
Supplementary material for “Semiparametric Bayesian inference for

local extrema of functions in the presence of noise”

In this supplementary material, we present proofs of all results in the main paper, additional

technical lemmas, and additional numerical experiments.

A Proofs

A.1 Proof of Proposition 1

By Bayes’ theorem, it suffices to show that the likelihood takes the form of Equation (5).

Recall that y|X, t ∼ N(0,Σt), where Σt = σ2(nλ)−1(A+B) with A = K(X,X) + nλIn and

B = −K01(X, t)K
−1
11 (t, t)K10(t,X) = −aaT by letting a = K01(X, t)K

−1/2
11 (t, t). Note that

the condition σ̂2
f ′(t) > 0 for any t ensures K11(t, t) > 0 in view of Equation (4).

In view of the Sherman–Morrison formula, we have det (A+B) = (1−aTA−1a) det(A) and

(A+B)−1 = A−1 + A−1aaTA−1

1−aTA−1a
, assuming 1− aTA−1a 6= 0. Substituting these two identities

into the multivariate normal density `(t) yields

`(t) = {2πσ2(nλ)−1}−n/2 det(A+B)−1/2 exp

{
− 1

2σ2(nλ)−1
yT (A+B)−1y

}
= {2πσ2(nλ)−1}−n/2(det(A))−1/2 exp

{
− yTA−1y

2σ2(nλ)−1

}
· (1− aTA−1a)−1/2 exp

{
− yTA−1aaTA−1y

2σ2(nλ)−1(1− aTA−1a)

}
= C{σ2(nλ)−1(1− aTA−1a)}−1/2 exp

{
− yTA−1aK11(t, t)a

TA−1y

2σ2(nλ)−1K11(t, t)(1− aTA−1a)

}
,

where

C = {2πσ2(nλ)−1}−n/2(det(A))−1/2 exp

{
− yTA−1y

2σ2(nλ)−1

}
· {σ2(nλ)−1}1/2

does not depend on t. The proof is completed by noticing that µ̂f ′(t) = K
1/2
11 (t, t)aTA−1y

and σ̂2
f ′(t) = σ2(nλ)−1K11(t, t)(1− aTA−1a). This completes the proof.
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A.2 Proof of Lemma 1

A one-dimensional version of Theorem 4 in Liu and Li (2023) shows that

‖µ̂(k)
f ′ − f

(k+1)
λ ‖∞ ≤

√
κκk+1,k+1‖f0‖∞

√
log(9/δ)

√
nλ

(
10 +

4κ
√

log(9/δ)

3
√
nλ

)
(S1)

+
C2
√
κκk+1,k+1σ

√
log(3/δ)

√
nλ

, 0 ≤ k ≤ 3,

For any bounded f ∈ L2
pX

(X ), we define a bias of estimators of f by matrix and integral

operation as

E(K,X, f) = (LK,X + λI)−1LK,Xf − (LK + λI)−1LKf

= K(·, X)[K(X,X) + nλIn]−1f(X)− (LK + λI)−1LKf,

which belongs to H. Consider any j, l ≥ 1 and j + l ≤ 5, taking f = K0l,x yields

∂jE(K,X,K0l,x) = Kj0(·, X)[K(X,X) + nλIn]−1K0l(X, x)− ∂j(LK + λI)−1LKK0l,x.

Thus,

∂jE(K,X,K0l,x)(x) = Kj0(x,X)[K(X,X) + nλIn]−1K0l(X, x)− ∂j(LK + λI)−1LKK0l,x(x)

= Kj0(x,X)[K(X,X) + nλIn]−1K0l(X, x)− (LK + λI)−1LKKjl,x(x)

We write (LK + λI)−1LKKjl,x(x) = Kjl,x(x)− λ(LK + λI)−1Kjl,x(x) = Kjl(x, x)− λϕjl(x).

Then, by Theorem 16 in Liu and Li (2023) we have that for any δ ∈ (0, 1), with P0-probability
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at least 1− δ it holds

|Kj0(x,X)[K(X,X) + nλIn]−1K0l(X, x)−Kjl(x, x) + λϕjl(x)|

≤ ‖∂jE(K,X,K0l,x)‖∞

≤
√
κκjj‖K0l,x‖∞

√
log(3/δ)

√
nλ

(
10 +

4
√
κ
√

log(3/δ)

3
√
nλ

)

=

√
κκjjκ0l

√
log(3/δ)

√
nλ

(
10 +

4
√
κ
√

log(3/δ)

3
√
nλ

)
.

In view of Equation (7), σ̂
2(k)
f ′ (x) is a linear combination of quadratic forms

Kjl(x, x)−Kj0(·, X)[K(X,X) + nλIn]−1K0l(X, x).

Therefore, for any 0 ≤ k ≤ 3, we have

|σ̂2(k)
f ′ (x)− σ2n−1

k∑
i=0

(
k

i

)
ϕi+1,k+1−i(x)| (S2)

≤
k∑
i=0

(
k

i

)[√
κκi+1,i+1κ0,k+1−iσ

2
√

log(3/δ)

n
√
nλ2

(
10 +

4
√
κ
√

log(3/δ)

3
√
nλ

)]
.

The above Equations (S1) and (S2) can hold simultaneously with P0-probability 1− 8δ. Let

8δ = n−10, and An be the corresponding event. We immediately have P0(An) ≥ 1 − n−10

with log(3/δ) ≤ 10 log n+ 4 and log(9/δ) ≤ 10 log n+ 5 in the upper bound. This completes

the proof.

A.3 Proof of Lemma 2

First we prove that for any local extremum tm of f0, there exists a local extremum tλ,m of fλ

such that tλ,m → tm as λ→ 0. There exists δ > 0 such that for any 0 < ε < δ, it holds that

f ′0(tm− ε) < 0, f ′0(tm + ε) > 0 and f ′′0 (tm± ε) 6= 0 without loss of generality. By Assumption

C, we have

|f ′λ(tm − ε)− f ′0(tm − ε)| . λr1 .
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Hence, for sufficiently small λ, it holds f ′λ(tm−δ/2) < 0. Similarly, we have f ′λ(tm+δ/2) > 0.

According to the continuity of fλ, there exists a tλ,m ∈ (tm − δ/2, tm + δ/2) such that

f ′λ(tλ,m) = 0. It can also be shown that f ′′λ (t) 6= 0 for any t ∈ (tm − δ/2, tm + δ/2) and

sufficiently small λ, which implies f ′′λ (tλ,m) 6= 0. Finally, we have tλ,m → tm as δ → 0 and

λ→ 0.

Again by Assumption C we can see that

|f ′λ(tλ,m)− f ′0(tλ,m)| . λr1 .

Since f ′λ(tλ,m) = 0, in view of the mean value theorem, we have

|f ′0(tm) + f ′′0 (ξ1)(tλ,m − tm)| . λr1 ,

where ξ1 lies between and tλ,m and tm. Since ξ1 → tm and f ′′0 (tm) 6= 0 by Assumption A, we

obtain

|tλ,m − tm| . λr1 .

Under An, the existence and convergence rate of t̂m can be shown similarly by applying

Equation (8). This completes the proof.

A.4 Proof of Theorem 1

The proof is based on the high probability event An defined in Lemma 1. Conditions of

Theorem 1 imply n
1
2
−2βϕ11,m = o(1), yielding σ̂2

f ′(tλ,m) > 0 in view of Equation (11). In-

voking the likelihood function `(t) in Equation (5), which holds at tλ,m and in its small

neighborhood, we have

Λ(t,∆t) = log
`(t+ ∆t)

`(t)
=
`′(t)

`(t)
∆t+

`′′(t)`(t)− `′(t)2

2`(t)2
(∆t)2 +R3(ξ)(∆t)

3,
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where R3(ξ) = {2`′(t)3+`′′′(ξ)`(ξ)2−3`′(ξ)`′′(ξ)`(ξ)}/{6`(ξ)3} and ξ is bewteen t and t+∆t.

