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Figure S 1. a) Architecture of the autoencoder network used in our study to extract five compressed features 

during the forward pass. This network was trained to take an RF line as the input, and its reconstructed RF line 

while minimizing the reconstruction error, as the output. b) Learning curves of the autoencoder networks 

showing the convergence of both training and testing sets. For the trypsin treatment group, the convergence 

value were 0.0156 and 0.0166 at epoch 200 for training and testing sets, respectively. For the collagenase 

treatment the convergence values were 0.0137 and 0.135 at epoch 200 for training and testing sets, 

respectively. 



 

 

 Trypsin treatment Collagenase treatment 

 0h 2h 4h 0h 6h 24h 

ApEn 0.1716 ± 0.1378 0.1746 ± 0.1253 0.1416 ± 0.0878 0.1604 ± 0.0990 0.1333 ± 0.0677 0.1282 ± 0.0604 

SampEn 0.0572 ± 0.0644 0.0580 ± 0.0478 0.0457 ± 0.0347 0.0525 ± 0.0400 0.0416 ± 0.0281 0.0360 ± 0.0235 

Spectral 

Entropy 

0.7283 ± 0.0500 0.7292 ± 0.0477 0.7344 ± 0.0490 0.7302 ± 0.0430 0.7323 ± 0.0530 0.7335 ± 0.0431 

Mean 

crossing 

137 ± 12 132 ± 10 138 ± 13 133 ± 9 135 ± 10 136 ± 7 

Katz fractal 

dimension 

2.0074 ± 0.3799 1.9906 ± 0.3597 1.9347 ± 0.3320 2.0036 ± 0.2961 1.9453 ± 0.2200 1.9537 ± 0.2779 

50th 

percentile 

-0.1136 ± 0.1021 -0.1070 ± 0.1012 -0.0859 ± 0.0885 -0.1065 ± 0.0747 -0.0898 ± 0.0566 -0.0939 ± 0.0665 

Std 0.1364 ± 0.0380 0.1338 ± 0.0353 0.1292 ± 0.0337 0.1344 ± 0.0293 0.1330 ± 0.0295 0.1308 ± 0.0318 

Kurtosis 23.4112 ± 17.9032 25.5768 ± 17.5030 26.8749 ± 19.0188 24.3362 ± 

15.0227 

26.6827 ± 

15.4959 

26.1147 ± 

16.8780 

RIc 323.5 ± 741.0 236.5 ± 634.5 397 ± 496 164.5 ± 438.0 39± 49 - 

RIb 1610.5 ± 1704.5 1342.0 ± 1035.5 2089.5 ± 1716.5 1933.5 ± 1527.0 2047.5 ± 1286.0 2050.5 ± 2093.0 

Bone 

propagation 

49 ± 19 45 ± 19 49 ± 17 55 ± 29 86 ± 22 95 ± 11 

Cartilage 

length 

80 ± 20 80 ± 21 75 ± 12 99 ± 37 76 ± 30 29 ± 15 

Feature F1 -0.9721 ± 5.9951 -0.6431 ± 6.6928 -1.0999 ± 5.4171 2.0019 ± 7.4839 1.7682 ± 7.2840 1.8143 ± 8.1127 

Feature F2 0.1561 ± 4.7435 0.0077 ± 7.6535 0.5895 ± 6.9865 1.8887 ± 5.7114 1.9513 ± 7.5532 1.5234 ± 9.6724 

Feature F3 -2.4669 ± 5.4874 -1.5755 ± 6.7212 -2.2016 ± 6.5942 -1.6363 ± 8.3789 -0.1226 ± 8.0785 -1.5679 ± 9.8474 

Feature F4 2.3230 ± 6.6958 2.0542 ± 7.4033 2.3259 ± 5.6944 0.5599 ± 5.6037 0.0059 ± 7.2781 -1.4252 ± 7.1011 

Feature F5 -0.6680 ± 6.5286 -0.9382 ± 7.1222 -2.0297 ± 6.3026 -0.9013 ± 8.8102 -2.3392 ± 10.2088 -1.1991 ± 9.3578 

Table S 1 - Median ± interquartile range of QUS features for trypsin and collagenase treatments. 

