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Abstract:10

Infrared scattering-type near-field optical microscopy, IR s-SNOM, and its broadband variant,11

nano-FTIR, are pioneering, flagship techniques for their ability to provide molecular identification12

and material optical property information at a spatial resolution well below the far-field diffraction13

limit, typically less than 25 nm. While s-SNOM and nano-FTIR instrumentation and data14

analysis have been discussed previously, there is a lack of information regarding experimental15

parameters for the practitioner, especially in the context of previously developed frameworks.16

Like conventional FTIR spectroscopy, the critical component of a nano-FTIR instrument is17

an interferometer. However, unlike FTIR spectroscopy, the resulting interference patterns18

or interferograms are typically asymmetric. Here, we unambiguously describe the origins19

of asymmetric interferograms recorded with nano-FTIR instruments, give a detailed analysis20

of potential artifacts, and recommend optimal instrument settings as well as data analysis21

parameters.22

1. Introduction23

Infrared spectroscopy has been dominated by Fourier-transform (FT) instruments shortly after24

the first commercial FTIR spectrometer appeared on the market in the 1960s. [1] Seminal works25

of Fellgett [2] and Jacquinot [3] established the advantages of spectroscopic interferometry26

over grating instruments and led to a general layout where the radiation probing the sample is27

conditioned by first passing through an interferometer; in modern instruments, most frequently28

using a configuration introduced by Michelson and Morely, a.k.a. the Michelson interferometer. [4]29

Today, such Fourier-transform infrared instruments are ubiquitous in both industrial and scientific30

settings and contribute to a plethora of research. They provide easy access to rotational, vibrational31

and electronic absorption spectra. However, to determine complex value functions, e.g., the32

complex refractive index (�̃�), one needs to apply the Kramers-Kronig transformation, [5,6] which33

require low- and high-energy extrapolations as the integrals are formulated from zero to infinity.34

In the 1960s, an alternative method, called Dispersive Fourier Transform Spectroscopy (DFTS),35

was developed to more directly determine complex optical functions, achieved by placing the36

sample inside the interferometer (Fig. 1). [7, 8] This asymmetric Michelson interferometric37

approach was further developed through the late 1980s [9–11], but it was never commercialized38

due to technical limitations at the time, [12] as well as a relatively limited commercial gain over39

existing solutions.40

Both FTIR and DFTS instruments measure a real-value dataset: the detector intensity as a41

function of the optical path difference (OPD) of the two interferometer mirrors. The resulting42

interferogram is subsequently Fourier-transformed to yield a complex-value dataset. In FTIR the43

phase is not related to the sample and reflects the interferometer’s characteristics (inaccuracies of44

optical elements, misalignment, beamsplitter dispersion) and sampling inaccuracies. Most often,45

the phase interferogram is used to maximize the amplitude algorithmically. [1] In contrast, the46



Fig. 1. Schematics of the arrangement (a) conventional FTIR and (b) DFTS setups. In
the case of simple FTIR the sample is located after the interferometer, while in the case
of DFTS the sample is inserted in the arm with the fixed mirror. Reflective samples can
replace the fixed mirror completely (like in b), while in transmission mode the sample
is inserted between the fixed mirror and the beamsplitter.

phase spectrum in DFTS, where the light passes through the sample inside the interferometer47

and thus suffers a particular phase shift, carries information about the sample. By using the48

amplitude and phase information, DFTS instruments can directly measure the complex dielectric49

response of a material.50

Although DFTS was never commercialized, another IR microscopy technique, scattering-type51

Scanning Near-field Optical Microscopy (s-SNOM), uses the same asymmetric Michelson52

arrangement and has achieved commercial success. This technique enables infrared spectroscopic53

measurements at the nanoscale, with a spatial resolution of several orders of magnitude better54

than diffraction-limited, far-field infrared techniques.55

1.1. Scattering SNOM and nano-FTIR56

A typical s-SNOM setup consists of an infrared source and an atomic force microscope (AFM)57

located within an asymmetric Michelson interferometer. In this case, the fixed mirror is replaced58

by the ensemble of a focusing mirror, the AFM tip, and the sample, as depicted in Fig. 2. Light59

enters the interferometer and the beamsplitter directs half the light to the moving reference mirror60

while the other half is focused onto the apex of the AFM tip. When the sample is brought into61

close proximity of the tip, the optical fields locally interact in the near field and cause scattering62

that can be detected in the far field. The scattered light is collected by the same focusing mirror63

and recombined with the light from the reference mirror before being measured by an infrared64

detector. The interaction volume is defined by the AFM tip sharpness, and is usually on the order65

of tens of nanometers, allowing spatial resolution well beyond the far-field diffraction limit.66

Fig. 2. Schematic representation of a s-SNOM setup.



To separate the weak near-field scattering from the intense background scattering, s-SNOM67

measurements combine higher harmonic demodulation and interferometric signal amplification.68

The AFM operates in tapping mode to modulate the scattering amplitude and the detector69

signal is demodulated at harmonics of the tip oscillation frequency (nΩ). Because the near-field70

interaction is non-linear with sample distance, higher harmonic detection leads to suppression of71

the far-field scattered light, which is nominally linear with sample distance. Additionally, mixing72

the back-scattered light (𝐸𝑁 ) with the beam from the reference mirror of the interferometer (𝐸𝑅)73

results in signal level enhancement by 𝐸𝑁𝐸𝑅 and phase modulation in the interference term.74