Thus,

Λ(tλ,m,
u

nβ
) =

[
−
σ̂2′

f ′(tλ,m)

2σ̂2
f ′(tλ,m)

−
µ̂f ′(tλ,m)µ̂′f ′(tλ,m)

σ̂2
f ′(tλ,m)

+
µ̂f ′(tλ,m)2σ̂2′

f ′(tλ,m)

2σ̂2
f ′(tλ,m)2

]
u

nβ

+
1

2

[
σ̂2′

f ′(tλ,m)2

2σ̂2
f ′(tλ,m)2

−
σ̂2′′

f ′ (tλ,m)

2σ̂2
f ′(tλ,m)

+
2µ̂f ′(tλ,m)µ̂′f ′(tλ,m)σ̂2′

f ′(tλ,m)

σ̂2
f ′(tλ,m)2

−
µ̂′f ′(tλ,m)2 + µ̂f ′(tλ,m)µ̂′′f ′(tλ,m)

σ̂2
f ′(tλ,m)

−1

2
µ̂f ′(tλ,m)2

(
2σ̂2′

f ′(tλ,m)2

σ̂2
f ′(tλ,m)3

−
σ̂2′′

f ′ (tλ,m)

σ̂2
f ′(tλ,m)2

)]
u2

n2β

+
1

6
R3(ξ)

u3

n3β
.

Based on the rates given by Equations (9), (10), (11) and (12), we obtain

|µ̂f ′(tλ,m)| . n−β(log n)−a, |µ̂(k)
f ′ (tλ,m)| . 1,

|σ̂2
f ′(tλ,m)| . n−1ϕ11,m, |σ̂2(k)

f ′ (tλ,m)| . n−
1
2
−β(log n)−

1
2
−a,

for 1 ≤ k ≤ 3. Further calculation gives R3(ξ) .
σ̂2′′
f ′ (ξ)

σ̂2
f ′ (ξ)

2 = O
(
n

3
2
−β(log n)−

1
2
−aϕ−211,m

)
.

Substituting these into the above Λ(tλ,m,
u
nβ

) yields

Λ(tλ,m,
u

nβ
) = −

µ̂f ′(tλ,m)µ̂′f ′(tλ,m)

nβσ̂2
f ′(tλ,m)

u−
µ̂′f ′(tλ,m)2

2n2βσ̂2
f ′(tλ,m)

u2 + o(n
3
2
−4βϕ−211,m)

= −
n1−βµ̂f ′(tλ,m)µ̂′f ′(tλ,m)

nσ̂2
f ′(tλ,m)

u−
n1−2βµ̂′f ′(tλ,m)2

2nσ̂2
f ′(tλ,m)

u2 + o(n
3
2
−4βϕ−211,m)

= n1−2βϕ−111,m

{
−

µ̂′f ′(tλ,m)2u2

2nϕ−111,mσ̂
2
f ′(tλ,m)

− nβµ̂f ′(tλ,m)2u

nϕ−111,mσ̂
2
f ′(tλ,m)

}
+ o(1),

when n
3
2
−4βϕ−211,m = O(1).

Then we study the convergence of µn,m and σ2
n,m. According to Equations (9) and (10), we

have

|nβµ̂f ′(tλ,m)| . (log n)−a,
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|µ̂′f ′(tλ,m)− f ′′λ (tλ,m)| . n−β(log n)−a.

In view of Lemma 2, Assumption A2, and Assumption C, we obtain that µ̂′f ′(tλ,m) converges

to f ′′0 (tm), and thus is bounded away from zero and infinity for sufficiently large n. Therefore,

|µn,m| =
∣∣∣∣nβµ̂f ′(tλ,m)

µ̂′f ′(tλ,m)

∣∣∣∣ � |nβµ̂f ′(tλ,m)| . (log n)−a.

From Equation (11) we have∣∣∣∣nϕ−111,mσ̂
2
f ′(tλ,m)− σ2

∣∣∣∣ . n
1
2
−2β(log n)−1−aϕ−111,m.

Therefore,

∣∣∣∣σ2
n,m −

σ2

f ′′λ (tλ,m)2

∣∣∣∣ =

∣∣∣∣nϕ−111,mσ̂
2
f ′(tλ,m)

µ̂′f ′(tλ,m)2
− σ2

f ′′λ (tλ,m)2

∣∣∣∣
�
∣∣∣∣f ′′λ (tλ,m)2nϕ−111,mσ̂

2
f ′(tλ,m)− µ̂′f ′(tλ,m)2σ2

∣∣∣∣
.

∣∣∣∣f ′′λ (tλ,m)2
[
nϕ−111,mσ̂

2
f ′(tλ,m)− σ2

] ∣∣∣∣+

∣∣∣∣ [µ̂′f ′(tλ,m)2 − f ′′λ (tλ,m)2
]
σ2

∣∣∣∣
. n

1
2
−2β(log n)−1−aϕ−111,m + n−β(log n)−a

. n
1
2
−2β(log n)−

3
2ϕ−111,m. (S3)

On the other hand,∣∣∣∣ σ2

f ′′λ (tλ,m)2
− σ2

f ′′0 (tm)2

∣∣∣∣ � |f ′′0 (tm)2 − f ′′λ (tλ,m)2| . [f ′′0 (tm)− f ′′λ (tλ,m)] . (S4)

Since K ∈ C8(X ,X ), we have fλ ∈ C4(X ). Then the mean value theorem gives

f ′′0 (tm)− f ′′λ (tλ,m) = f ′′0 (tm)− f ′′λ (tm)− f ′′′λ (ξ)(tλ,m − tm).
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By Assumption C and Lemma 2 we have

|f ′′0 (tm)− f ′′λ (tλ,m)| . λr2 + λr1 ≤ 2λr. (S5)

Combining Equations (S3), (S4) and (S5), we obtain∣∣∣∣σ2
n,m −

σ2

f ′′0 (tm)2

∣∣∣∣ . λr.

This completes the proof.

A.5 Proof of Theorem 2

We first present a technical lemma and leave its proof to Section A.10.

Lemma S1. Suppose Assumption B1 holds and let λ = n−
1
2
+β(log n)

1
2
+a for some 1

4
< β < 1

2

and a > 0. Under event An, there exists C > 0 such that∣∣∣∣∣n− 1
2ϕ

1
2
11,m`(tλ,m)

/
exp

(
−n1−2βϕ−111,m

µ2
n,m

2σ2
n,m

)
− C

|f ′′0 (tm)|σ∗m

∣∣∣∣∣ . n
1
2
−2β(log n)−1−a.

For any x ≥ 0, define the error function as

Erf(x) =
2√
π

∫ x

0

e−t
2

dt.

By changing of variable, we have

∫ B

−A
a exp

(
−a2 (u+ b)2

c

)
du =

√
πc

2

[
Erf

(
a(A− b)√

c

)
+ Erf

(
a(B + b)√

c

)]
, (S6)

where a, c, A,B > 0 and b ∈ R.