 

 



 

Figure S 2 - Feature importance scores for each metric to distinguish healthy from degenerated cartilage 

subjected to trypsin and collagenase treatment. Dataset of complexity and irregularity metrics for trypsin (a) 

and collagenase (d), dataset of cartilage features for trypsin (b) and collagenase (e), dataset of compressed 

features for trypsin (c) and collagenase (f). Spectral entropy, cartilage length, and Feature F1 significantly 

contributed to the discrimination between healthy and degraded samples treated with trypsin. Std, cartilage 

length, and Feature F3 were key contributors to the discrimination between healthy and degraded samples 

treated with collagenase.   

 



 

 Precision [%]  Recall [%]  F1-score [%]  

Accuracy 

[%] 

 

AUC 

[%] 
Classifier 

Healthy 

(0h) 

Degenerated 

(2h and 4h) 
 Healthy 

(0h) 

Degenerated 

(2h and 4h) 
 Healthy 

(0h) 

Degenerated 

(2h and 4h) 
  

Decision 

tree 
25.00 63.63  20.00 70.00  22.22 66.67  53.33  45.00 

XGB 

Classifier 
42.86 75.00  60.00 60.00  50.00 66.67  60.00  60.00 

SVM 100.00 71.43  20.00 100.00  33.33 83.33  73.33  60.00 

Random 

forest 
66.67 75.00  40.00 90.00  50.00 81.82  73.33  65.00 

Logistic 

regression 
100.00 76.92  40.00 100.00  57.14 86.96  80.00  70.00 

Ensemble 75.00 81.82  60.00 90.00  66.67 85.71  80.00  75.00 

Table S 2 - Overall performance for classification models to distinguish healthy and degenerated samples 

treated by trypsin. All the models were trained 10 times on the 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑀𝐿𝑚𝑜𝑑𝑒𝑙 dataset and then tested on 

the 𝑇𝑒𝑠𝑡𝑀𝐿𝑚𝑜𝑑𝑒𝑙 dataset to distinguish two and three classes, as their results are shown in Table S 4 and Table 

S 5. 

 

 Precision [%]  Recall [%]  F1-score [%]  

Accuracy 

[%] 

 

AUC 

[%] 
Classifier 

Healthy 

(0h) 

Degenerated 

(6h and 24h) 
 Healthy 

(0h) 

Degenerated 

(6h and 24h) 
 Healthy 

(0h) 

Degenerated 

(6h and 24h) 
  

Decision 

tree 
100.00 76.92  40.00 100.00  57.14 86.96  80.00  70.00 

XGB 

Classifier 
75.00 82.82  60.00 90.00  66.67 85.71  80.00  75.00 

SVM 0.00 66.67  0.00 100.00  0.00 80.00  66.67  50.00 

Random 

forest 
100.00 76.92  40.00 100.00  57.14 86.96  80.00  70.00 

Logistic 

regression 
100.00 90.91  80.00 100.00  88.89 95.24  93.33  90.00 

Table S 3 - Overall performance for classification models to distinguish healthy and degenerated samples 

treated by collagenase . All the models were trained 10 times on the 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑀𝐿𝑚𝑜𝑑𝑒𝑙 dataset and then tested 

on the 𝑇𝑒𝑠𝑡𝑀𝐿𝑚𝑜𝑑𝑒𝑙 dataset to distinguish two and three classes, as their results are shown in Table S 6 and 

Table S 7. 

