Supplementary Data

In-situ **desalination-coupled electrolysis with concurrent one-step-synthesis**

of value-added chemicals

Byeong-ju Kim,¹ Ho Kyong Shon,² Dong Suk Han,³ and Hyunwoong Park^{1,*} ¹ School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of *Korea*

2 School of Civil and Environmental Engineering, University of Technology, Sydney, Post Box 129, Broadway, Sydney, NSW 2007, Australia 3 Center for Advanced Materials and Department of Chemical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar

*To whom correspondence should be addressed: (D.S. Han) E-mail: dhan@qu.edu.qa (H. Park) E-mail: hwp@knu.ac.kr

Sample	Element	Elemental fraction $(\%)$		
		XPS	SEM-EDS	STEM
As-deposited	Ni	73.6	31.2	68.4
NiFe-LDH	Fe	26.4	68.8	31.6
Post-anodized	Ni	66.9	34.3	70.2
NiFe-LDH	Fe	33.1	65.7	29.8
NiMo	Ni	81.7	89.6	
	Mo	18.3	10.4	

Table S1. Elemental (metal) fractions of NiFe-LDH and NiMo catalysts estimated by XPS, SEM-EDS, and STEM.

<u> 1980 - Johann Barbara, martxa alemaniar amerikan a</u>

Table S2. Performance comparison of water splitting catalysts in literature.

References

[1] J.S. Luo, D.A. Vermaas, D.Q. Bi, A. Hagfeldt, W.A. Smith, M. Gratzel, Bipolar Membrane-Assisted Solar Water Splitting in Optimal pH, Adv. Energy Mater., 6 (2016) 1600100. https://doi.org/10.1002/aenm.201600100

[2] J.Y. Xu, I. Amorim, Y. Li, J.J. Li, Z.P. Yu, B.S. Zhang, A. Araujo, N. Zhang, L.F. Liu, Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt-nickel phosphide nanowire electrodes, Carbon Energy, 2 (2020) 646-655. https://doi.org/10.1002/cey2.56

[3] I. Amorim, J.Y. Xu, N. Zhang, Z.P. Yu, A. Araujo, F. Bento, L.F. Liu, Dual-phase CoP-CoTe₂ nanowires as an efficient bifunctional electrocatalyst for bipolar membrane-assisted acid-alkaline water splitting, Chem. Eng. J., 420 (2021) 130454. https://doi.org/10.1016/j.cej.2021.130454

[4] N.K. Oh, J. Seo, S. Lee, H.J. Kim, U. Kim, J. Lee, Y.K. Han, H. Park, Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer, Nat. Commun., 12 (2021) 4606. https://doi.org/10.1038/s41467-021-24829-8 [5] H.J. Zhang, X.P. Li, A. Hahnel, V. Naumann, C. Lin, S. Azimi, S.L. Schweizer, A.W. Maijenburg, R.B. Wehrspohn, Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting, Adv. Funct. Mater., 28 (2018) 1706847. https://doi.org/10.1002/adfm.201706847

[6] F.S. Zhang, J.W. Wang, J. Luo, R.R. Liu, Z.M. Zhang, C.T. He, T.B. Lu, Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting, Chem. Sci., 9 (2018) 1375-1384. https://doi.org/10.1039/C7SC04569G [7] J.T. Ding, S. Ji, H. Wang, H.J. Gai, F.S. Liu, V. Linkov, R.F. Wang, Mesoporous nickel-sulfide/nickel/N-doped carbon as HER and OER bifunctional electrocatalyst for water electrolysis, Int. J. Hydrog. Energy, 44 (2019) 2832-2840. https://doi.org/10.1016/j.ijhydene.2018.12.031

[8] S.H. Liu, B.Y. Li, S.V. Mohite, P. Devaraji, L.Q. Mao, R.M. Xing, Ultrathin MoS2 nanosheets in situ grown on rich defective Ni0.96S as heterojunction bifunctional electrocatalysts for alkaline water electrolysis, Int. J. Hydrog. Energy, 45 (2020) 29929-29937. https://doi.org/10.1016/j.ijhydene.2020.08.034

[9] B. Tang, X.D. Yang, Z.H. Kang, L.G. Feng, Crystallized RuTe₂ as unexpected bifunctional catalyst for overall water splitting, Appl. Catal. B, 278 (2020) 119281. https://doi.org/10.1016/j.apcatb.2020.119281

[10] Q. Yao, B.L. Huang, N. Zhang, M.Z. Sun, Q. Shao, X.Q. Huang, Channel-Rich RuCu Nanosheets for pH-Universal Overall Water Splitting Electrocatalysis, Angew. Chem. Int. Ed., 58 (2019) 13983-13988. https://doi.org/10.1002/ange.201908092

[11] P.Y. Wang, Z.H. Pu, W.Q. Li, J.W. Zhu, C.T. Zhang, Y.F. Zhao, S.C. Mu, Coupling NiSe2-Ni2P heterostructure nanowrinkles for highly efficient overall water splitting, J. Catal., 377 (2019) 600-608. https://doi.org/10.1016/j.jcat.2019.08.005

[12] M. Li, L.M. Tao, X. Xiao, X.W. Lv, X.X. Jiang, M.K. Wang, Z.Q. Peng, Y. Shen, Core-Shell Structured NiCo₂O₄@FeOOH Nanowire Arrays as Bifunctional Electrocatalysts for Efficient Overall Water Splitting, ChemCatChem, 10 (2018) 4119-4125. https://doi.org/10.1002/cctc.201800606