A.5.1 Proof of (i)

The proof will follow three steps.
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Step 1: According to Theorem 1.3 in Devroye et al. (2018) and Lemma 2, we have that for

any z ∈ R,

∣∣∣∣ M∑
m=1

πmΦ(z | tλ,m, n−1ϕ11,mσ
∗2
m )−

M∑
m=1

πmΦ(z | tm, n−1ϕ11,mσ
∗2
m )

∣∣∣∣
≤ dTV

(
M∑
m=1

πmφ(· | tλ,m, n−1ϕ11,mσ
∗2
m ),

M∑
m=1

πmφ(· | tm, n−1ϕ11,mσ
∗2
m )

)

.
M∑
m=1

πm|tλ,m − tm| . λr1 = o(1),

where dTV is the total variation distance between two distributions. Thus, we only need to

show ∣∣∣∣Πn(t ≤ z | X,y)−
M∑
m=1

πmΦ(z | tλ,m, n−1ϕ11,mσ
∗2
m )

∣∣∣∣→ 0

for any z ∈ R in P0-probability.

Step 2: We work under the high probability event An henceforth in this proof, that is, all

convergence rates and bounding integrals only hold under An.

Define a sequence of functions

h̃n(t) =
M∑
m=1

`(tλ,m)φ̃n,m(t)π(tm), (S7)

where

φ̃n,m(t) = exp

(
− (t− tλ,m)2

2n−1ϕ11,mσ∗2m
+ n1−2βϕ−111,m

µ2
n,m

2σ2
n,m

)
.

In this step, we will prove that∣∣∣∣ ∫ z

−∞
`(t)π(t)dt−

∫ z

−∞
h̃n(t)dt

∣∣∣∣→ 0 (S8)

for any z ∈ R. That is, h̃n(t) approximates the unnormalized limit density where each

mixture component is properly rescaled. In line with the LAN condition (14), we expand
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h̃n(t) at t = tλ,m + u/nβ for m = 1, . . . ,M , transforming φ̃n,m(t) to

νn,m(u) = exp

(
n1−2βϕ−111,m

(
− u2

2σ∗2m
+

µ2
n,m

2σ2
n,m

))
.

We consider three cases for z: (1) z ≤ 0, (2) 0 < z ≤ 1, and (3) z > 1.

Case (1) (z ≤ 0). Since `(t) = 0 in R\[0, 1], the left hand side of Equation (S8) becomes

∫ z

−∞
h̃n(t)dt ≤

M∑
m=1

∫ z

−∞
`(tλ,m)φ̃n,m(t)π(tm)dt

=
M∑
m=1

∫
Ln,m

n−β`(tλ,m)νn,m(u)π(tm)du

where we let t = tλ,m+u/nβ and Ln,m = (−∞, (z−tλ,m)nβ]. By Lemma S1 and Equation (S6)

, we have

∫
Ln,m

n−β`(tλ,m)νn,m(u)π(tm)du .
∫
Ln,m

n
1
2
−βϕ

− 1
2

11,m exp

(
−n1−2βϕ−111,m

u2

2σ∗2m

)
du

=

√
πσ∗2m

2

[
1− Erf

(√
n(tλ,m − z)√
2σ∗2mϕ11,m

)]

. exp

(
−n(tλ,m − z)2

2σ∗2mϕ11,m

)
,

where we use the well known inequality that 1 − Erf(x) ≤ 2√
π
e−

x2

2 . Therefore, there holds

that for z ≤ 0, ∫ z

−∞
h̃n(t)dt .M exp

(
−n(tλ,1 − z)2

4σ∗2mϕ11,m

)
→ 0. (S9)

Case (2) (0 < z ≤ 1). Now the left hand side of Equation (S8) becomes∣∣∣∣ ∫ z

−∞
`(t)π(t)dt−

∫ z

−∞
h̃n(t)dt

∣∣∣∣ ≤ ∫ 0

−∞
h̃n(t)dt+

∣∣∣∣ ∫ z

0

`(t)π(t)dt−
∫ z

0

h̃n(t)dt

∣∣∣∣.
Taking z = 0 in Equation (S9) gives that

∫ 0

−∞ h̃n(t)dt→ 0. We next bound the second term.

We divide [0, 1] into M disjoint intervals (up to overlapping endpoints that do not affect
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estimates of integrals), each of which centering around tλ,m:

[0, 1] =
M⋃
m=1

In,m, In,m = [tλ,m − ξn,m−1, tλ,m + ξn,m], m = 1, . . . ,M,

where ξn,0 = tλ,1, ξn,m = (tλ,m+1 − tλ,m)/2 for m = 1, . . . ,M − 1, and ξn,M = 1 − tλ,M .

Suppose z ∈ In,m0 for some 1 ≤ m0 ≤M and let I ′n,m0
= [tλ,m0 − ξn,m0−1, z]. By the triangle

inequality, we have

∣∣∣∣ ∫ z

0

`(t)π(t)dt−
∫ z

0

h̃n(t)dt

∣∣∣∣ =

∣∣∣∣
(
m0−1∑
m=1

∫
In,m

+

∫
I′n,m0

)[
`(t)π(t)− h̃n(t)

]
dt

∣∣∣∣
≤

m0−1∑
m=1

∣∣∣∣ ∫
In,m

[
`(t)π(t)− `(tλ,m)φ̃n,m(t)π(tm)

]
dt

∣∣∣∣ (S10)

+

m0−1∑
m=1

∫
[0,z]\In,m

`(tλ,m)φ̃n,m(t)π(tm)dt (S11)

+

∣∣∣∣ ∫
I′n,m0

[
`(t)π(t)− `(tλ,m)φ̃n,m(t)π(tm)

]
dt

∣∣∣∣ (S12)

+

∫
[0,z]\I′n,m0

`(tλ,m)φ̃n,m(t)π(tm)dt. (S13)

Again, after changing of variable with t = tλ,m+u/nβ, each term in Equation (S10) becomes∣∣∣∣ ∫
In,m

[
`(t)π(t)− `(tλ,m)φ̃n,m(t)π(tm)

]
dt

∣∣∣∣
=

∣∣∣∣ ∫
Jn,m

[
`(tλ,m + u/nβ)π(tλ,m + u/nβ)− `(tλ,m)νn,m(u)π(tm)

]
n−βdu

∣∣∣∣
=

∣∣∣∣ ∫
Jn,m

n−β`(tλ,m)
[
Zn,m(u)π(tλ,m + u/nβ)− νn,m(u)π(tm)

]
du

∣∣∣∣,
where Zn,m(u) = `(tλ,m + u/nβ)/`(tλ,m) and Jn,m = [−nβξn,m−1, nβξn,m]. Applying the tri-

S10



angle inequality yields an upper bound of the preceding display:∣∣∣∣ ∫
Jn,m

n−β`(tλ,m)Zn,m(u)[π(tλ,m + u/nβ)− π(tm)]du

∣∣∣∣
+

∣∣∣∣ ∫
Jn,m

n−β`(tλ,m)[Zn,m(u)− νn,m(u)]π(tm)du

∣∣∣∣
= I1 + I2.

By Lemma S1 and Theorem 1, we have

I1 .

∣∣∣∣ ∫
Jn,m

n
1
2
−βϕ

− 1
2

11,m exp

(
−n1−2βϕ−111,m

µ2
n,m

2σ2
n,m

)
exp

(
n1−2βϕ−111,m

(
−(u+ µn,m)2

2σ2
n,m

+
µ2
n,m

2σ2
n,m

))
· [π(tλ,m + u/nβ)− π(tm)]du

∣∣∣∣
.