 

Classifier Precision [%] Recall [%] F1-score [%] Accuracy [%] 

Decision tree 50.90 ± 0.20 50.70 ± 3.30 50.40 ± 1.80 50.70 ± 3.30 

XGB Classifier 64.30 ± 0.00 60.00 ± 0.00 61.10 ± 0.00 60.00 ± 0.00 

SVM 81.00 ± 0.00 73.30 ± 0.00 66.70 ± 0.00 73.30 ± 0.00 

Random forest 49.80 ± 9.70 56.70 ± 9.10 52.40 ± 8.40 56.70 ± 9.10 

Logistic regression 84.60 ± 0.00 80.00 ± 0.00 77.00 ± 0.00 80.00 ± 0.00 

Ensemble 72.60 ± 11.50 72.00 ± 11.90 72.00 ± 11.60 72.00 ± 11.90 



Table S 4 - Mean ± standard deviation of the overall performance for classification methods to distinguish two 

classes: control (0h) from degenerated cartilage samples by trypsin treatment (2h-4h). All classification 

methods were trained and evaluated 10 times. 

 

Classifier Precision [%] Recall [%] F1-score [%] Accuracy [%] 

Decision tree 18.90 ± 6.80 19.30 ± 6.30 19.00 ± 6.40 19.30 ± 6.30 

XGB Classifier 28.30 ± 0.00 33.30 ± 0.00 30.30 ± 0.00 33.30 ± 0.00 

SVM 11.10 ± 0.00 33.30 ± 0.00 16.70 ± 0.00 33.30 ± 0.00 

Random forest 37.20 ± 12.90 4.0 ± 7.40 36.90 ± 7.70 44.00 ± 7.40 

Logistic regression 68.10 ± 0.00 53.30 ± 0.00 50.20 ± 0.00 53.30 ± 0.00 

Ensemble 66.50 ± 2.60 57.30 ± 3.30 55.90 ± 2.50 57.30 ± 3.33 

Table S 5 - Mean ± standard deviation of the overall performance for classification methods to distinguish 

three classes: control (0h), degenerated at 2h, and degenerated at 4h. All classification methods were trained 

and evaluated 10 times. 

 

Classifier Precision [%] Recall [%] F1-score [%] Accuracy [%] 

Decision tree 84.60 ± 0.00 80.00 ± 0.00 77.00 ± 0.00 80.00 ± 0.00 

XGB Classifier 79.50 ± 0.00 80.00 ± 0.00 79.36 ± 0.00 80.00 ± 0.00 

SVM 44.40 ± 0.00 66.70 ± 0.00 53.30 ± 0.00 66.70 ± 0.00 

Random forest 70.80 ± 5.00 72.00 ± 15.20 65.10 ± 5.00 72.00 ± 5.00 

Logistic regression 93.90 ± 0.00 93.30 ± 0.00 93.10 ± 0.00 93.30 ± 0.00 

Table S 6 - Mean ± standard deviation of the overall performance for classification methods to distinguish two 

classes: control (0h) from degenerated cartilage samples by collagenase treatment (6h-24h). All classification 

methods were trained and evaluated 10 times. 

 

Classifier Precision [%] Recall [%] F1-score [%] Accuracy [%] 

Decision tree 66.70 ± 7.50 59.30 ± 7.00 57.90 ± 6.90 59.30 ± 7.00 

XGB Classifier 50.00 ± 0.00 53.30 ± 0.00 47.20 ± 0.00 53.30 ± 0.00 

SVM 11.10 ± 0.00 33.30 ± 0.00 16.70 ± 0.00 33.30 ± 0.00 

Random forest 62.40 ± 12.60 58.70 ± 7.20 55.30 ± 9.60 58.70 ± 7.20 

Logistic regression 79.20 ± 0.00 73.30 ± 0.00 72.90 ± 0.00 73.30 ± 0.00 

Ensemble 88.80 ± 1.40 86.00 ± 2.00 84.90 ± 2.60 86.00 ± 2.00 

Table S 7 - Mean ± standard deviation of the overall performance for classification methods to distinguish 

three classes: control (0h), degenerated at 6h, and degenerated at 24h. All classification methods were trained 

and evaluated 10 times. 