With monochromatic illumination, the reference mirror movement is typically modulated at a75

fixed frequency in a pseudo-heterodyne detection scheme that further suppresses background and76

extracts the amplitude and phase of the near-field scattering [13]. For broad-band illumination,77

the reference mirror is moved linearly over a fixed distance and the demodulated signal is78

recorded as a function of mirror position to collect an interferogram. The subsequent nano-FTIR79

interferogram is then Fourier-transformed to yield the amplitude and the phase of the scattered80

light. [14]81

Here, we will discuss the analogies between DFTS and s-SNOM and unambiguously explain82

the origin and practical consequences of the recorded asymmetric interferogram.83

2. Origin of the asymmetry84

In a Michelson interferometer, the beamsplitter divides the incoming beam in two (we consider85

an ideal 50:50 beamplitter). Considering broadband illumination, the incoming collimated86

beam contains a broad range of wavelength components. The interferogram is the sum of the87

interference patterns of the individual wavelength components. First, let us consider a single88

wavelength component. Its electric field is described as89

E(r, 𝑡) = E0 exp [𝑖(Φ𝑟 (𝑘) + k · r − 𝜔𝑡)] . (1)

The part of the beam that is directed to the reference arm of the interferometer is reflected back90

by a moving mirror and written as91

E𝑅 (r, 𝑡) =
1
2

E0 exp [𝑖(Φ𝑟 (𝑘) + k · r − 𝜔𝑡 + 𝑘 · 𝛿)] , (2)

where 𝛿/2 is the displacement of the moving mirror from the zero path difference position of the92

two arms and Φ𝑟 (𝑘) is a random initial phase for each wavelength component.93

In the asymmetric setup, the sample is located in the stationary interferometer arm. The94

interaction of the light with the sample is described by the complex insertion loss in DFTS95

and formulated as 𝐿 (𝑘) exp [Φ𝐿 (𝑘)]. The exact expression of the insertion loss depends on the96

interaction that influences the backward propagation of the electromagnetic field in this arm. For97

s-SNOM, the dominant effect is the back-scattering, originating from the tip-sample interaction.98

The scattered field from the sample arm is99

E𝑆 (r, 𝑡) =
1
2

E0𝐿 (𝑘) exp [𝑖(Φ𝑟 (𝑘) + k · r − 𝜔𝑡 +Φ𝐿 (𝑘))] . (3)

Note, that the initialΦ𝑟 (𝑘) random phase remains the same in both arms because the Michelson100

interferometer with an ideal beamsplitter realizes only amplitude division. Finally, the split101

beams recombine, and the electric field at the detector can be written as102

E𝐷 (𝑟, 𝑡) = 𝑔(𝑘, 𝑥) exp [𝑖(k · r − 𝜔𝑡)], (4)

where103

g(𝑘, 𝑥) = 1
2

E0 (𝑘) (𝐿 (𝑘) exp [𝑖Φ𝐿 (𝑘)] + exp [𝑖𝑘𝛿]) . (5)



The detector intensity is proportional to E𝐷E∗
𝐷 , which leads to104

𝐼𝐷 (𝑘, 𝛿) = 1
4
[1 + 𝐿2 (𝑘)]E0 (𝑘)E∗

0 (𝑘) +
1
2
𝐿 (𝑘) cos [Φ𝐿 (𝑘) − 𝑘𝛿]E0 (𝑘)E∗

0 (𝑘). (6)

Here, the second term describes the interference and it is recorded as the mirror is moving105

(changing 𝛿). The amplitude of the recorded cosine interferogram is set by the amplitude 𝐿 (𝑘)106

of the loss function, while its phase is controlled by the phase shift Φ𝐿 (𝑘).107

For incoherent, broadband illumination, the full interferogram is the incoherent sum of all the108

individual cosine interferograms of each wavelength component.109

𝐼𝐷 (𝛿) =
∞∫

−∞

𝐼𝐷 (𝑘, 𝛿) 𝑑𝑘 = (7)

∞∫
−∞

1
4
[1 + 𝐿2 (𝑘)] 𝐼0 (𝑘) 𝑑𝑘 +

∞∫
−∞

1
2
𝐿 (𝑘)𝐼0 (𝑘) cos [Φ𝐿 (𝑘) − 𝑘𝛿] 𝑑𝑘, (8)

where 𝐼0 (𝑘) = E0 (𝑘)E∗
0 (𝑘) is the intensity of the incoming radiation. The first term of Eq. 8110

is independent of the reference mirror position 𝛿 and thus gives only a constant offset to the111

interferogram. The varying part of the interferogram which contains information is the second112

term. From Eq. 8, we see that 𝐿 (𝑘) changes the amplitude while Φ𝐿 (𝑘) shifts each component113

compared to the ZPD position. This results in a significant change in the shape of the full114

interferogram. In the end, we see that the complex insertion loss �̂� (𝑘) = 𝐿 (𝑘) ·exp 𝑖Φ𝐿 (𝑘) drives115

the asymmetry. The exact formula for the insertion loss is defined by the physical interaction116

between the sample and the incoming light. We showcase the effect of insertion loss on the117

interferogram in Fig. 3.118
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Fig. 3. Comparison of symmetric (conventional FTIR) and asymmetric (DFTS) interfer-
ograms. It considers a reflective half-infinite SiC mirror placed after the interferometer
(symmetric) or in the interferometer, replacing the fixed mirror (asymmetric)

In the following, we consider a DFTS arrangement with a SiC sample in the position of119

the fixed mirror. The loss function in this case is defined as the Fresnel reflection coefficient.120

For the sake of simplicity, we assume normal incidence, thus the insertion loss becomes121