∣∣∣∣ ∫
Jn,m

n
1
2
−βϕ

− 1
2

11,m exp

(
−n1−2βϕ−111,m

(u+ µn,m)2

2σ2
n,m

)
[π(tλ,m + u/nβ)− π(tm)]du

∣∣∣∣
. |tλ,m − tm|

∫
Jn,m

n
1
2
−βϕ

− 1
2

11,m exp

(
−n1−2βϕ−111,m

(u+ µn,m)2

2σ2
n,m

)
du

+

∣∣∣∣ ∫
Jn,m

n
1
2
−2βϕ

− 1
2

11,mu exp

(
−n1−2βϕ−111,m

(u+ µn,m)2

2σ2
n,m

)
du

∣∣∣∣
= I11 + I12.

In view of Equations (15), (16), (S6), and Lemma 2, it follows that

I11 . |tλ,m − tm| ·
√

2πσ2
n,m . |tλ,m − tm| . λr1 ,
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and

I12 = n−β
∣∣∣∣ ∫

J ′n,m

n
1
2
−βϕ

− 1
2

11,mu exp

(
−n1−2βϕ−111,m

u2

2σ2
n,m

)
du

− µn,m
∫
J ′n,m

n
1
2
−βϕ

− 1
2

11,m exp

(
−n1−2βϕ−111,m

u2

2σ2
n,m

)
du

∣∣∣∣
. n−β

[
2

∫ nβ(ξn,m−1∨ξn,m)

0

n
1
2
−βϕ

− 1
2

11,mu exp

(
−n1−2βϕ−111,m

u2

2σ2
n,m

)
du

+|µn,m|
∫
Jn,m

n
1
2
−βϕ

− 1
2

11,m exp

(
−n1−2βϕ−111,m

(u+ µn,m)2

2σ2
n,m

)
du

]

. n−β
[
σ2
n,mϕ

1
2
11,m

(
1− exp

(
−n(ξn,m−1 ∨ ξn,m)2

2σ2
n,mϕ11,m

))
n−

1
2
+β + µn,m

√
2πσ2

n,m

]
.

√
ϕ11,m

n
∧ n−β,

where J ′n,m = [−nβξn,m−1 + µn,m, n
βξn,m + µn,m]. Hence, I1 . λr1 ∧

√
ϕ11,m

n
∧ n−β → 0 under

Assumption B2. By Lemma S1 and Theorem 1, we have

I2 .

∣∣∣∣ ∫
Jn,m

n
1
2
−βϕ

− 1
2

11,m exp

(
−n1−2βϕ−111,m

µ2
n,m

2σ2
n,m

)[
exp

(
n1−2βϕ−111,m

(
−(u+ µn,m)2

2σ2
n,m

+
µ2
n,m

2σ2
n,m

))
− exp

(
n1−2βϕ−111,m

(
− u2

2σ∗2m
+

µ2
n,m

2σ2
n,m

))
π(tm)

]
du

∣∣∣∣
=

∣∣∣∣ ∫
Jn,m

n
1
2
−βϕ

− 1
2

11,m

[
exp

(
−n1−2βϕ−111,m

(u+ µn,m)2

2σ2
n,m

)
− exp

(
−n1−2βϕ−111,m

u2

2σ∗2m

)]
du

∣∣∣∣
≤
∣∣∣∣ ∫

Jn,m

n
1
2
−βϕ

− 1
2

11,m

[
exp

(
−n1−2βϕ−111,m

(u+ µn,m)2

2σ2
n,m

)
− exp

(
−n1−2βϕ−111,m

u2

2σ2
n,m

)]
du

∣∣∣∣
+

∣∣∣∣ ∫
Jn,m

n
1
2
−βϕ

− 1
2

11,m

[
exp

(
−n1−2βϕ−111,m

u2

2σ2
n,m

)
− exp

(
−n1−2βϕ−111,m

u2

2σ∗2m

)]
du

∣∣∣∣
= I21 + I22.

Without loss of generality we assume µn,m ≥ 0. Then, combining Equations (15), (16) and
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(S6) gives that

I21 =

∣∣∣∣∣
√
πσ2

n,m

2

[
Erf

(
ξn,m−1n

1
2 − µn,mn

1
2
−β√

2σ2
n,mϕ11,m

)
+ Erf

(
ξn,mn

1
2 + µn,mn

1
2
−β√

2σ2
n,mϕ11,m

)]

−
√
πσ2

n,m

2

[
Erf

(
ξn,m−1n

1
2√

2σ2
n,mϕ11,m

)
+ Erf

(
ξn,mn

1
2√

2σ2
n,mϕ11,m

)] ∣∣∣∣∣
.

∣∣∣∣∣Erf

(
ξn,m−1n

1
2 − µn,mn

1
2
−β√

2σ2
n,mϕ11,m

)
− Erf

(
ξn,m−1n

1
2√

2σ2
n,mϕ11,m

)∣∣∣∣∣
+

∣∣∣∣∣Erf

(
ξn,mn

1
2 + µn,mn

1
2
−β√

2σ2
n,mϕ11,m

)
− Erf

(
ξn,mn

1
2√

2σ2
n,mϕ11,m

)∣∣∣∣∣
≤ µn,mn

1
2
−β · exp

(
−

ξ2n,m−1n

2σ2
n,mϕ11,m

)
+ µn,mn

1
2
−β · exp

(
−

ξ2n,mn

2σ2
n,mϕ11,m

)
. e−cnϕ

−1
11,m

for some c > 0. In view of Equations (16), (S6), and Theorem 1, we obtain

I22 =

∣∣∣∣
√
πσ2

n,m

2

[
Erf

(
ξn,m−1n

1
2√

2σ2
n,mϕ11,m

)
+ Erf

(
ξn,mn

1
2√

2σ2
n,mϕ11,m

)]

−
√
πσ∗2m

2

[
Erf

(
ξn,m−1n

1
2√

2σ∗2mϕ11,m

)
+ Erf

(
ξn,mn

1
2√

2σ∗2mϕ11,m

)] ∣∣∣∣ . |σ∗2m − σ2
n,m| . λr.

Therefore, I2 → 0.

Similarly, by changing of variable and Lemma S1, each term in Equation (S11) becomes

I3 =

∫
[0,z]\In,m

`(tλ,m)φ̃n,m(t)π(tm)dt

=

∫
Kn,m

n−β`(tλ,m)νn,m(u)π(tm)du

.
∫
Kn,m

n
1
2
−βϕ

− 1
2

11,m exp

(
−n1−2βϕ−111,m

µ2
n,m

2σ2
n,m

)
exp

(
n1−2βϕ−111,m

(
− u2

2σ∗2m
+

µ2
n,m

2σ2
n,m

))
du

=

∫
Kn,m

n
1
2
−βϕ

− 1
2

11,m exp

(
−n1−2βϕ−111,m

u2

2σ∗2m

)
du,
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where Kn,m = [−nβtλ,m,−nβξn,m−1] ∪ [nβξn,m, n
β(z − tλ,m)]. It then follows that

I3 . nβ · n
1
2
−βϕ

− 1
2

11,m exp

(
−n1−2βϕ−111,m

n2β(z − tλ,m)2

2σ∗2m

)
→ 0.

Following the same arguments, we can show that Equations (S12) and (S13) converge to

zero. This proves Equation (S8) for 0 < z ≤ 1.

Case (3) (z > 1). From Case (2) we can see that∣∣∣∣ ∫ 1

−∞
`(t)π(t)dt−

∫ 1

−∞
h̃n(t)dt

∣∣∣∣→ 0.

Note that `(t) = 0 in R\[0, 1]. Using similar arguments as in Case (1), it holds that∫ z
1
h̃n(t)dt→ 0, proving Equation (S8) for z > 1.

Step 3: We normalize h̃n(t) to a density

hn(t) =
h̃n(t)∫

R h̃n(t)dt
.