 



 

Figure S 3 - Confusion matrices relative to the ensemble methods for trypsin and collagenase treatments at 

different time points. 

 

Figure S 4. A typical F-D curve acquired on untreated cartilage (a). The black line is the approaching part of 

the F-D curve-cycle, where the distance between the AFM tip is decreasing until the contact point. The initial 

part of the curve, conventionally positioned on the right in the graphical representation, is characterized by a 

horizontal baseline; here the tip-sample distance is large enough to exclude the presence of any interaction 

between probe and sample. After reaching the maximum force applied, the tip is retracted to the initial position. 

The definition of a contact point is fundamental for the application of the Hertz-Sneddon's model. Although 

applying the maximum displacement range allowed by the AFM system, the tip cannot detach from the surface 

of most of the collagenase treated samples, as demonstrated by the absence of the horizontal le baseline in the 

F-D curve of the panel b. The sticky nature of the collagenase-treated cartilages precluded the calculation of 

the elastic modulus in several samples. For this reason, the Young’s modulus of collagenase-treated samples 

here indicated can be considered as representative of a subpopulation of the samples. However, the experiments 

demonstrated the extreme softening effect of collagenase-treatment.   

 

a b 



 

Figure S 5 – Thickness measurement derived from histology and ultrasound analyses for trypsin and 

collagenase treatment. An average thickness value was calculated for each sample by averaging along the RF 

lines. Trypsin treatment did not affect the thickness of the samples, while significant differences in the 

thickness were found after collagenase treatment in both histological and ultrasound analyses. Kruskal-Wallis 

with Dunn’s multiple comparisons test was used for statistical analysis: **** p < 0.0001. 



 

Figure S6: Scheme of the three sections of the osteochondral plug that were cut: α, β and γ (a). Images of 

Safranin O - Fast Green staining indicating both the total (b) and the positive cartilage (c) areas selected for 

quantification. 

 



 

Figure S 7 - As the samples were acquired by punching bovine articular cartilages, they are relatively of a big 

size for AFM (diameter: 6mm, length: 5/6 mm). Consequently, we designed a custom sample holder made of 

Teflon to accommodate this size. This holder serves a dual purpose: it allows for securing the sample with a 

bottom screw and enables the adjustment of the sample's angle to avoid tilting of the sample surface, unsuitable 

for AFM applications. Furthermore, it features a container to house the liquid buffer and enzymes while the 

AFM probe can access the chamber. 

 

  



Appendix Section  

a) Quantitative ultrasound parameters 

Complexity and irregularity 

1. Approximate entropy (ApEn): it measures correlation, symmetry, uncertainty, and complexity in 

a series. Smaller values indicate regular, predictable patterns, while larger values indicate 

irregularity and unpredictability. ApEn is defined by (1): 

 

𝐴𝑝𝐸𝑛 (𝑚, 𝑟, 𝑁) = 𝜑𝑚(𝑟) − 𝜑𝑚+1(𝑟) (1) 
 

 where N is the time series signal, m is the embedding dimension, r is the tolerance for accepting 

changes, 𝜑𝑚(𝑟) =  
1

𝑁−𝑚+1
∑ ln C𝑖

𝑚(𝑖)𝑁−𝑚+1
𝑖=1 , and C𝑖

𝑚 =
𝑁𝑚(i)

𝑁−𝑚+1
;  1 ≤ 𝑖 ≤  𝑁 − 𝑚 + 1 

 

2. Sample entropy (Sampen): it quantifies the negative conditional probability that two similar 

sequences of m points (A) remain similar at the next point m+1 (B). Sampen describes the 

complexity of time series, and it often is used for diagnosing diseased states in physiological time 

series. It is defined by (2): 

 

𝑆𝑎𝑚𝑝𝑒𝑛 (𝑚, 𝑟, 𝑁) = − log
𝐴

𝐵
 (2) 

 

where N is the length of the original series, m is the length of the sequences to be compared, r is the 
tolerance value to accept matches. 