�̂� (𝑘) = 𝑟 (𝑘) = (𝑛𝑆𝑖𝐶 (𝑘) − 1)/(𝑛𝑆𝑖𝐶 (𝑘) + 1). Using (8) and ignoring the DC part of the signal,122

we get the highly asymmetric interferogram shown as the red curve of Fig. 3.123

From Fig. 3, we see that the asymmetry modifies the positive pathlength difference part of124

the interferogram. The reason for this is that physical processes like scattering, reflection, and125

emission always induce a positive phase shift due to causality.126



In DFTS interferograms the asymmetry contains information about the sample’s complex127

optical properties, while in conventional FTIR, the phase spectrum (phase of the Fourier transform128

of the interferogram) does not tell anything about the sample.129

The insertion loss of a sample can be retrieved through a reference measurement as follows:

�̂� (𝑘) =
∞∫

−∞

𝐼𝑆 (𝛿) exp (2𝜋𝑖𝑘𝛿) 𝑑𝛿/
∞∫

−∞

𝐼𝑅 (𝛿) exp (2𝜋𝑖𝑘𝛿) 𝑑𝛿 (9)

= 𝐹𝑇 (𝐼𝑆 (𝛿))/𝐹𝑇 (𝐼𝑅 (𝛿)), (10)

where the subscripts S and R stand for sample and reference, respectively.130

Furthermore, if the complex insertion loss is linearly related to the optical functions of the131

sample, DFTS provides a direct measurement.132

2.1. Nano-FTIR interferograms133

We can explain the nano-FTIR interferogram in the framework of DFTS presented above. The134

key is to find the insertion loss that describes the scattering of the tip-sample ensemble. The135

calculation of the amplitude and phase of the back-scattered light can be done in different ways136

as numerous theoretical methods have been used to approximate the solution of the scattering137

problem. [15–23] A widely used and easily implementable tip-sample interaction model, the138

so-called finite dipole model (FDM) treats the problem with a quasi-electrostatic approach and139

describes the main characteristics of the scattering almost quantitatively. [21]140

The main quantity that we are looking for is the complex scattering coefficient 𝜎(𝑘) which141

relates the incoming and the back-scattered fields by 𝐸𝑠 = 𝜎(𝑘)𝐸𝑖𝑛𝑐. The FDM model provides142

a closed-form solution for the scattering coefficient. [21] 𝜎 inherits its wavelength dependence143

from the dielectric function of the sample. As 𝜎 characterizes the backward propagating optical144

field, it can be used as the insertion loss we were looking for.145

In a real measurement, however, the acquired signal is not directly proportional to the scattering146

coefficient. The detected signal contains a significant background component hindering the147

tip-scattered light originating from the near-field interaction. To retrieve the pure near-field148

signal, the AFM works in tapping mode vibrating the tip at frequency Ω. Then, the acquired149

time-dependent signal is then demodulated at higher harmonics 𝑛Ω. To gather a similar quantity150

from the FDM model, we implement the modulation for the scattering coefficient 𝜎. Then,151

similarly to the real measurement by demodulating the time-dependent signal at the 𝑛th harmonic152

of Ω, we get 𝜎𝑛.153

By using the FDM model to derive 𝜎𝑛 (𝑘) and substituting it for the insertion loss we can154

calculate the nano-FTIR interferograms and assess their asymmetry. To showcase the effect155

of different material responses we created a dielectric function to model theoretical material156

possessing three typical excitation types in the mid-infrared spectral range. We used this to157

calculate the amplitude and phase of the 2nd harmonic scattering coefficient. This dielectric158

function and the scattering spectrum can be viewed in Fig. S1. At around zero frequency, we159

added a typical Drude excitation, at 800 cm−1 a surface polariton excitation, and at 1423 cm−1
160

we imitate a simple vibrational excitation where the real part of the dielectric function remains161

positive.162

For a Lorentzian oscillator with only positive real values, the scattering phase follows the163

shape of the imaginary part of the dielectric function. This is usually the case of weak molecular164

vibrations. The phase of the scattering signal is sensitive and grows large when the real part of165

the dielectric function falls below zero, which is typical for collective excitations like surface166

polaritons. This sensitivity makes s-SNOM ideal to study surface excitations, which is shown167

by the numerous publications from studies on plasmons in graphene and carbon nanotubes to168

phonons in polar dielectrics [24–31].169
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Fig. 4. Model interferograms based on Eq. 8, composed of different terms from the
model dielectric function to determine the scattering coefficient using FDM model.

Based on Eq. 8, the stronger and broader the scattering phase spectrum, the more asymmetry170

will appear in the interferogram. To provide insight into this statement, in Fig. 4 we present the171

calculated interferograms for theoretical materials exhibiting only one of the above-mentioned172

excitations at a time. Fig. 4 shows how the broad Drude peak introduces pronounced asymmetry173

with a fast decay of the interferogram while the similarly strong, but narrower Lorentzian peak174

introduces a much longer-lasting interferogram for the positive path lengths. With the weak175

oscillator, the asymmetry is not that clear as the phase shift is small and concentrated only to a176

few wavelengths.177

3. Model validation178

To validate our description of the interferograms, we modeled and measured the nano-FTIR179

interferogram of 300 nm SiO2 layer on top of silicon. The broadband s-SNOM measurements180

were done at the SMIS beamline of the SOLEIL synchrotron, the French national synchrotron181

facility, with a commercial s-SNOM manufactured by Attocube system AG (Haar, Germany).182

