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Synthetic biology (or engineering biology) drives
sustainable breakthroughsin Bioeconomy
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The Design-Build-Test-Learn cycle of Synthetic Biology m
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The Design-Build-Test-Learn cycle of Synthetic Biology
Computational biology methods used (non-exhaustive list)

DESIGN: Computational (re)design
*Al-based de novo enzyme design
*Enzyme discovery (sequence data
mining and Al)
*Host optimization guided by
genome-scale metabolic models
*Reaction and pathway feasibility Hundreds of
evaluation (biothermodynamics) engineered
*Design of new-to-
nature [biosynthetic] pathways

*(Design of biological constructs)
*(Molecular cloning, genome editing, ...)
*(Robotics)

strains tested
in aweek

LEARN Analysis and decisions
*Machine learning & Al
*Molecular dynamics of

*Next-generation sequencing data
= De novo genome/transcriptome

biomolecular systems SRS : :
*Docking & other molecular " Reac_al mapping/ all_gnments
simulations (e.g., QM/MM) *Metabolomics, Proteomics data

*Fermentation data
*Raman spectroscopy data
*Enzyme activity verification
*(Robotics)

*Microbial community modelling
*Lipid modelling





https://doi.org/10.1038/s41592-020-01004-3
https://doi.org/10.1002/WCMS.1481
https://doi.org/10.1038/s41592-021-01199-z
https://doi.org/10.1371/JOURNAL.PONE.0249850
https://doi.org/10.1073/PNAS.1619152114/SUPPL_FILE/PNAS.1619152114.SAPP.PDF

The Design-Build-Test-Learn cycle of Synthetic Biology

Quantum computing opportunities!

DESIGN: Computational (re)design
*Al-based de novo enzyme design
*Enzyme discovery (sequence data
mining and Al)
*Host optimization guided by
genome-scale metabolic models
*Reaction and pathway feasibility Hundreds of
evaluation (biothermodynamics) engineered
*Design of new-to-
nature [biosynthetic] pathways

strains tested
in aweek

LEARN Analysis and decisions
*Machine learning & Al
*Molecular dynamics of
biomolecular systems

*Docking & other molecular
simulations (e.qg.. QM/MM)
*Microbial community modelling
*Lipid modelling

*(Design of biological constructs)

*(Molecular cloning, genome editing, ..

*(Robotics)

*Next-generation sequencing data

= De novo genome/transcriptome

assembly
= Read mapping/alignments

*Metabolomics, Proteomics data
*Fermentation data

*Raman spectroscopy data
*Enzyme activity verification
*(Robotics)
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In theory, quantum computing IS more m
widely applicable in synthetic biology

Because, at the core, almost every computational biology procedure involves ...

Application Advantage Remark
S hing (typically with d ' S / struct QRAMis a
earching (typically with dynamic equence/ structure :
programming / HMM) alignments, read mapping Quadratic challenge,
QHMM, QUBO
Optimization (mixed integer
linear programming, Host optimization, and many Quadratic
. . L) o QUBO etc.,
linear/quadratic optimization, more or heuristic
genetic algorithms, etc.,)
Structure prediction, Function
Machine learning (supervisedor | design, genotype-phenotype Quadratic Linear models,
unsupervised) mapping, and many more or heuristic QVAE, QML
Simulations of physical Molecular dynamics, reaction : Inherently
movements of electrons, atoms . : Exponential
simulations (QM/MM) guantum
and molecules




e De novo genome assembly




High-throughput DNA/RNA seguencing data:
the assembly problem

Application domains:

Genomics — single species

Meta-genomics — microbial community
Transcriptomics — single species
Meta-transcriptomics — microbial community

Helps us answer specific questions such as:
* The genomic/transcriptomic content of (non-
model) organisms
* What biological functions does an organism have?
*  Whatis the best species for specific industrial
application?
« Differences between species
» Verification of engineered strains
* Why do differences occur (mutations)

: ! : * Species identification
Input: 100's of Gigabytes to Terabytes of O (0 6T [Teeles) el iy G il

sequencing data (strings of 100-200 characters) - How do | cultivate them?
Output: 10's to 100's MB of assembled contigs * Valuable enzymes from species thatwe can'tyet
(Note: A genome assembly may contain >1 contig) cultivate

!