 

3. Spectral entropy: it characterizes the disturbance present in a signal in the frequency domain. 

Higher values denote more uniform power spectral distribution, and lower values denote low level 

of uniformity of the data points. It is defined by (3): 

 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑃𝑟 ln 𝑃𝑟

𝑁

𝑟=1

 (3) 

 

where N refers to the length of data, 𝑃𝑟 is the proportion of r-th spectrum energy in all spectrum 

energy, and it can be denoted also as the proportion probability 𝑃𝑟 =
𝑆𝑟

∑ 𝑆𝑟
𝑁
𝑟=1

. 𝑆𝑟 (r = 1, 2, . . . , N) can 

be seen as energy partition of a time series in the frequency domain obtained by Fast Fourier 
Transform. 

 

4. Mean crossing: it counts the number of times a series crosses its mean value. 

 

5. Katz fractal dimension: it is an statistical index of complexity detail in a pattern of a series. It is 

defined by (4): 

 



𝐾𝑎𝑡𝑧 𝑓𝑟𝑎𝑐𝑡𝑎𝑙 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 =
log(𝑁)

log(𝑁) + log(𝑑/𝐿)
 

(4) 

 where N denotes the total length of a series,  d is the maximum distance between the initial point 
to the other points, and L is the length of the waveform. They can be defined as 𝑑 = max(𝑥𝑖 − 𝑥1) 

and 𝐿 = ∑ (𝑥𝑖+1 − 𝑥𝑖)2𝑁−2
𝑖=0 . 

 

6. 50-th percentile: it defines the value located exactly in the middle of a series. This metric provides 

information about the central tendency of the data distribution. 

 

7. Standard deviation(Std): it measures the distribution of samples around the mean (�̅�) of a series. 

Low and high value of std denotes less and more spread of samples around �̅� of data, respectively.   

Std is defined by (5): 

 

𝑆𝑡𝑑 = √
1

𝑁
∑(𝑥𝑖  − �̅�)2

𝑁

𝑖=1

 (5) 

 

where N is the length of the time series signal, 𝑥𝑖 is the amplitude value at sampling point i, �̅� is the 
mean value of the series. 

 

8. Kurtosis: it measures data concentration in a distribution. Higher Kurtosis denotes a sharper peak 

and more concentrated values, while lower Kurtosis denotes a flatter distribution with dispersed 

data points. It helps understand data shape and their characteristics. Kurtosis is defined by (6): 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑁
∑(

𝑥𝑖 − �̅�

𝜎
)4

𝑁

𝑖=1

 
(6) 

 

 

 

 where N is the length of the time series signal, 𝑥𝑖 is the amplitude value at sampling point i, �̅� is 
the mean value of the series, while 𝜎 is its standard deviation of the series. 

For both the ApEn and Sampen metrics, the parameters m and r were set to fixed values of 2 and 0.2 

times the standard deviation of the series, respectively. These parameter values have been suggested 

for cases of N ≥ 100 [S1]. 

Cartilage structure 

 

9. Reflection index (RI). RI is calculated at the water-cartilage interface (RIc) and at the cartilage-

bone interface (RIb), as described in the equation (7): 

 

𝑅𝐼 = max(𝑅𝐹) − min (𝑅𝐹) (7) 

 

where RF indicates the magnitude of the RF signal for each scanning line. The index of the first 

peak in the RF signal (indpeak_start) was identified on the squared RF signal, using a threshold 

method with respect to the baseline (i.e., the signal from water). Then, the peak-to-peak value RIc 



was calculated by identifying the maximum and minimum peak value in a window of 20 samples 

(< 1 mm) starting from indpeak_start; while RIb was measured by identifying the maximum and 

minimum peak value in a window of 100 samples (around 2 mm) taking the end of the cartilage 

interface (RIc + 30 samples) as a starting point.  