The incident synchrotron radiation was split by a ZnSe beamsplitter and the transmitted beam was183

focused on the apex of a platinum-coated AFM tip by an off-axis parabolic mirror. The reflected184

part of the beam entered the reference arm with the moving mirror actuated by a piezo stage185

capable of moving 800 `𝑚. We recorded the full interferogram of the thermally grown SiO2186

layer using the full range of the piezo actuator acquiring 2048 points which resulted in 0.39 `m187

spatial sampling. The integration time for each pixel was 13 ms and the tapping amplitude of the188

tip was set to 100 nm. Data was recorded for higher-harmonics up to the 4th order but in the189

following, we use 2nd harmonic near-field signals in our analysis.190

For modeling, we used FDM as described above to calculate the second harmonic demodulated191

amplitude and phase spectrum to derive the interferograms. The dielectric function for the192

SiO2 layer was obtained from the literature model reported by Kischkat et al. [32]. Fig. S2193

renders the dielectric function and the second harmonic amplitude and phase spectra that was194

used in the interferogram calculation. The DFTS insertion loss is defined as 𝐿𝑛 (𝑘) = 𝜎𝑛 (𝑘) =195

𝑠𝑛 (𝑘) exp [𝑖𝜑𝑛 (𝑘)], where 𝑠𝑛 (𝑘) = 𝑠𝑛,𝑆𝑖𝑂2/𝑠𝑛,𝐴𝑢 and 𝜑𝑛 (𝑘) = 𝜑𝑛,𝑆𝑖𝑂2 − 𝜑𝑛,𝐴𝑢, because all the196

data in the measurements were normalized to a reference measurement on gold. In all of our197



studies, both calculated and measured amplitude and phase values were normalized to that of198

gold substrates. We expect a definite asymmetry with moderate decay caused by the broad,199

intense phase peak ranging from around 1100 cm−1 to 1500 cm−1 originating from the phonon200

band of the SiO2.201

Our calculations describe the corresponding measurements nearly perfectly. Fig. 5 shows the202

comparison of the model result (black) and the measured interferogram (red). The interferogram203

was calculated by Eq. 8 using the second harmonic scattering coefficient as the insertion loss204

described above. The small difference between the two curves can originate from the inaccuracy205

of the dielectric function of the SiO2 layer and the limitations of the simple FDM model. Still,206

with these limitations, the DFTS-based interferogram calculation described above can reproduce207

and explain the asymmetry of nano-FTIR interferograms extremely well.208
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Fig. 5. Measured (red) and calculated (black) interferogram of the 300 nm SiO2/Si
sample.

As we showed in this section, our model can replicate and explain nano-FTIR interferograms,209

thus it can be confidently used to explore the effect of various measurement artifacts and210

data-processing schemes on the final spectrum. In the following, we discuss the most important211

considerations one has to make during measurements and the processing of raw interferograms.212

3.1. Effect of temporal coherence213

In real nano-FTIR setups, the light source is usually a pulsed mid-IR laser. Commercially available214

instruments use lasers with a pulse width ≈ 100−200 fs, and high, MHz, repetition rate. [33–35]215

The advantages of these sources are the large spectral irradiance and the spatially coherent216

beam which makes them ideal for focusing. However, the possibility of near-field nano-FTIR217

measurements using thermal (Globar) sources was also demonstrated. Their advantage is the218

broad spectral range, but, due to their low spectral radiance and spatial coherence, the resulting219

near-field signal is far lower quality. [14] Alternatively, nano-FTIR spectroscopy with high-220

temperature plasma light sources was also demonstrated which improves the spatial coherence of221

thermal sources, thus providing better focusing. [36] Furthermore, a third possibility is using222

synchrotron sources [37] as the spectral range of a common infrared beamline ranges from the223

THz up to the near-IR/visible range providing high spectral radiance and diffraction-limited224

focusing.225

The important difference between light sources is temporal coherence. For temporally coherent226

sources, such as pulsed lasers, the asymmetry of the interferogram was explained by optical free227

induction decay (optical FID) previously. [38] Optical FID requires the fast switch-off of the228

excitation or the fast detuning of the resonance of the sample thus usually measured in the time229

domain. [39,40] The time delays during the re-emission process for each wavelength result in230

phase-shifted but coherent fields and distort the time domain shape of the back-scattered pulse,231



which represents the impulse response function of the sample. In the asymmetric Michelson-232

interferometer arrangement, the cross-correlation of the original and the back-scattered pulses is233

recorded as the interferogram.234

However, thermal sources or typical synchrotron radiation don’t provide temporally coherent235

pulses, i.e., the phase between the different wavelength components varies randomly (Φ𝑟 (𝑘)236

in Eq. 2 and 3).1 The final interferogram, however, looks the same as with coherent excitation.237

This is because a Michelson interferometer realizes amplitude division thus the initial phase238

Φ𝑟 (𝑘) is the same in both arms and does not play a role in the interferogram formation. This239

means that formally both coherent and incoherent cases result in the same formula (Eq. 8) and240

the interferograms look the same.241

We want to note that in both cases the origin of the asymmetric interferogram is the phase242

shift of each wavelength component by the scattering process. FID signal is a special case when243

using coherent radiation, but the resulting interferogram is the same with or without temporal244

coherence. In Fig. S4, we show this in detail for coherent and incoherent sources.245

4. Implications for measurement and data processing246

In FTIR, as shown by Eq. 10, the frequency response of the sample is calculated by Fourier247

transforming the interferogram. As extensively, and widely described, the preprocessing of the248

interferograms before Fourier transformation is a critical step to suppress artifacts caused by the249

effective boxcar windowing of the ideal interferogram originating from the finite path length250

range of the moving mirror. [1]251

Since the resulting spectrum is the convolution of the frequency spectrum of the window252

function and the ideal spectrum, it is advantageous to apply a custom window function that has a253

narrow frequency spectrum and small side lobes. This process is called apodization and is widely254

used in FTIR spectroscopy. [1] One of the concerns in nano-FTIR (or DFTS) is how and what255

type of apodization to apply before the Fourier transform. Our main goal is to preserve the shape256

of the interferogram as much as possible because it contains the phase information of the sample.257

