that
F(tmrp) =0, for m = 1,..., M. Suppose F/(z) # 0 for any z € (tm.c — Om, tm.c + Om),
Without loss of generality we assume F)'(z) > 0 when z € (ty.¢ — Om,tmc + 0m). Since

Gn(z) is concave on (tm.as tm.a + Om),
Gutme + 0m/2) > (Gultme) + Gultma +6m))/2 + ¢, (S18)
for some € > 0. Since F,(z) is convex on (tm.cs tm.a + Om),
Foltma +6m/2) < (Fu(tma) + Faltma + 6m))/2.

For sufficiently large n, it holds that with Py-probability tending to 1 |F,,(2) — G.(2)| < €/2
for z = ty.gytme + O0m/2, tm.cc + 0. Therefore,

Go(tmc +0m/2) > (Fultimc) + Faltmc + 0m)) /2 + €/2 > Fo(tmc + 0m/2) + €/2,

which is a contradiction. This proves that there exists t,, r € (tm.c — Om, tm.c + Om) such

that F(tyr) = 0.

Step 2: We show that t,, » — t,, in Py-probability. Suppose there exists § > 0 such that
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|tm.c —tm,p| > ¢ for any sufficiently large n. Without loss of generality we assume t,, ¢ <t F
and F(z) < 0 when z € (tpy 5, tmc + 0m) and F(z) > 0 when z € (tp¢ — Om, tmr). Thus,
G, is concave on (t,, G, ty, r) while F, is convex on (¢, ¢, tmr). This is a contradiction using
the same argument in Step 1. Combining this with ¢,, ¢ — t,, shows the convergence of

b

Step 3: In this step, we show that ¢,,  must be a local mode of F)(z). Suppose that
F)'(z) > 0 when z € (typ,tmc + 0m) and F(2) < 0 when z € (t,.¢ — Om, tm,r), yielding

Fn(tmf + 5m/2) < (Fn(tm’p) + Fn(tm’p + (Sm))/2

For sufficiently large n, it holds with Py-probability tending to 1 that |F,(2) — G,(2)] < €/4
for =t tmg + Om/2, tmc + Om. Invoking Equation (S18)),

Gn(tme + 0m/2) > (Fultma) + Fultme + 0m))/2 + 3¢/4.

For sufficiently large n, it holds with Py-probability tending to 1 that |F,(z1) — F,(22)] < €/4
for z; = tm,G’a g = tha 1= tm,G+5m/2a g = tm,F+5m/2 and z; = tm,G+5ma 2y = tm,F+5m~

Therefore,

Gn(tme + 6m/2) > (Fu(tmr) + Fo(tmr +0m))/2 +€/2 > F(tymr + 0m/2) + €/2.

However,

Gn(tme + 0m/2) < Fo(tma + 0m/2) +€/4 < Fy(tmr + 6m/2) +€/2,

which is a contradiction. This completes Step 3.

Step 4: In the last step, we show that the number of local modes of F)(z) is exactly
M. We have proven that F)(-) has at least M local modes. Suppose that there exists
towr € (0,1) and 4,y > 0 such that ¢, p is a local mode of F)(z) and G/ (z) # 0 for

2 € (tyy r — Oy tyw 7 + Oy) for any sufficiently large n. Without loss of generality assume

S20



Gl(z) > 0for z € (tyy p— O, b p 400y ). Thus, on (¢ p— 0y, by 405y ), Gn(2) is convex
while F),(z) is concave. By similar arguments used in Step 1, we can obtain a contradiction.

Hence, the number of local modes of F)(-) is exactly M.
This completes the proof.

A.6.2 Proof of (ii)

By Taylor expansion of fif, we obtain

i (t) = fip(tm) + (= tm) 105 ()

for some & between t and t,,. Since tm is a local extremum of fig, there holds fip (fm) = 0.

Substituting t = £, into the expansion above yields

() + (o — ) (6) = 0.
Lemma and Assumption C ensure that /i’ (z) L f(z), and Lemma implies that £, = tp,.