Note that Equation (S8) implies

∣∣∣∣ (∫
R
`(t)π(t)dt

)−1
−
(∫

R
h̃n(t)dt

)−1 ∣∣∣∣→ 0. (S14)

Hence, for any z ∈ R, we have∣∣∣∣ ∫ z

−∞
πn(t | X,y)dt−

∫ z

−∞
hn(t)du

∣∣∣∣ ≤ (∫
R
`(t)π(t)dt

)−1 ∣∣∣∣ ∫ z

−∞
`(t)π(t)dt−

∫ z

−∞
h̃n(t)dt

∣∣∣∣
+

∫ z

−∞

∣∣∣∣ (∫
R
`(t)π(t)dt

)−1
−
(∫

R
h̃n(t)dt

)−1 ∣∣∣∣h̃n(t)dt

→ 0, (S15)

where the last line follows from Equations (S8) and (S14).
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Rewrite h̃n(t) defined in Equation (S7) to

h̃n(t) =
M∑
m=1

π(tm)`(tλ,m) exp

(
n1−2βϕ−111,m

µ2
n,m

2σ2
n,m

)√
2πn−1ϕ11,mσ∗2mφ(t | tλ,m, n−1ϕ11,mσ

∗2
m ),

which is a linear combination of φ(t | tλ,m, n−1ϕ11,mσ
∗2
m ). Hence, the density function after

normalization is

hn(t) =
M∑
m=1

π̃n,mφ(t | tλ,m, n−1ϕ11,mσ
∗2
m ),

with weights

π̃n,m =
π(tm)`(tλ,m) exp

(
n1−2βϕ−111,m

µ2n,m
2σ2
n,m

)√
2πn−1ϕ11,mσ∗2m∑M

m=1 π(tm)`(tλ,m) exp
(
n1−2βϕ−111,m

µ2n,m
2σ2
n,m

)√
2πn−1ϕ11,mσ∗2m

=
π(tm)σ∗mn

− 1
2ϕ

1
2
11,m`(tλ,m)/ exp

(
−n1−2βϕ−111,m

µ2n,m
2σ2
n,m

)
∑M

m=1 π(tm)σ∗mn
− 1

2ϕ
1
2
11,m`(tλ,m)/ exp

(
−n1−2βϕ−111,m

µ2n,m
2σ2
n,m

)
=

π(tm)C|f ′′0 (tm)|−1 + cn,m∑M
m=1 π(tm)C|f ′′0 (tm)|−1 + cn,m

where the existence of sequences cn,m = O(n
1
2
−2β(log n)−1−a) is guaranteed by Lemma S1.

Hence, we arrive at

π̃n,m =
π(tm)|f ′′0 (tm)|−1∑M
m=1 π(tm)|f ′′0 (tm)|−1

+ c′n,m =: πm + c′n,m,

for some c′n,m = O(n
1
2
−2β(log n)−1−a). It then holds that

∣∣∣∣ ∫ z

−∞
hn(t)dt−

∫ z

−∞

M∑
m=1

πmφ(t | tλ,m, n−1ϕ11,mσ
∗2
m )dt

∣∣∣∣
≤

M∑
m=1

∫ z

−∞
|π̃n,m − πm|φ(t | tλ,m, n−1ϕ11,mσ

∗2
m )dt→ 0. (S16)

Combining Equations (S15) and (S16), we obtain that for any z,

EP0

∣∣∣∣ ∫ z

−∞
πn(t | X,y)dt−

∫ z

−∞

M∑
m=1

πmφ(t | tλ,m, n−1ϕ11,mσ
∗2
m )dt

∣∣∣∣1An → 0.

S15



This together with EP0(1Acn) = P0(A
c
n) ≤ n−10 gives that

∣∣∣∣Πn(t ≤ z | X,y)−
M∑
m=1

πmΦ(z | tλ,m, n−1ϕ11,mσ
∗2
m )

∣∣∣∣→ 0

for any z ∈ R in P0-probability. This completes the proof.

A.5.2 Proof of (ii)

Denote ζ0 = t1, ζm = 1
2
(tm+1 − tm), m = 1, . . . ,M − 1, ζM = 1− tM . Then,

[0, 1] =
M⋃
m=1

Im, Im = [tm − ζm−1, tm + ζm], m = 1, . . . ,M.

We first bound the unnormalized difference∣∣∣∣ ∫ z

−∞
`(t)1Im(t)π(t)dt−

∫ z

−∞
`(tλ,m)φ̃n,m(t)π(tm)dt

∣∣∣∣ (S17)

under An by considering three cases for z: (1) z ≤ tm − ζm−1, (2) tm − ζm−1 < z < tm + ζm,

and (3) z ≥ tm + ζm.

Case 1 (z ≤ tm − ζm−1). Since z /∈ Im, Equation (S17) becomes

∫ z

−∞
`(tλ,m)φ̃n,m(t)π(tm)dt =

∫ (z−tλ,m)nβ

−∞
`(tλ,m)νn,m(u)π(tm)du

.
∫ (z−tλ,m)nβ

−∞
n

1
2
−βϕ

− 1
2

11,m exp

(
−n1−2βϕ−111,m

u2

2σ∗2m

)
du

=

√
πσ∗2m

2

[
1− Erf

(√
n(tλ,m − z)√
2σ∗2mϕ11,m

)]

. exp

(
−n(tλ,m − tm − ζm−1)2

2σ∗2mϕ11,m

)
.

S16



Case 2 (tm − ζm−1 < z < tm + ζm). In this case, we consider∣∣∣∣ ∫ z

tm−ζm−1

[
`(t)π(t)− `(tλ,m)φ̃n,m(t)π(tm)

]
dt

∣∣∣∣
=

∣∣∣∣ ∫
Hn,m

[
`(tλ,m + u/nβ)π(tλ,m + u/nβ)− `(tλ,m)νn,m(u)π(tm)

]
n−βdu

∣∣∣∣
=

∣∣∣∣ ∫
Hn,m

n−β`(tλ,m)
[
Zn,m(u)π(tλ,m + u/nβ)− νn,m(u)π(tm)

]
du

∣∣∣∣
≤
∣∣∣∣ ∫

Hn,m

n−β`(tλ,m)Zn,m(u)[π(tλ,m + u/nβ)− π(tm)]du

∣∣∣∣
+

∣∣∣∣ ∫
Hn,m

n−β`(tλ,m)[Zn,m(u)− νn,m(u)]π(tm)du

∣∣∣∣
= I ′1 + I ′2,

where Hn,m = [(tm − tλ,m − ζm−1)nβ, (z − tλ,m)nβ]. Following similar arguments as used in

the proof of Part (i), it can be shown that I ′1 . λr1 and

I ′2 . µn,mn
1
2
−β · exp

(
−(z − tλ,m)2n

2σ2
n,mϕ11,m

)
.

Case 3 (z ≥ tm + ζm). Again, z /∈ Im and Equation (S17) becomes

∫ z

tm+ζm

`(tλ,m)φ̃n,m(t)π(tm)dt =

∫ (z−tλ,m)nβ

(tm−tλ,m+ζm)nβ
`(tλ,m)νn,m(u)π(tm)du

.
∫ ∞
(tm−tλ,m+ζm)nβ

n
1
2
−βϕ

− 1
2

11,m exp

(
−n1−2βϕ−111,m

u2

2σ∗2m

)
du

=

√
πσ∗2m

2

[
1− Erf

(√
n(tm − tλ,m + ζm)√

2σ∗2mϕ11,m

)]

. exp

(
−n(tm − tλ,m + ζm)2

2σ∗2mϕ11,m

)
.