4.1. Position of the ZPD and apodization258

To collect as much useful information as possible, earlier works suggested setting the interferometer259

scanner range such that more of the positive OPD side of the interferogram is collected. [42]260

Thus, the ZPD position is shifted toward the beginning of the scanner range. However, it was not261

studied, if there is an optimal ZPD shift (interferogram position). In the following, we discuss262

this through measurements and simulations.263

Connected to the ZPD shift, the question of the proper apodization naturally emerges. We264

cannot use a symmetric but shifted apodization function since it would become a combination of265

a boxcar function and the apodization function when the interferogram is shifted from the center.266

The application of an asymmetric apodization function was suggested previously by Amenabar et267

al., where the authors used an asymmetric three-term Blackman-Harris window. [42] This type268

of apodization, however, changes the symmetry of the interferogram when applied incorrectly269

and its effects were not discussed in detail before.270

The effect of symmetry change can be dramatic on the phase spectrum. Let us suppose that the271

interferogram is symmetric at the beginning, i.e., there is no phase shift for any of the wavelength272

components in the broadband radiation. By shifting the ZPD position towards the beginning273

of the scanning range (shifting to the "left") and applying asymmetric apodization, we start to274

decrease the 𝛿 < 0 side of the interferogram but keep the 𝛿 > 0 side mostly untouched. In275

the extreme case, the ZPD location is at the very beginning of the scanner range and we only276

1Storage rings can produce temporally coherent synchrotron radiation (CSR) resulting in very high-intensity THz
pulses. Such sources are not considered here as CSR emission was only utilized for far-field spectroscopy measurements
to date. [41]



measure the positive retardation side (𝛿 > 0) leading to a single-sided interferogram. This is277

equivalent to multiplying a double-sided interferogram with a Heaviside step function. The278

vanishing interferogram at retardations smaller than zero results in Kramers-Kronig relations279

in the complex spectrum. In other words, the Kramers-Kronig pair phase spectrum of the280

amplitude spectrum appears after the Fourier transform. [43, 44] We demonstrate this effect in281

supplementary Section 2. and Fig. S2 on an originally symmetric interferogram. The additional282

phase introduced by the symmetry change can cause severe artifacts in the final spectrum that283

should be avoided. In the following, we systematically study the combined effect of ZPD position284

change and apodization on the final spectrum.285

First, we measured the nano-FTIR interferogram of SiO2/Si samples, just like in Section 3. In286

NeaSCOPE instruments, the scanning mirror is attached to a manual translation stage, which we287

can use to shift the whole assembly with a micrometer screw. This way we can change the location288

of the ZPD position within the range of the piezo scanner. In all our figures zero represents the289

middle of the scanner range, which would correspond to the location of the ZPD in a typical290

FTIR measurement with symmetric IFG. A series of measurements with different ZPD positions291

along the scanner range are shown in Fig. 6 (a) upper panel (raw). In the post-processing, we292

applied an asymmetric four-term Blackman-Harris window. Fig. 6 (a) lower panel (apodized)293

shows the apodization functions and the apodized interferograms. We used the same apodization294

for the reference interferograms measured with the same ZPD positions on gold and calculated295

the spectra using Eq. 10. The resulting spectra are shown in Fig. 6 (b).296
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Fig. 6. (a) Measured SiO2 near-field interferograms with different ZPD positions. (b)
SiO2 near-field spectra, calculated from the corresponding interferograms shown in (a)
with different ZPD positions. (c) Magnitude of the SiO2 phonon peak in each near-field
spectra in (b).

As the interferogram is shifted to the positive side of the scanning range, the main phonon297

peak of silica broadens and decreases. This apparent reduction in spectral resolution is caused by298

the reduced interferogram length and the steeper apodization at positive values. This suggests299

that one should place the interferogram to the negative side of the scanning range to maximize300

spectral resolution for a fixed mirror scan length (and time). However, as we can see, there301



is an optimum ZPD position (see in Fig. 6 (c)). If the interferogram is moved too far to the302

negative side, an insufficient portion of the interferogram is sampled and the rising part of the303

apodization function becomes so steep that even the short negative OPD side of the IFG gets304

distorted, resulting in a decrease in spectral peak height.305

To further study the effect of the ZPD shift and the asymmetric apodization, we choose306

to simulate a more complex spectrum with different spectral features. We synthesized the307

interferograms with the help of Eq. 8 and calculated the spectra as described in Section 3. As a308

theoretical sample, we choose 30 nm of C60 fullerene molecules on top of the SiO2/Si substrate.309

The spectrum then consists of the main phonon peak of the oxide and the four distinct narrow310

vibrational resonances of the high symmetry C60 molecules (526.53, 576.08, 1183.58, 1429.73311

cm−1). With such a complex spectrum, we can study the effects of the apodization on both312

the resolution and the relative spectral weights. The near-field amplitude and phase spectrum313

calculated by the FDM model are shown in Fig. S1. Below, Fig. 7 represents some of the314

interferograms and their corresponding apodization functions.315
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Fig. 7. (a) Calculated interferograms of the SiO2/C60 layers for different ZPD positions
with the corresponding asymmetric apodization function applied to them. (b) Phase
and (c) amplitude spectra of the SiO2/C60 system calculated from the interferograms
corresponding to the color code.