 

10. Bone propagation. This metric calculates how much the signal spreads after the second reflection 

at the bone surface. It is calculated as difference between the index of the last peak in the signal 

(𝑖𝑛𝑑𝑝𝑒𝑎𝑘_𝑒𝑛𝑑) and the index of the maximum peak in the signal (𝑖𝑛𝑑𝑅𝐼𝑏
), as described in (8): 

 

𝐵𝑜𝑛𝑒 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑛𝑑𝑝𝑒𝑎𝑘_𝑒𝑛𝑑 − 𝑖𝑛𝑑𝑅𝐼𝑏
 (8) 

 

11. Cartilage length. The cartilage length was calculated in terms of difference between the index of 

the maximum peak (𝑖𝑛𝑑𝑅𝐼𝑏
) and the index of the first peak in the signal (𝑖𝑛𝑑𝑝𝑒𝑎𝑘_𝑠𝑡𝑎𝑟𝑡), identified 

as described in (9).  

 

𝐶𝑎𝑟𝑡𝑖𝑙𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑖𝑛𝑑𝑅𝐼𝑏
− 𝑖𝑛𝑑𝑝𝑒𝑎𝑘_𝑠𝑡𝑎𝑟𝑡 (9) 

 

12. Cartilage thickness. The cartilage thickness was calculated as described in (10).  

 

𝐶𝑎𝑟𝑡𝑖𝑙𝑎𝑔𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =  𝑐𝑐  ×  
𝑇𝑂𝐹

2
 (10) 

 

where TOF is the time of flight calculated from the cartilage top surface to the bone surface and cc is 

the speed of sound of the cartilage (1610 m/s for the healthy cartilage, 1595 m/s after the trypsin 

treatment and 1580 m/s after the collagenase treatment [S2]). The TOF was calculated by dividing 

the cartilage length by the sampling frequency of the system (40 MHz). 

 

Compressed features: F1, F2, F3, F4 and F5  

These features were extracted by encoding the data from each RF line using the encoder layers of the 

autoencoder network (see Figure S2a).  

To encode an input vector 𝑥 ≡ 𝑥𝑠
𝑙 ∈ ℝ300, the encoder was mapped linearly to the input with a set of 

weights 𝑊encoder
1 ∈  ℝ𝐾1 with 𝐾1 units. Then, a bias vector 𝑏encoder

1 ∈  ℝ𝐾1 was added and a nonlinear 

activation function 𝑓encoder was applied to produce the outputs of the first layer ℎ1 = 𝑓encoder(𝑊encoder
1  ∙

𝑥 +  𝑏encoder
1 ) ∈  ℝ𝐾1. This output was used to compute the output of the next layer as ℎ2 = 

𝑓encoder(𝑊encoder
2 ∙ ℎ1 +  𝑏encoder

2 ) ∈  ℝ𝐾2. Then, the compressed features (final representation of the 

encoder layers)  𝑧 =  𝑓encoder(𝑊encoder
3 ∙ ℎ2  +  𝑏encoder

3 ) ∈  ℝ𝐾3  was computed. In our study, 𝑧 

represents the feature vector containing the compressed features F1, F2, F3, F4 and F5. 

During the training phase, the input was reconstructed using the decoder layers. To obtain the 

reconstructed input  �̂� ≡ �̂�𝑠
𝑙 ∈ ℝ, the decoder transformed the encoded representation 𝑧 using another 

set of weights 𝑊decoder
3  ∈  ℝ𝐾3  as ℎ̂2 = 𝑓decoder(𝑊decoder

3 ∙ 𝑧 +  𝑏decoder
3 ) ∈  ℝ𝐾2 until obtaining the final 

reconstruction �̂� = 𝑓decoder(𝑊decoder
1 ∙ ℎ̂1 +  𝑏decoder

1 ) ∈  ℝ300.  