Combining the three cases, we obtain that under An,∣∣∣∣ ∫ z

−∞
`(t)1Im(t)π(t)dt−

∫ z

−∞
`(tλ,m)φ̃n,m(t)π(tm)dt

∣∣∣∣ . λr1 ∨ n
1
2
−β · exp

(
−(z − tλ,m)2n

2σ2
n,mϕ11,m

)
.

Let Πn,m(· | X,y) be the posterior of t1Im . Following the same arguments as in part (i)
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again, we can show that∣∣∣∣Πn,m(t′ ≤ z | X,y)− Φ(z | tλ,m, n−1ϕ11,mσ
∗2
m )

∣∣∣∣ . λr1 ∨ n
1
2
−β · exp

(
−(z − tλ,m)2n

2σ2
n,mϕ11,m

)

in P0-probability.

By Lemma 2, we have |t̂m − bn − tλ,m| . n−β
√

log n ∨ n−β log n = n−β log n. Thus,∣∣∣∣Πn,m(t′ ≤ z | X,y)−Φ(z | t̂m−bn, n−1ϕ11,mσ
∗2
m )

∣∣∣∣ . λr1∨n
1
2
−β·exp

(
−(z − tλ,m)2n

2σ2
n,mϕ11,m

)
∨n−β log n.

Now we consider the posterior of
√

n
ϕ11,m

(t1Im(t) − t̂m + bn). By changing of variable, it

follows that∣∣∣∣Π′n,m(t′ ≤ z | X,y)− Φ(z | 0, σ∗2m )

∣∣∣∣
=

∣∣∣∣Πn,m

(
t′ ≤

√
ϕ11,m

n
z + t̂m − bn | X,y

)
− Φ

(√
ϕ11,m

n
z + t̂m − bn|t̂m − bn, n−1ϕ11,mσ

∗2
m

) ∣∣∣∣
. n

1
2
−β · exp

−(
√

ϕ11,m

n
z + t̂m − tλ,m − bn)2n

2σ2
n,1ϕ11,m


. n

1
2
−β · exp

{
−
(√

ϕ11,m

n
z ∨ (t̂m − tλ,m) ∨ bn

)2
n

2σ2
n,mϕ11,m

}

. n
1
2
−β · exp

{
− b2nn

2σ2
n,mϕ11,m

}
. n

1
2
−β · exp

{
−n

1−2β(log n)2

2σ2
n,mϕ11,m

}
→ 0.

This completes the proof.

A.6 Proof of Theorem 3

A.6.1 Proof of (i)

Let Fn(z) = Πn(t ≤ z | X,y) and Gn(z) =
∑M

m=1 πmΦ(z | tm, n−1ϕ11,mσ
∗2
m ). Note that

Gn(·) is a deterministic function, and its derivative G′n(·) is the density function of a Gaus-

sian mixture. The variance of each component distribution in Gn goes to zero in view of
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Assumption B2 and conditions in Theorem 2. For sufficiently large n, using the analytical

expression of G′n(·) and elementary calculus, we can show that G′n(·) has at least M local

modes, denoted by tm,G, such that tm,G → tm. On the other hand, G′n(·) cannot have more

than M local modes in view of Corollary 2.4 in Carreira-Perpinán and Williams (2003);

hence, {tm,1, . . . , tM,G} are the only local modes of G′n(·). For large enough n and each m,

we consider an interval (tm,G − δm, tm,G + δm) for some δm > 0 such that G′′n(z) > 0 when

z ∈ (tm,G − δm, tm,G) and G′′n(z) < 0 when z ∈ (tm,G, tm,G + δm).

By Theorem 2 (i), we have |Fn(z)−Gn(z)| → 0 for any z ∈ R in P0-probability. The following

arguments and conclusions in Step 1–4 hold with P0-probability tending to 1 because of this

convergence in P0-probability.

Step 1: We first show that there exists a tm,F in the neighborhood of tm,G such that

F ′′n (tm,F ) = 0, for m = 1, . . . ,M . Suppose F ′′n (z) 6= 0 for any z ∈ (tm,G − δm, tm,G + δm),

Without loss of generality we assume F ′′n (z) > 0 when z ∈ (tm,G − δm, tm,G + δm). Since

Gn(z) is concave on (tm,G, tm,G + δm),

Gn(tm,G + δm/2) > (Gn(tm,G) +Gn(tm,G + δm))/2 + ε, (S18)

for some ε > 0. Since Fn(z) is convex on (tm,G, tm,G + δm),

Fn(tm,G + δm/2) < (Fn(tm,G) + Fn(tm,G + δm))/2.

For sufficiently large n, it holds that with P0-probability tending to 1 |Fn(z)−Gn(z)| < ε/2

for z = tm,G, tm,G + δm/2, tm,G + δm. Therefore,

Gn(tm,G + δm/2) > (Fn(tm,G) + Fn(tm,G + δm))/2 + ε/2 > Fn(tm,G + δm/2) + ε/2,

which is a contradiction. This proves that there exists tm,F ∈ (tm,G − δm, tm,G + δm) such

that F ′′n (tm,F ) = 0.

Step 2: We show that tm,F → tm in P0-probability. Suppose there exists δ > 0 such that
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|tm,G−tm,F | > δ for any sufficiently large n. Without loss of generality we assume tm,G < tm,F

and F ′′n (z) < 0 when z ∈ (tm,F , tm,G + δm) and F ′′n (z) > 0 when z ∈ (tm,G − δm, tm,F ). Thus,

Gn is concave on (tm,G, tm,F ) while Fn is convex on (tm,G, tm,F ). This is a contradiction using

the same argument in Step 1. Combining this with tm,G → tm shows the convergence of

tm,F .

Step 3: In this step, we show that tm,F must be a local mode of F ′n(z). Suppose that

F ′′n (z) > 0 when z ∈ (tm,F , tm,G + δm) and F ′′n (z) < 0 when z ∈ (tm,G − δm, tm,F ), yielding

Fn(tm,F + δm/2) < (Fn(tm,F ) + Fn(tm,F + δm))/2.

For sufficiently large n, it holds with P0-probability tending to 1 that |Fn(z)−Gn(z)| < ε/4

for x = tm,G, tm,G + δm/2, tm,G + δm. Invoking Equation (S18),

Gn(tm,G + δm/2) > (Fn(tm,G) + Fn(tm,G + δm))/2 + 3ε/4.

For sufficiently large n, it holds with P0-probability tending to 1 that |Fn(z1)−Fn(z2)| < ε/4

for z1 = tm,G, z2 = tmF , z1 = tm,G+δm/2, z2 = tm,F +δm/2 and z1 = tm,G+δm, z2 = tm,F +δm.

Therefore,

Gn(tm,G + δm/2) > (Fn(tm,F ) + Fn(tm,F + δm))/2 + ε/2 > Fn(tm,F + δm/2) + ε/2.

However,

Gn(tm,G + δm/2) < Fn(tm,G + δm/2) + ε/4 < Fn(tm,F + δm/2) + ε/2,

which is a contradiction. This completes Step 3.

Step 4: In the last step, we show that the number of local modes of F ′n(z) is exactly

M . We have proven that F ′n(·) has at least M local modes. Suppose that there exists

tm′,F ∈ (0, 1) and δm′ > 0 such that tm′,F is a local mode of F ′n(z) and G′′n(z) 6= 0 for

z ∈ (tm′,F − δm′ , tm′,F + δm′) for any sufficiently large n. Without loss of generality assume
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G′′n(z) > 0 for z ∈ (tm′,F −δm′ , tm′,F +δm′). Thus, on (tm′,F −δm′ , tm′,F +δm′), Gn(z) is convex

while Fn(z) is concave. By similar arguments used in Step 1, we can obtain a contradiction.