In Fig. 7, we show the phase (b) and amplitude (c) spectra calculated from the interferograms316

displayed in (a). The main features in the spectrum are the SiO2 phonon peak and two other317

peaks that correspond to the T1𝑢 (3) and T1𝑢 (4) vibrational modes of the C60 molecules in this318

spectral region. [45] The spectra clearly show that the resolution and the magnitude of the peaks319

decrease with increasing positive ZPD shifts, as discussed previously. For negative ZPD shifts320

the peak width monotonically decreases (resolution increases), however, after passing the ZPD321

position of ≈ −350 `m point, the 1183 cm−1 peak magnitude starts to decrease. Fig. 8 (a) and (b)322

we present the magnitude and the width of the peak at 1183 cm−1, and (c) and (d) show the same323

values for the peak at 1429 cm−1. We could see that the 1183 cm−1 C60 and the SiO2 peak start324

to decrease after an optimum point but the peak 1429 cm−1 does not show the same behavior.325

Besides our results give an insight of some trends about the effect of apodization they do not326

provide a clear answer if there is a specific optimum point of the ZPD position and thus the shape327

of the proper apodization function. Assessing only a few points of the spectrum does not describe328

the whole effect. The relative intensities of the peaks and the baseline of the spectra also change.329
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Fig. 8. (a) magnitude of the 1183 cm−1 C60 vibration, (b) width of the 1183 cm−1

peak, (c) magnitude of the 1429 cm−1 peak, (d) width of the 1429 cm−1 peak.
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Fig. 9. (a) Error of the retrieved phase spectra compared to the ideal one for SiO2/C60
system, calculated from interferograms with different ZPD positions (b) Light source
spectrum used in the interferogram calculations.

For this, we define a measurement of phase error where we compare the spectrum calculated330

from the interferograms to the ideal spectrum calculated by the FDM model. This phase error331

is written as Δ𝑆 =
∫ a2
a1

(𝑆𝐼𝐹𝐺 (a) − 𝑆𝐹𝐷𝑀 (a))2𝑑a, where a1 and a2 are the starting and ending332

wavenumber of the spectral region that we are interested in. We present this measure for all333

the simulated interferogram-spectra calculations with different ZPD shifts in Fig. 9. The figure334

shows that the phase error curve has a minimum at 𝑍𝑃𝐷shift ≈ −335 `m. The optimum ZPD335

shift corresponds to the minimum of the error curve. In other words, it is the optimum distance336

of the interferogram to the edge of the scanning range of the mirror.337

The results shown above were calculated considering the broad infrared spectrum (𝐼0 (𝑘),338

Fig. 9 (b)) of the SMIS beamline at Synchrotron SOLEIL, which was obtained by measuring339

the total signal before demodulation from a gold sample in the s-SNOM microscope. This340

measurement combines the effects of the source, optics, and detector to estimate the spectral341

response of the system. The ultrabroad wavelength range from synchrotron IR results in a342



very narrow interferogram, as seen in the previous figures. Lab-based nano-FTIR systems,343

however, are typically equipped with infrared lasers based on difference frequency generation344

to produce an infrared output spectrum that has a much narrower spectrum than synchrotron345

radiation [33, 35]. This results in a much wider interferogram, which imposes an increased346

sensitivity to the apodization.347
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Fig. 10. Calculated interferograms of the SiO2/C60 layers for different ZPD positions
with the corresponding asymmetric apodization function applied. The light source
spectrum is shown in Fig. 11 (b) resulting in the spatially spread interferograms.
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Fig. 11. (a) Phase error (Δ𝑆) of the retrieved spectra compared to the ideal one
for SiO2/C60 system, calculated from interferograms with different ZPD positions.
(b) Light source spectrum used to calculate the interferograms in Fig. 10. (c) phase and
(d) amplitude spectra calculated from the corresponding interferograms. The dramatic
effect of changing interferogram asymmetry is obvious in both amplitude and phase
spectra.

We recalculated the interferograms for the same sample as before with a Gaussian spectrum348

centered at 1300 cm−1 with an FWHM= 200 cm−1. The corresponding interferograms are shown349

in Fig. 10. The figure shows that the spatially spread interferograms get distorted at smaller ZPD350

shifts than that of the broadband spectrum interferograms. Likewise, the spectral error of each351

shifted position, shown in Fig. 11 (a) reveals that a strong deviation of the resulting spectrum352

from the ideal occurs when the ZPD position is not chosen correctly.353

We studied the effect of the interferogram width on the ideal position of the interferogram354



and calculated the ideal ZPD position based on the minimum of the phase error for several355

light source spectra with different spectral widths. For all calculations, the phase error (Δ𝑆)356

was calculated for the same spectral region between a1 = 900 cm−1 and a2 = 1700 cm−1. The357

results presented in Fig. 12 clearly show that with decreasing spectral width, the optimum ZPD358

position is further and further away from the beginning of the scanner range.359
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Fig. 12. Ideal ZPD position for different input spectrum widths (blue circles). The red
dashed curve shows Eq. 12. The ZPD position is measured from the beginning of the
scanner range as depicted in the inset.