De novo sequence assembly: overlap- m
layout-concensus graph approach

Genome to be determined TTCCGGAGAGGGAGCCTGAGQAAATGLGUCTACCACATCLACGGAGAGG

GCCTGAGAAATGGCTACCACATC

CCACATCCACGGAGAGG
READS

TCCGGAGAGGGAGCCTGAG

.t"'."f"

N3
Hamiltonian path finding (T SP) _ “*"’X ~
l”r /
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et

TTCCGGAGAGGGAGCCTGAGAAATGGCTACCACATCCACGGAGAGG
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By Luongdl| - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32630571



QC does not always exponentially speed you up :-)
For TSP, we get quadratic speed-up at the best.

Atypical NGS data set has millions of reads: overlap graph with millions of nodes,
through which to find Hamiltonian paths

Number of logical qubits in a reference implementation ~ 2N (N = n(reads)) [*]
Quantum computers will not likely scale up in our lifetime for this naive QUBO implementation

of the OLC algorithm!

Major simplifications/approximations are needed
Alternative assembly approaches need to be studied in the context of QC

Related trends in the domain:
Sequencing isolates vs microbial communities (sequence assembly gets harder and harder)
Increased length of sequencing reads (sequence assembly becomes easier and easier)

[*] Sarkar et al., 2021, DOI: 10.1371/JOURNAL.PONE.0249850



e Sequence alignment




Sequence alignment is like Google search
for biological sequences!

» Used for studying the sequence similarity arising from structural, functional or evolutionary
relationships.
» Especially to find hits similar to a query sequence from large sequence databases

Hsa_ZNF226 KGFTLSSNLQA- -HQRVHTGEKPYKCNE - -CGKSFRRNSHYQVHLVVH--- - - - == == - - 525
Mac_ZNF226 KGFTLSSNLQA--HQRVHTGEKPYKCSE - -CGKSFRRNSHYQVHLVVH- - - - - === - - -~ 489
Odo_ZNF226 KGFTLSSNLQA--HQRVHTGEKPYKCDE - -CGKSFRRNSHYQVHLVVH--- - - - - - - - - - 528
Mir_ZNF226 KGFTLSSNLQA--HQRVHTGEKPYKCDE - -CGKSFRRNSHYQVHLVVH- - - - - - - - - - - - 528
Cam_ZNF226 KGFTLSSNLQA--HQRVHTGEKPYKCGE - -CGKSFRRNSHYQVHLVVH--- - - = === - - - 524
Fuk_ZNF226 KGFTLSSNLQA- -HVRVHTGEKPYTCEE - -CGKSFRRNSHYQVHLVVH------------ 493
Man_ZNF226 KGFTLSSNLQA--HQRVHTGEKPYRCDE - -CGKSFRRNSHYQVHLVVH----- - - - - -~ 546
Cap_ZNF226 KAFSLWSKLNA--HILVHTGEKPHECSV--CKKAFAQRSSLKIHMLVH------------ 284
Nem_ZNF226 KCFTELETLKT--HLMIHSGEKPYKCDE--CGKCFTQSGNLKRHLMIH------------ 309
Rhi_ZNF226 KNYTQWGHLQR - -HMISHTGEFPYKCNVPECEMSFFRSYELKEHIISHNSTTSNEIILYN 347
Ech_ZNF226 RGFRQASHLLS--HERVHSGEKPFKCEE--CGKFFSSRSNLQTHHRIH------------ 218
Ara_ZNF226 KEFPQKRNLNV--HYRTHTNEKPYSCDV - -CQKDFSWKGDLKVHYRIH------------ 281
M1i_ZNF226 KCFSQQISLRT--HRRVHTGEKPFKCDE--CDKCFAQLNVLLAHRRGH------------ 303
Dro_ZNF226 KAFKNNSHLQE - -HLRTHQEARPFKCSH- -CSKSFKLRSILQKHLLTH------------ 243
The_ZNF226 KRFSSSSNLSTHKHKRTHTGEKPYMCDV - -CTKRFSFYSHLYTHRRIH------------ 248
Sal_ZNF226 FKTAYKRTLTT--HKRIHTGEKPYKCDQ--CSFKTAHKSTLARHKRTH----=-=----- 363
Ber_ZNF226 RAFRNSSNLRT--HERLHTDERPYRCRY - -CDRAFSGSGNLHAHERVH------------ 188
Sen_ZNF226 QAFCQHSNLTA--HMRIHTGEQPYVCQT--CG--------------=--— oo 139
Den_ZNF226 KSFTHASDLKI--HQRIHTGEKPYQCVE--CGKSFTQTSNLKIHQRIH------------ 493
Oct_ZNF226 KSFSHNGHLVT - -HNRIHTGEKPYQCDI - -CGKSFSHNGHLVTHNRIH--- - == - = - - - - 437
* * * * ok *
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Reflections