Hence, the number of local modes of F ′n(·) is exactly M .

This completes the proof.

A.6.2 Proof of (ii)

By Taylor expansion of µ̂f ′ , we obtain

µ̂f ′(t) = µ̂f ′(tm) + (t− tm)µ̂′f ′(ξ)

for some ξ between t and tm. Since t̂m is a local extremum of µ̂f , there holds µ̂f ′(t̂m) = 0.

Substituting t = t̂m into the expansion above yields

µ̂f ′(tm) + (t̂m − tm)µ̂′f ′(ξ) = 0.

Lemma 1 and Assumption C ensure that µ̂′f ′(x)
p→ f ′′0 (x), and Lemma 2 implies that t̂m

p→ tm.

Therefore, µ̂′f ′(ξ)
p→ f ′′0 (tm), and thus µ̂′f ′(ξ) is bounded away from zero and infinity in view

of Assumption A3. It thus follows that

t̂m − tm = − µ̂f
′(tm)

µ̂′f ′(ξ)
.

Let ∆n(·) = K10(·, X)[K(X,X) + nλIn]−1f0(X). Conditioning on X, it holds that

µ̂f ′(tm) = K10(tm, X)[K(X,X) + nλIn]−1y

∼ N
(
∆n(tm), σ2K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T

)
.

Hence,
µ̂f ′(tm)−∆n(tm)

σ
√
K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T

∣∣∣∣X ∼ N(0, 1),
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which implies that

µ̂f ′(tm)−∆n(tm)

σ
√
K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T

∼ N(0, 1).

By Slutsky’s theorem, we obtain√
1

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T

[
t̂m − tm +

∆n(tm)

µ̂′f ′(tm)

]
d→

N
(
0, σ2f ′′0 (tm)−2

)
.

Note that

K10(t̂m, X)[K(X,X) + nλIn]−2K10(t̂m, X)T

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T
− 1

=
K10(t̂m, X)[K(X,X) + nλIn]−2(K10(t̂m, X)T −K10(tm, X))

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T

+
(K10(t̂m, X)T −K10(tm, X))[K(X,X) + nλIn]−2K10(tm, X))

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T
.

Consider the eigendecomposition of K(X,X) = QnΛnQ
T
n , where Λn = diag(u1, . . . , un) and

QT
n = Q−1n . Denote (p1, . . . , pn) = K10(tm, X)Qn, likewise (q1, . . . , qn) = K10(t̂m, X)Qn.

Then

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T = K10(tm, X)QnΛ−2n QT
nK10(tm, X)

=
∞∑
i=1

p2i
(ui + nλ)2

.

By the Cauchy–Schwarz inequality, we have

K10(t̂m, X)[K(X,X) + nλIn]−2(K10(t̂m, X)T −K10(tm, X))

=
∞∑
i=1

qi(qi − pi)
(ui + nλ)2

≤

√√√√ ∞∑
i=1

q2i
(ui + nλ)2

∞∑
i=1

(qi − pi)2
(ui + nλ)2

.
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Since K10(t̂m, Xi)−K10(tm, Xi)
p→ 0 uniformly for 1 ≤ i ≤ n, we have

∞∑
i=1

q2i
(ui + nλ)2

/ ∞∑
i=1

p2i
(ui + nλ)2

p→ 1

and
∞∑
i=1

(qi − pi)2

(ui + nλ)2

/ ∞∑
i=1

p2i
(ui + nλ)2

p→ 0.

Hence, it follows that

K10(t̂m, X)[K(X,X) + nλIn]−2(K10(t̂m, X)T −K10(tm, X))

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T
p→ 0.

Similarly, it can be shown that

(K10(t̂m, X)T −K10(tm, X))[K(X,X) + nλIn]−2K10(tm, X))

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T
p→ 0.

Therefore,
K10(t̂m, X)[K(X,X) + nλIn]−2K10(t̂m, X)T

K10(tm, X)[K(X,X) + nλIn]−2K10(tm, X)T
p→ 1.

Recall that µ̂′f ′(t̂m)
p→ f ′′0 (tm). Therefore, by Slutsky’s theorem again, we arrive at

σ|µ̂′f ′(t̂m)|√
K10(t̂m, X)[K(X,X) + nλIn]−2K10(t̂m, X)T

[
t̂m − tm +

∆n(tm)

µ̂′f ′(tm)

]
d→ N (0, 1) .

Hence, an asymptotic 1− α confidence interval of tm + ∆n(tm)/f ′′0 (tm) is

t̂m ± zα/2
σ
√
K10(t̂m, X)[K(X,X) + nλIn]−2K10(t̂m, X)T

|µ̂′f ′(t̂m)|
.

This completes the proof.
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A.7 Proof of Theorem 4

For any j, l ≤ s, we have

|Kα,s
jl (x, x′)| =

∣∣∣∣ ∞∑
i=1

µiψ
(j)
i (x)ψ

(l)
i (x′)

∣∣∣∣ . ∞∑
i=1

i−2α+j+l,

which is finite when α > j+l+1
2

. Thus, Assumption B1 holds when s ≥ 4 and α > 9/2.

According to Lemma 11 in Liu and Li (2023), when α > j+l+1
2

, we have

sup
x∈X
|ϕjl(x)| = sup

x∈X

∣∣∣∣ ∞∑
i=1

µi
λ+ µi

ψ(j)(x)ψ(l)(x)

∣∣∣∣ . ∞∑
i=1

µii
j+l

µi + λ
� λ−

j+l+1
2α .

Hence, Assumption B2 is satisfied when α > 3. In view of Lemma 1, Lemma 11 and

Lemma 13 in Liu and Li (2023), when α > k + 1/2, we have

‖f (k)
λ − f

(k)
0 ‖∞ . λ

1
2
− k

2α .

This verifies Assumption C with r1 = α−1
2α

, r2 = α−2
2α

when α > 5/2. Finally, by Assumption

E we have ϕ11(x) =
∑∞

i=1
µi

λ+µi
ψ′i(x)2 → ∞ as λ → 0. Thus, a sufficient condition for the

boundedness of n
3
2
−4βϕ−211,m in Theorem 1 and 2 is n

3
2
−4β = O(1), which implies that β ≥ 3

8
.

This completes the proof.

A.8 Proof of Lemma 3

Let f0 =
∑∞

i=1 fiψi. Then, for any k ≤ s,

f
(k)
λ − f

(k)
0 = −

∞∑
i=1

λ

λ+ µi
fiψ

(k)
i .

Hence,

‖f (k)
λ − f

(k)
0 ‖∞ ≤

∞∑
i=1

λ

λ+ µi
|fi| · ik . λ

1
2
− k

2eγ

∞∑
i=1

λ
1
2
+ k

2eγ · e−γiik

λ+ e−2γi
eγi|fi|.
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Note that ik ≤ e
ki
e , then by Young’s inequality for products, we have

λ
1
2
+ k

2eγ · e−γiik ≤ λ
1
2
+ k

2eγ · e(
k
e
−γ)i ≤

(
1

2
+

k

2eγ

)
λ+

(
1

2
− k

2eγ

)
e−2γi ≤ λ+ e−2γi.

Therefore, ‖f (k)
λ − f

(k)
0 ‖∞ . λ

1
2
− k

2eγ
∑∞

i=1 e
γi|fi| . λ

1
2
− k

2eγ . This completes the proof.