Here, 𝑊decoder
𝑙  and 𝑏decoder

𝑙  denoted the weights matrix and the bias for decoder layer 𝑙, and 𝑓decoder was 

the activation function for the decoder. We set 𝐾1, 𝐾2, and 𝐾3 to 600, 300, and 5 respectively. Both 

the 𝑓encoder and 𝑓decoder were configured as Leaky ReLU [S3], and they followed a batch normalization 

layer.  

Using the constructed training datasets {𝑿𝒔
∗}𝑛=1

𝑁TrypsinTraining × 30
  and {𝑿𝒔

∗}𝑛=1

𝑁CollagenaseTraining × 30
, both 

reconstruction functions 𝑓𝑡𝑟𝑦𝑝𝑠𝑖𝑛: 𝑥∗ → �̂�∗  and 𝑓𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛𝑎𝑠𝑒: 𝑥∗ → �̂�∗  were learned separately by 

minimizing the Mean Square Error  between the input data 𝑥∗ and its decoded counterpart �̂�∗. Where 

𝑁TrypsinTraining = 33 and 𝑁CollagenaseTraining = 27, denoted the number of specimens allocated for 

training within the trypsin and collagenase groups, respectively. We used the optimizer Adam with a 

batch size of 8 and a number of epochs of 200 [S4]. Figure S2b illustrates the learning of the 

autoencoder networks showing reconstruction errors lower than 0.0166. 

 

b) Data preparation for building ML models 

Data preprocessing. Whitin the datasets (complexity and irregularity, cartilage features, compressed 

features), each cartilage specimen was characterized by a feature matrix 𝐹 = 𝑁Features × 𝑛lines. The 

values of 𝑁Features were 8, 4, and 5 for complexity and irregularity features, cartilage features and 

compressed features, respectively. While 𝑛lines was related to dimension of the ROI used for the 

analysis (𝑛lines = 30 for ROI1 and 𝑛lines = 21 for ROI2). To handle the variations in the maximum 

signal amplitude we implemented a preprocessing normalization step for each RF line (𝑥 ≡ 𝑥𝑠
𝑙 ∈

ℝ300). This step was carried out dividing each RF line data by its maximum absolute value. By 

standardizing all features, they could be seamlessly integrated, allowing subsequent models to learn 

weights more effectively. 

Feature selection. Irrelevant features often pose a challenge during the model training process, and 

some noise features can even lead the model to deviate from the correct path. To address this issue, a 

feature selection process was employed to choose a subset of the most informative features that can 

effectively describe the input data and ensure accurate prediction results [S5].  

In our study, after normalizing the extracted features, we applied the LinearSVC algorithm  using the 

L1 norm regularization [S6] as a penalty item. This algorithm enabled the selection of features that 

exhibited a significant association with cartilage degeneration. To filter out the essential features from 

each complete dataset, we used a regularization parameter C = 2.  

For the three datasets derived from the trypsin group, the feature selection step resulted in the 

selection of the top 33, 35 and 25 most informative features from the original sets of 240 

(𝑛lines(30)  ×  𝑁Features(8)), 84 (𝑛lines(21)  × 𝑁Features(4)) and 150 (𝑛lines(30)  × 𝑁Features(5)) 

features, respectively. Similarly, for the three datasets derived from the collagenase treatment, the 

feature selection step identified the most important 32, 30 and 40 features out of the 240 features. The 

overall importance scores were calculated by aggregating the feature weights from all RF lines. The 

importance scores of the seventeen explored metrics are presented in Figure S3.  

Feature fusion. In this process, we integrated the three datasets of QUS metrics, considering the 

samples allocated for training and testing as separate datasets. To do this, for the three pairs of 

datasets, we first selected the most crucial features based on the scores obtained from the feature 

selection analysis. Then, we created the Training
MLmodel

 and TestMLmodel datasets for the trypsin 

treatment group by concatenating the top 33, 35, and 25 most informative features for each cartilage 



sample. Similarly, for the collagenase treatment group, the Training
MLmodel

 and TestMLmodel  datasets 

were established by concatenating the top 32, 30, and 40 most informative features for each cartilage 

sample. 
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