Therefore, i (£) L f(t), and thus 1:(§) is bounded away from zero and infinity in view

of Assumption A3. It thus follows that

. e (tm
bty = — P2/ Em)
Mf/(g)

Let A, () = Kio(-, X)[K (X, X) + nAIL,] ! fo(X). Conditioning on X, it holds that

g (tm) = Kio(tm, X)[K(X, X) +nAL] 'y

~ N (Ap(tm), 0 Kig(tm, X)[K(X, X) + nAL,) > Kig(tm, X)") .

Hence,
p (tm) — An(tm)
0\/K10(tm7 X)[K(X, X) + n/\In]72K10(tma X)

X~ N(0,1),
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which implies that

ﬁf’(tm) - An(tm)
U\/Klo(tm, X)[K(X, X) + n)\In]_QKlo(tm,X)T

~ N(0,1).

By Slutsky’s theorem, we obtain

1 Py oy Aaltn) | g
KlO(tma X)[K(X, X) + n)\In]*2K10(tm, X)T m " ﬁlf’(tm)

N (0,02 [ (tm)7?) -

Note that

Kio(tm, X)[K (X, X) + nAL,) 2K (t,
Kio(tm, X)[K (X, X) + nAL,] 2K (tm,
Ko, X)[K (X, X) 4+ nAL) "2 (Kig(tm, X)T — Kig(tm, X))
B Kio(tm, X)[K(X, X) +nA\L,] 2K (ty,, X)T
(K10(tm, X)T — Kio(tm, X)) K (X, X) 4+ nA\,) 2 Kig(tm, X))
Kig(tm, X)[K (X, X) + nAL,]2K1o(t,, X)T

X)T
X)T L

Consider the eigendecomposition of K (X, X) = Q,A,QL, where A,, = diag(u4,...,u,) and

QZ = Q;l. Denote (p1,...,0n) = Kio(tm, X)Qn, likewise (q1,...,q,) = Klo(fm,X)Qn.
Then

Kio(tm, X)[K(X, X) + n)\InrQKlo(tm, X)) = Kio(tm, X)QnAingKlﬂ(tva)

o

Z uz—i-n)\

=1

By the Cauchy—Schwarz inequality, we have
K1 (tm, X)[K (X, X) 4+ nA\L,] 2 (Ko(tm, X)T — Kig(tm, X))

o S 4i(q — pi) . q? - (¢ — pi)?
B Z (u; +nA)? = J (u; +nA)? Z (wi +nX)?

=1 =1
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Since K1g(tm, X;) — Kio(tm, X;) 2 0 uniformly for 1 < i < n, we have

Z uz+n/\ /Z uz—l—n)\

i=1

and

Zu—l—n)\ /Z uﬁ—n)\ 0.

=1

Hence, it follows that

K1o(tm, X)[K (X, X) + nAL]2(Ko(tm, X)T — Kig(tm, X)) »
Kio(tm, X)[K (X, X) 4+ nAL,]2Kg(tm, X)T ‘

Similarly, it can be shown that

(K10(tm, X)T — Kio(tm, X)) K (X, X) + nAL) 2 K1g(tm, X)) »
Kio(tm, X)[K (X, X) + nAL,) 72 Ko (tm, X)T '

Therefore, X A
Kl()(tm, X)[K(X, X) + TL)\In]_QKl()(tm, X)T ﬁ) 1
Klo(tm,X)[K<X,X) +n)\In]_2K10<tm,X>T ’

Recall that uf,( m) = fY(tm). Therefore, by Slutsky’s theorem again, we arrive at

o |y (tm))| [tm . ﬁn(tm)] NGO
V0l X)E (X, X) 4 nAL] 2K 0 X)T o (tm)

Hence, an asymptotic 1 — « confidence interval of ¢, + A, (t,)/ f§ (tm) is

o/ Kro(Funs XK (X, X) + AL 2Ky (f, X)T

tAm + Za/g
|Nf/( m)|

This completes the proof.
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A.7 Proof of Theorem {4

For any 5,1 < s, we have

|Ka5 z, ')

Zuzw (2)e” (2/)

Z 272a+j+l

which is finite when a > ﬁ% Thus, Assumption Bl holds when s > 4 and a > 9/2.