[13] X.H. Gao, H.X. Zhang, Q.G. Li, X.G. Yu, Z.L. Hong, X.W. Zhang, C.D. Liang, Z. Lin, Hierarchical NiCo2O4 Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water-Splitting, Angew. Chem. Int. Ed., 55 (2016) 6290-6294. https://doi.org/10.1002/anie.201600525 [14] Z.L. Wang, G.F. Qian, T.Q. Yu, J.L. Chen, F. Shen, L. Luo, Y.J. Zou, S.B. Yin, Carbon encapsulated FeWO4-Ni3S2 nanosheets as a highly active catalyst for overall water splitting at large current density, Chem. Eng. J., 434 (2022) 134669. https://doi.org/10.1016/j.cej.2022.134669 [15] F. Hu, D.S. Yu, M. Ye, H. Wang, Y.A. Hao, L.Q. Wang, L.L. Li, X.P. Han, S.J. Peng, Lattice-Matching Formed Mesoporous Transition Metal Oxide Heterostructures Advance Water Splitting by Active Fe-O-Cu Bridges, Adv. Energy Mater., 12 (2022) 2200067. https://doi.org/10.1002/aenm.202200067

Figure S1. N₂ adsorption and desorption isotherms of (a) as-deposited NiFe-LDH (AD-NiFe), (b) post-anodized NiFe-LDH (PA-NiFe), (c) NiMo, and (d) Ni substrate.

Figure S2. Pore diameter distributions of (a) as-deposited NiFe (AD-NiFe), (b) post-anodized NiFe (PA-NiFe), (c) NiMo, and (d) Ni substrate.

Figure S3. (a) Specific surface areas (BET method), (b) average pore diameters (BJH method), and (c) electrochemical double-layer capacitance (Cdl) of as-deposited NiFe-LDH (AD-NiFe), post-anodized NiFe (PA-NiFe), NiMo, and Ni substrate. Electrolytes for NiFe and Ni substrate: 1 M KOH. Electrolyte for NiMo: 1 M H₂SO₄. C_{dl} of NiMo was not obtained due to high Faradaic currents in the acidic solution.

Figure S4. Linear sweep voltammograms of NiFe-LDH electrodes deposited at various Ni/Fe ratios and deposition time.

Figure S5. η values with NiFe-LDH electrodes for OER at (a) $J = 10$ mA cm⁻² and (b) $J = 100$ mA cm⁻² (η_{10} and η_{100} , respectively).

Figure S6. Changes in E_{device} and electrolyte pH values with time at $J = 10 \text{ mA cm}^{-2}$ in twocell devices divided by BPMs with anolyte of 1 M KOH and catholyte of 1 M H₂SO₄. (a) NiFe-LDH anode and NiMo cathode pair, (b) Pt anode-Pt cathode pair, and (c) Ni anode-Ni cathode pair.

Figure S7. Changes in *E*device and electrolyte pH values with NiFe-LDH anode and NiMo cathode pairs in two-cell devices divided by (a) an AEM, (b) a CEM, and (c) a PEM with anolyte of 1 M KOH and catholyte of 1 M H₂SO₄ at $J = 100$ mA cm⁻².

Figure S8. A desalination-coupled electrocatalytic unit device with NiFe-LDH anode and NiMo cathode at $J = 10$ mA cm⁻² (Case Study II in Table 1). The device configuration is the same as that of Case Study I, except for acid cell (0.2 M NaCl) and base cell (0.2 M NaCl). For the device construction, see Scheme 1b. (a) Changes in E_{device} and ionic conductivity (σ) of saline water with electrolysis time. (b) Changes in concentrations of desalted ions (Cl⁻ and Na⁺). (c) Changes in pH values in the solutions in the acid and base cells, and electrolytes.

Figure S9. A desalination-coupled electrocatalytic unit device with NiFe-LDH anode and NiMo cathode at $J = 10$ mA cm⁻² (Case Study III in Table 1). The device configuration is the same as that of Case Study I, except for acid cell (0.1 M HCl) and base cell (0.1 M NaOH). For the device construction, see Scheme 1b. (a) Changes in E_{device} and ionic conductivity (σ) of saline water with electrolysis time. (b) Changes in concentrations of desalted ions (Cl⁻ and Na⁺). (c) Changes in pH values in the solutions in the acid and base cells, and electrolytes.

Figure S10. A desalination-coupled electrocatalytic unit device with NiFe-LDH anode and NiMo cathode at $J = 100$ mA cm⁻² (Case Study IV in Table 1). The other conditions are the same as those in Figure S9. (a) Changes in E_{device} and ionic conductivity (σ) of saline water with electrolysis time. (b) Changes in concentrations of desalted ions (Cl⁻ and Na⁺). (c) Changes in pH values in the solutions in the acid and base cells, and electrolytes.

Figure S11. A five-desalination cell array-coupled electrocatalysis with desalination cell (seawater, salinity 36 $g L^{-1}$). For device configuration and conditions, refer to Case Study VI in Table 1. (a) Changes in E_{device} and ionic conductivity (σ) of saline water with electrolysis time. The dashed line represents the theoretical σ based on *J*. (b) Changes in concentrations of desalted ions ($Cl⁻$ and Na⁺). The dashed line represents the theoretical $Cl⁻$ concentration in the acid cell. (c) Changes in pH values in the solutions in the acid and base cells, and electrolytes.