A.9 Proof of Theorem 5

It is easy to see that Kγ,s ∈ C8(X ,X ) for any γ > 0 and s ≥ 4; thus Assumption B1 is

satisfied.

Note that

sup
x∈X
|ϕjl(x)| =

∣∣∣∣ ∞∑
i=1

µi
λ+ µi

ψ
(j)
i (x)ψ

(l)
i (x)

∣∣∣∣ . ∞∑
i=1

e−2γiij+l

λ+ e−2γi
≤ e−2γie

(j+l)i
e

λ+ e−2γi
.

By Young’s inequality for products, when 2eγ > j + l we have

λ
j+l
2eγ · e−2γi+

(j+l)i
e ≤

(
1− j + l

2eγ

)
λ+

(
j + l

2eγ

)
e−2γi ≤ λ+ e−2γi.

Hence, ϕjl . λ−
j+l
2eγ for 2eγ > j+ l and Assumption B2 holds for γ > 5

2e
. In view of Lemma 3,

we have Assumption C satisfied with r1 = r2 = eγ−2
2eγ

and γ > 2
e
.

Finally, since λ = o(1), we have ϕ−211,m = o(1) under Assumption E. Thus, a sufficient

condition for the boundedness of n
3
2
−4βϕ−211,m is β ≥ 3

8
. This completes the proof.

A.10 Proof of Lemma S1

The likelihood function (5) gives

n−
1
2ϕ

1
2
11,m`(tλ,m) =

C√
nϕ−111,mσ̂

2
f ′(tλ,m)

exp

(
− µ̂f

′(tλ,m)2

2σ̂2
f ′(tλ,m)

)

=
C√

nϕ−111,mσ̂
2
f ′(tλ,m)

exp

(
−n1−2βϕ−111,m

µ2
n,m

2σ2
n,m

)
,
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where µn,m and σ2
n,m are defined in Theorem 1. Note that

∣∣∣∣ 1√
nϕ−111,mσ̂

2
f ′(tλ,m)

− 1

|f ′′0 (tm)|σ∗m

∣∣∣∣ � ||f ′′0 (tm)|σ∗m −
√
nϕ−111,mσ̂

2
f ′(tλ,m)|

� |f ′′0 (tm)2σ∗2m − nϕ−111,mσ̂
2
f ′(tλ,m)|.

Substituting f ′′0 (tm)2σ∗2m = σ2 into the right side yields∣∣∣∣f ′′0 (tm)2σ∗2m − nϕ−111,mσ̂
2
f ′(tλ,m)

∣∣∣∣ =

∣∣∣∣nϕ−111,mσ̂
2
f ′(tλ,m)− σ2

∣∣∣∣ . n
1
2
−2β(log n)−1−a.

This completes the proof.

B Additional simulation results

B.1 Effect of noise standard derivation and credible level

We carried out additional experiments to investigate the effect of noise standard derivation

and credible levels 1 − α. We used the same regression function shown in the paper and

generated more noisy data by increasing the noise standard deviation σ from 0.1 to 0.2.

As expected, results worsen, particularly for smaller sample sizes. This is because the GP

tends to produce more wiggly curves. For example, looking at the percentages of correctly

estimating M for α = .05, calculated over 100 replicated datasets, we observed the following

results: for n = 100 we obtained 19% and 85% for Beta (1,1) and Beta(2,3), respectively,

versus 47% and 86% of Figure 3 in the paper; for n = 500 we obtained 52% and 94% for

Beta (1,1) and Beta(2,3), respectively, versus 95% and 99% for σ = 0.1. We notice that,

as already shown in the main simulation, the Beta(2, 3) prior and larger sample sizes help

identifying the correct number of local extrema.

Next, we used this additional simulation study to investigate the performance of HPDR for

different values of α. Results for sample sizes n = 100, n = 500 and n = 1000 and the two

Beta priors are reported in the two tables below. For each combination of prior and sample

size, we generated 100 simulated datasets.
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Table S1: Beta(1, 1). Percentages of correctly estimated number of t’s. The results are
calculated on 100 simulated data.

Beta(1, 1) α = 0.001 α = 0.005 α = 0.01 α = 0.03 α = 0.05 α = 0.1

n = 100 56% 53% 51% 18% 19% 35%
n = 500 25% 32% 34% 43% 52% 60%
n = 1000 27% 35% 44% 57% 76% 84%

Table S2: Beta(2, 3). Percentages of correctly estimated number of t’s. The results are
calculated on 100 simulated data.

Beta(2, 3) α = 0.001 α = 0.005 α = 0.01 α = 0.03 α = 0.05 α = 0.1

n = 100 87% 88% 88% 86% 85% 77%
n = 500 95% 96% 95% 95% 94% 89%
n = 1000 95% 95% 96% 94% 94% 95%

In this additional study, we observed that increasing values of α did not necessarily cor-

respond to larger estimated numbers of local extrema. This is because situations like the

one shown in Figure S1 can occur. Therefore, larger or smaller α values do not necessarily

imply more or fewer separated HPDR segments. Overall, results confirm the fairly robust

estimation performance of the Beta(2,3) prior in estimating M .

B.2 Highly fluctuated regression function with large M

Upon suggestion from one of the reviewers, we performed a new simulation using the re-

gression function sin(kπx) for x ∈ [0, 1], and assessed how the estimated number of local

extrema converges to the true M . We considered k = 10 and k = 100 with varying n;

with this regression function, the true number of local extrema is M = k. Other simulation

configurations mirrored the main paper’s setup, including the noise standard deviation, ob-

served x values, and the number of replications. The proposed method is implemented using

the same settings as in the simulation study in the main paper, unless otherwise stated.

We observe that when k = 10, our method is able to correctly estimate M 77% of the time

even with sample size as small as 30. This percentage increases steadily to (93%, 99%, 100%)

as n increases to (200, 300, 500), respectively.
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Figure S1: Effect of α on the estimated number of local extrema. The posterior density
function is based on one simulated dataset with n = 100.

When k = 100, M is correctly estimated only 4% of the time when n = 300 (compared

to 99% when k = 10), indicating the challenge of large k = 100. We have looked into

this challenging scenario and found that for this highly fluctuated function, even simpler

tasks such as function estimation become challenging. For example, the model struggles to

distinguish between a highly fluctuated function and a flat function when n = 300, which

is not surprising as indicated in the top plot of Figure S2. This has prompted us to find

an effective strategy for this challenging function in which we incorporate the shape of the

function into guided hyperparameter tuning. If we have prior knowledge that there are many

local extrema, we can confine the hyperparameter searching space, ruling out some basins

of the marginal likelihood that do not result in the regression shape being interested. For

example, setting the upper bound when searching for (h, λ) to (0.1, 0.0001) as opposed to

(10000, 10000) used in our default implementation, leads to the results reported in Table S3,

which show a substantially improved estimation of M . For example, the proposed method

can estimate the correct value of M with n = 300 in all 100 simulations. The posterior

distribution of t in one simulation when k = 100 is shown in Figure S2. In this simulation,
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which is typical across 100 replications, our method correctly identifies the number and

location of 100 local extrema. We acknowledge that prior information on the shape of the

unknown function might not always be available.

70-79 80-89 90-99 100 > 100
n = 200 18 76 6 0 0
n = 225 0 1 14 85 0
n = 250 0 0 0 99 1
n = 300 0 0 0 100 0

Table S3: Frequency of M̂ falling in each interval when k = 100. Results are based on 100
repeated simulations.

Figure S2: Data (top) and the posterior density of t (bottom) when f(x) = sin(100πx) (red

curve in the top plot). Results are based on one simulated dataset with sample size n = 300.
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