According to Lemma 11 in [Liu and Li| (2023), when o > ﬂ%, we have

,UZZ]H

IS
2a

() (2

sup |p;i(x)| = sup
rEX reX

2w

Z

Hence, Assumption B2 is satisfied when a > 3. In view of Lemma 1, Lemma 11 and

Lemma 13 in Liu and Li (2023), when o > k 4 1/2, we have

< )\5—%_

This verifies Assumption C with r; = ‘12—;1, Ty = “2—;2 when a > 5/2. Finally, by Assumption

E we have ¢q1(z) = Y72, Vi@ )2 — 0o as A — 0. Thus, a sufficient condition for the
boundedness of n2 %12, in Theorem |1 and [2|is n2~* = O(1), which implies that § > 2.

This completes the proof.

A.8 Proof of Lemma [3

Let fo = >, fityi. Then, for any k < s,

;- A

=1 )\ + /’L’L
Hence,

1 k .
X N2 T 2ery L ik

CIRFCIINPS o ST S PIR S g
157 = o IIOOS;A+MILI D D eV

=1

524



Note that % < e%, then by Young’s inequality for products, we have

Azt . ik < Aztas . e(’”)’ L + L A+ 1k e < N e
2 2ery 2 2ey

Therefore, |]f>(\k) — fék)Hoo < A2 S e fil S A2725 . This completes the proof.

A.9 Proof of Theorem [

It is easy to see that K, € C®(X,X) for any v > 0 and s > 4; thus Assumption Bl is
satisfied.

Note that

(J+l)

]) 7271Z]+l 672716

+uz vi

Sup |§D]l ‘ Z b\ + 6—2"/2 - A + e—2vi :

By Young’s inequality for products, when 2ey > j 4+ [ we have

Aoy L o2yt < (1 _ It l) A+ (j i l) e < AN e

2ey 2ey

Hence, ¢ < )\7% for 2ey > j+1 and Assumption B2 holds for v > 2% In view of Lemma ,

we have Assumption C satisfied with ry =r, = 5 2

Finally, since A\ = o(1), we have ¢, = o(1) under Assumption E. Thus, a sufficient

condition for the boundedness of n2~%° cpﬁ%m is 8 > g. This completes the proof.

A.10 Proof of Lemma

The likelihood function gives

_1 1 C 1 ’(tA,m)z
n2 o7 l(tam) = — eXP( W
\/n8011,m‘7f/(t>\ m) FrATAm
C _ Mnm
\/n9011,m0f' (trm)
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where fi, ,, and o, are defined in Theorem . Note that

— :
" *
Jueri gt HE I

= (£ ()l = /12T ()]

= |y (tm) 2008 = nP1Lm0 3 (Em)]-
Substituting f¢(t,,)%0}? = o2 into the right side yields

ngpfﬁm&\?, (tam) — ol < n%_w(log n)~t7

0 (tm) a0 — 101130 (tr.m)

This completes the proof.

B Additional simulation results

B.1 Effect of noise standard derivation and credible level

We carried out additional experiments to investigate the effect of noise standard derivation
and credible levels 1 — . We used the same regression function shown in the paper and
generated more noisy data by increasing the noise standard deviation o from 0.1 to 0.2.
As expected, results worsen, particularly for smaller sample sizes. This is because the GP
tends to produce more wiggly curves. For example, looking at the percentages of correctly
estimating M for a = .05, calculated over 100 replicated datasets, we observed the following
results: for n = 100 we obtained 19% and 85% for Beta (1,1) and Beta(2,3), respectively,
versus 47% and 86% of Figure 3 in the paper; for n = 500 we obtained 52% and 94% for
Beta (1,1) and Beta(2,3), respectively, versus 95% and 99% for ¢ = 0.1. We notice that,
as already shown in the main simulation, the Beta(2,3) prior and larger sample sizes help

identifying the correct number of local extrema.

Next, we used this additional simulation study to investigate the performance of HPDR for
different values of a. Results for sample sizes n = 100, n = 500 and n = 1000 and the two
Beta priors are reported in the two tables below. For each combination of prior and sample

size, we generated 100 simulated datasets.
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Table S1: Beta(1,1). Percentages of correctly estimated number of ¢’s. The results are
calculated on 100 simulated data.