We also aim to formulate how to find the ideal ZPD position depending on the spectral width360

of the light source. For the sake of simplicity, let us consider a light source with a Gaussian361

spectrum. From the FWHM of the light source spectrum (Δ𝐿𝑆), we can calculate the width of362

the envelope of the interferogram (Δ𝐼𝐹𝐺), because the Fourier transform of a Gaussian is going363

to be also a Gaussian, thus:364

Δ𝐼𝐹𝐺 =
2
𝜋

ln 2/Δ𝐿𝑆 ≈ 0.44/Δ𝐿𝑆 . (11)

As discussed, we want to keep the original shape of the interferogram as much as possible,365

thus the ZPD position has to be chosen accordingly. The ZPD position explicitly determines the366

steepness of the apodization function on both sides. To preserve the interferogram’s shape we367

define a requirement that the 95% value point of the Blackmann-Harris apodization function368

has to coincide with the 50% point of the interferogram envelope (depicted in Fig. S5). This369

requirement results in370

𝑍𝑃𝐷 𝑝𝑜𝑠 ≈ 2.3/Δ𝐿𝑆 . (12)

In Eq. 12, ZPD𝑝𝑜𝑠 is measured from the beginning of the scanning range to easily implement371

during the scanner alignment. The result is plotted in Fig. 12 as the red dashed curve.372

Implementing this metric ensures that the spectrum is close to ideal and spectral phase component373

artifacts are minimized. Despite the good agreement between the derived formula and the374

numerical results, we want to note that it was derived for perfectly Gaussian light spectra resulting375

in a Gaussian interferogram envelope. In a more complex light spectrum, the interferogram can376

extend further to negative ZPDs thus being more vulnerable to the apodization. However, Eq. 12377

can give a good approximation for the ZPD positioning, and the interferogram formulas in Eq. 8378

help for more detailed analyses if needed. More details on the derivation of the optimal ZPD379

position equation can be found in the Supplementary Information material.380



5. Conclusion381

We showed that experimental nano-FTIR interferograms can be reproduced and understood in382

the framework of dispersive Fourier transform spectroscopy by choosing the proper insertion383

loss function defined by s-SNOM scattering models. Through simulations, we explained the384

ambiguity of coherent and non-coherent interferogram formation. We assessed the effect of385

apodization on the final spectrum and found that the preservation of interferogram asymmetry386

is key to obtaining an artifact-free phase spectrum. Based on our simulations, we provided a387

formula, for the first time, to determine an ideal shift for the ZPD position relative to the scanning388

range of the interferometer as a function of light source parameters.389

6. Funding390

This research used resources of Synchrotron SOLEIL and the Advanced Light Source (a DOE391

Office of Science User Facility under contract no. DE-AC02-05CH11231).392

7. Acknowledgement393

The authors thank Prof. T. J. Parker for offering his insights on the DFTS technique.394

8. Disclosure395

The authors declare no conflicts of interest.396

References397

1. P. R. Griffiths, “The early days of commercial FT-IR spectrometry: A personal perspective,” Appl. Spectrosc. 71,398

329–340 (2017).399

2. P. Fellgett, “The theory of infra-red sensitivities and its application to investigations of stellar radiation in the near400

infra-red,” Ph.D. thesis, University of Cambridge (1951).401

3. P. Jacquinot, “The luminosity of spectrometers with prisms, gratings, or Fabry-Perot etalons,” J. Opt. Soc. Am. 44,402

761–765 (1954).403

4. A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci.404

s3-34, 333–345 (1887).405

5. R. de L. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Am. 12, 547 (1926).406

6. H. A. Kramers, “La diffusion de la lumiere par les atomes,” Atti Congr. Intern. Fisici (Transactions Volta Centen.407

Congr. Como 2, 545–557 (1927).408

7. J. E. Chamberlain, J. E. Gibbs, and H. A. Gebbie, “Refractometry in the far infra-red using a two-beam interferometer,”409

Nature 198, 874–875 (1963).410

8. E. E. Bell, “The use of asymmetric interferograms in transmittance measurements,” Le J. de Physique Colloques 28,411

C2–18–C2–25 (1967).412

9. J. R. Birch, “Dispersive fourier transform spectroscopy,” Microchim. Acta 93, 105–122 (1987).413

10. T. J. Parker, “Dispersive fourier transform spectroscopy,” Contemp. Phys. 31, 335–353 (1990).414

11. J. R. Birch and T. J. Parker, Infrared and Millimeter Waves, Volume 2, Instrumentation (Academic Press, 1979), chap.415

Dispersive Fourier Transform Spectrometry.416

12. T. J. Parker, Personal Communication.417

13. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,”418

Appl. Phys. Lett. 89, 101124 (2006).419

14. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal420

source,” Nat. Mater. 10, 352–356 (2011).421

15. X. Chen, Z. Yao, S. G. Stanciu, D. N. Basov, R. Hillenbrand, and M. Liu, “Rapid simulations of hyperspectral422

near-field images of three-dimensional heterogeneous surfaces,” Opt. Express 29, 39648–39668 (2021).423

16. X. Chen, Z. Yao, Z. Sun, S. G. Stanciu, D. N. Basov, R. Hillenbrand, and M. Liu, “Rapid simulations of hyperspectral424

near-field images of three-dimensional heterogeneous surfaces - part II,” Opt. Express 30, 11228–11242 (2022).425

17. P. McArdle, D. J. Lahneman, A. Biswas, F. Keilmann, and M. M. Qazilbash, “Near-field infrared nanospectroscopy426

of surface phonon-polariton resonances,” Phys. Rev. Res. 2, 023272 (2020).427

18. A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M.428

Fogler, and D. N. Basov, “Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved429

optical constants,” Phys. Rev. B 90, 085136 (2014).430

19. B.-Y. Jiang, L. M. Zhang, A. H. Castro Neto, D. N. Basov, and M. M. Fogler, “Generalized spectral method for431

near-field optical microscopy,” J. Appl. Phys. 119, 054305 (2016).432



20. S. T. Chui, X. Chen, M. Liu, Z. Lin, and J. Zi, “Scattering of electromagnetic waves from a cone with conformal433

mapping: Application to scanning near-field optical microscope,” Phys. Rev. B 97, 081406 (2018).434

21. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in435

scattering-type near-field optical microscopy,” Opt. Express 15, 8550–8565 (2007).436

22. B. Hauer, A. P. Engelhardt, and T. Taubner, “Quasi-analytical model for scattering infrared near-field microscopy on437

layered systems,” Opt. Express 20, 13173–13188 (2012).438

23. D. Datz, G. Németh, L. Rátkai, A. Pekker, and K. Kamarás, “Generalized mie theory for full-wave numerical439

calculations of scattering near-field optical microscopy with arbitrary geometries,” physica status solidi (RRL) –440

Rapid Res. Lett. n/a, 2300370 (2023).441

24. G. Németh, K. Otsuka, D. Datz, A. Pekker, S. Maruyama, F. Borondics, and K. Kamarás, “Direct visualization of442

ultrastrong coupling between luttinger-liquid plasmons and phonon polaritons,” Nano Lett. 22, 3495–3502 (2022).443

PMID: 35315666.444

25. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens,445

G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene446

plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).447

26. Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez,448

M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared449

nanoscopy of Dirac plasmons at the graphene-sio2 interface,” Nano Lett. 11, 4701–4705 (2011).450

27. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light–matter451

interactions,” Nano Lett. 11, 3370–3377 (2011).452

28. A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field453

mapping around nanoindents in sic by ir s-snom and confocal raman microscopy,” Opt. Express 17, 22351–22357454

(2009).455

29. S. Dai, Q. Ma, Y. Yang, J. Rosenfeld, M. D. Goldflam, A. McLeod, Z. Sun, T. I. Andersen, Z. Fei, M. Liu, Y. Shao,456

K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Efficiency457

of launching highly confined polaritons by infrared light incident on a hyperbolic material,” Nano Lett. 17, 5285–5290458

(2017). PMID: 28805397.459

30. L. M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov,460

and M. M. Fogler, “Near-field spectroscopy of silicon dioxide thin films,” Phys. Rev. B 85, 075419 (2012).461

31. W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar,462

P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S.-T. Lee, R. Hillenbrand, and Q. Bao,463

“In-plane anisotropic and ultra-low-loss polaritons in a natural van der waals crystal,” Nature 562, 557–562 (2018).464

32. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik,465

A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of466

aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51, 6789–6798467

(2012).468

33. F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-ftir absorption spectroscopy469

of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12, 3973–3978 (2012). PMID: 22703339.470

34. S. Amarie, P. Zaslansky, Y. Kajihara, E. Griesshaber, W. W. Schmahl, and F. Keilmann, “Nano-ftir chemical mapping471

of minerals in biological materials,” Beilstein J. Nanotechnol. 3, 312–323 (2012).472

35. F. Keilmann and S. Amarie, “Mid-infrared frequency comb spanning an octave based on an er fiber laser and473

difference-frequency generation,” J. Infrared, Millimeter, Terahertz Waves 33, 479–484 (2012).474

36. D. J. Lahneman, T. J. Huffman, P. Xu, S. L. Wang, T. Grogan, and M. M. Qazilbash, “Broadband near-field infrared475

spectroscopy with a high temperature plasma light source,” Opt. Express 25, 20421–20430 (2017).476

37. H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectro-477

scopic imaging,” Proc. National Acad. Sci. 111, 7191–7196 (2014).478

38. S. Amarie, T. Ganz, and F. Keilmann, “Mid-infrared near-field spectroscopy,” Opt. Express 17, 21794–21801 (2009).479

39. F. A. Hopf, R. F. Shea, and M. O. Scully, “Theory of optical Free-Induction decay and Two-Photon superradiance,”480

Phys. Rev. A 7, 2105–2110 (1973).481

40. G. Duxbury, J. F. Kelly, T. A. Blake, and N. Langford, “Observation of infrared free-induction decay and optical482

nutation signals from nitrous oxide using a current modulated quantum cascade laser,” J. Chem. Phys. 136, 174317483

(2012).484

41. Åke Andersson and Matthew S Johnson and Bengt Nelander, “Coherent synchrotron radiation in the far infrared485

from a 1-mm electron bunch,” Opt. Eng. 39, 3099–3105 (2000).486

42. I. Amenabar, “Infrared nanospectroscopy and hyperspectral nanoimaging of organic matter,” Ph.D. thesis, University487

of the Basque Country (2017).488

43. “A simple derivation of the kramers-kronig relations from the perspective of system theory,” https://www.iam.489

kit.edu/et/plainhtml/Download/Derivation_Kramers-Kronig.pdf. Accessed: 2023-09-27.490

44. D. K. M. Schönleber and E. Ivers-Tiffée, “A method for improving the robustness of linear kramers-kronig validity491

tests,” Electrochimica Acta pp. 20–27 (2014).492

45. W. Krätschmer, K. Fostiropoulos, and D. R. Huffman, “The infrared and ultraviolet absorption spectra of laboratory-493

produced carbon dust: evidence for the presence of the C60 molecule,” Chem. Phys. Lett. 170, 167–170 (1990).494

https://www.iam.kit.edu/et/plainhtml/Download/Derivation_Kramers-Kronig.pdf
https://www.iam.kit.edu/et/plainhtml/Download/Derivation_Kramers-Kronig.pdf
https://www.iam.kit.edu/et/plainhtml/Download/Derivation_Kramers-Kronig.pdf