Related approaches are also used for aligning sequencing reads
to reference genomes or transcriptomes for studying mutations or
gene expression etc.,
Sequence alignment concepts have also become directly
applicable for searching large structure databases such as the
AlphaFold DB.
These algorithms inherently involve search and optimization
* Hence naturally benefit from Grover's search and

other approaches => Quadratic time improvement.

Quantum RAM might be the biggest challenge for the
applicability of quantum algorithms because of the sizes of the
sequences databases and reference genome sequences




e Metabolic optimization




Genome-scale metabolic models and m
optimization of host metabolism

Mass balance
constraints

\LJ Biological Metabolic phenotype
| optimaity > | (optimization: LPIQP)
Directionality principles
constraints from T

reaction maxc'v
. thermodynamics

LB <v<UB
= 1 N J

Optimizing host metabolism for production:
coupling growth (biomass formation) with
production of the target compound

-

Ty
Current Optimized
Salusjarvi et al., Front Bioeng and Biotech (2022) phenOtype phe nOtype

19/12/2023 VTT - beyond the obvious Jouhten P. et al. Metab Eng. (2017)



Metabolic optimization is typically achieved via Bi-level

optimization (MILP), genetic algorithms
Can be formulated as QUBO (Quadratic Unconstrained
Binary Optimization) suitable for QAOA

Metabolic optimization is an exponential scale problem
2N possible configurations (N = reactions)
N ~ 3000 to 10000 for typical genome-scale metabolic models
N ~ 500000 to a few millions for extended metabolic space containing
all elementary chemical transformations
N ~ 10-100 for modeling selected subsystems (e.g., energy
metabolism) or for simplified (lumped-reaction) models



e Protein function design




Design of enzymes for new-to-nature functions
Acknowledgement: iBEX-2021 Chem2Bioteam

Training data: a large set of Generative Almodel Output: new-to_—nature
TIM Barrel enzymes enzyme candidates

t

-

Application case: TIM Barrel enzymes Test case: Fructose bisphosphate aldolase




As computational biologists, we use ML approaches in our daily life
VAE, cVAE, CNN, HMM, Multivariate models, ...

Can quantum computing be used for better training of the ML models?
more efficient training of the hyper parameters, or
reducing the number of hyper parameters needed using quantum neurons
The GAN work by Kao et al., 2023 seems to demonstrate that using only 4 qubits, they
can build better performing GANs (not more efficient)

Can gquantum computing allow us to build better performing models even if they

do not provide advantage time complexity-wise?
QVAE, QHMM, Quantum Least Squares (QLS), QGAN?, ...




e Enzymatic reaction simulations




Reflections
Quantum computing to understand and predict enzyme functions

We are interested to predict and understand enzyme catalyzed chemical

reactions from atomistic details (physical movements of electrons and atoms)

We can simulate conformational fluctuations with enzymes using classical

molecular dynamics (MD) simulations, but this method does not allow simulations

of chemical reactions

This is potentially the most unique area for quantum computing

 QC potentially gives exponential time complexity improvement

 QC potentially allows us to simulate this process, which can't be done
with classical computers.

How far are we from QM/MM simulations where classical MD steps are

performed with CPU/GPU computing and QM steps with quantum computer?






In theory, quantum computing Is widely
applicable in computational synthetic biology.

BUT!

= The scale of the problems (data) poses a big challenge

* Biological sequence data analysis might need gRAM developments
= Quantum literature is full of toy examples

» Challenge: how do you get funding for trying toy-scale problems!?

= Not all guantum algorithms make you exponentially faster
« Are the quadratic, heuristic improvement cases really worth trying?

= Can we envisage better models with guantum computing, even though not
faster? (i.e., can we identify such problems with proofs, not empirically?)

Regardless of these challenges, our quest will continue!
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