Beta(1,1) a«=0.001 «=0.005 =001 «=003 a=005 a=0.1

n = 100 56% 53% 51% 18% 19% 35%
n = 500 25% 32% 34% 43% 52% 60%
n=1000 27% 35% 44% 57% 76% 84%

Table S2: Beta(2,3). Percentages of correctly estimated number of ¢’s. The results are
calculated on 100 simulated data.

Beta(2,3) a«=0.001 «=0.005 =001 =003 a=005 a=0.1

n = 100 87% 88% 88% 86% 85% 7%
n = 500 95% 96% 95% 95% 94% 89%
n=1000 95% 95% 96% 94% 94% 95%

In this additional study, we observed that increasing values of o did not necessarily cor-
respond to larger estimated numbers of local extrema. This is because situations like the
one shown in Figure |[S1| can occur. Therefore, larger or smaller o values do not necessarily
imply more or fewer separated HPDR segments. Overall, results confirm the fairly robust

estimation performance of the Beta(2,3) prior in estimating M.

B.2 Highly fluctuated regression function with large M

Upon suggestion from one of the reviewers, we performed a new simulation using the re-
gression function sin(k7wz) for x € [0,1], and assessed how the estimated number of local
extrema converges to the true M. We considered £ = 10 and k£ = 100 with varying n;
with this regression function, the true number of local extrema is M = k. Other simulation
configurations mirrored the main paper’s setup, including the noise standard deviation, ob-
served x values, and the number of replications. The proposed method is implemented using

the same settings as in the simulation study in the main paper, unless otherwise stated.

We observe that when k& = 10, our method is able to correctly estimate M 77% of the time
even with sample size as small as 30. This percentage increases steadily to (93%, 99%, 100%)
as n increases to (200, 300, 500), respectively.
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post of t: sig 0.2, beta(2, 3)

90% HPD (4)

= 95% HPD (5)
' 1 ' 97% HPD (4)

- | K | === 99% HPD (3)

0.020

0.015

p(ty)

0.010
1

0.005

0.000

Figure S1: Effect of o on the estimated number of local extrema. The posterior density
function is based on one simulated dataset with n = 100.

When k£ = 100, M is correctly estimated only 4% of the time when n = 300 (compared
to 99% when k£ = 10), indicating the challenge of large £k = 100. We have looked into
this challenging scenario and found that for this highly fluctuated function, even simpler
tasks such as function estimation become challenging. For example, the model struggles to
distinguish between a highly fluctuated function and a flat function when n = 300, which
is not surprising as indicated in the top plot of Figure [S2] This has prompted us to find
an effective strategy for this challenging function in which we incorporate the shape of the
function into guided hyperparameter tuning. If we have prior knowledge that there are many
local extrema, we can confine the hyperparameter searching space, ruling out some basins
of the marginal likelihood that do not result in the regression shape being interested. For
example, setting the upper bound when searching for (h, A) to (0.1, 0.0001) as opposed to
(10000, 10000) used in our default implementation, leads to the results reported in Table ,
which show a substantially improved estimation of M. For example, the proposed method
can estimate the correct value of M with n = 300 in all 100 simulations. The posterior

distribution of ¢ in one simulation when & = 100 is shown in Figure In this simulation,
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which is typical across 100 replications, our method correctly identifies the number and
location of 100 local extrema. We acknowledge that prior information on the shape of the

unknown function might not always be available.

70-79 80-89 90-99 100 > 100
n =200 18 76 6 0 0

n = 225 0 1 14 85 0
n = 250 0 0 0 99 1
n = 300 0 0 0 100 0

Table S3: Frequency of M falling in each interval when k = 100. Results are based on 100
repeated simulations.

sin(100*pi*x) Size 300

.10 _ . * . _» - - L4 L4
0.5 4
< 00 N 1 '
-0.5
'10 _ - s * - . . -
T T T T | T
0.0 0.2 0.4 0.6 0.8 1.0
o Posterior of t
S 4
o
o |

p(tly)
0.0015
|

0.0000
I

0.0 0.2 0.4 0.6 0.8 1.0

Figure S2: Data (top) and the posterior density of ¢ (bottom) when f(z) = sin(1007x) (red

curve in the top plot). Results are based on one simulated dataset with sample size n = 300.
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