
Amir Parnianifard
PhD, PMP®, IEEE Senior Member

Glasgow College, University of Electronic Science and

Technology of China, Chengdu, Sichuan, P.R.China

611731.

E-Mail: amir.p@uestc.edu.cn ; amir.parnianifard@glasgow.ac.uk

Computational Intelligence
Assisted Engineering Design
Optimization (using MATLAB®)

mailto:amir.p@uestc.edu.cn
mailto:amir.parnianifard@glasgow.ac.uk
https://www.researchgate.net/profile/Amir-Parnianifard
https://scholar.google.com/citations?user=G9TebGYAAAAJ&hl=en
https://www.webofscience.com/wos/author/record/26761
https://orcid.org/0000-0002-0760-2149
https://www.linkedin.com/in/amir-parnianifard-28749b91/

Research Interest
✓ Engineering Design Optimization

✓ Surrogate Modelling

✓ Uncertainty Quantification

✓ Robust Design

✓ Digital-Twins

✓ Computational Intelligence

✓ Optimal Control

✓ Robot Trajectory Planning

✓ Wireless Sensor Networks.

Note: All MATLAB® codes provided in this
presentation, have been written and
augmented by the presenter (Amir
Parnianifard).

Engineering Optimization

Optimization is the process of finding values of
the variables that minimize or maximize the
objective function while satisfying the
constraints.

𝑀𝑖𝑛 𝑜𝑟 𝑀𝑎𝑥: 𝑓 𝑋

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑔𝑗 𝑋 ≤ 0,

 𝑗 = 1,2, … , 𝐽

✓ Linear versus Nonlinear Programming
✓ Continuous Optimization versus Discrete Optimization.
✓ Unconstrained Optimization versus Constrained Optimization.
✓ Single or Many Objectives.
✓ Deterministic Optimization versus Stochastic Optimization.

Eng. Optimization using Evolutionary Algorithms

➢ In computational intelligence, an Evolutionary
Algorithm (EA) is a subset of evolutionary
computation, a generic population-based
metaheuristic optimization algorithm. An EA uses
mechanisms inspired by biological evolution, such as
reproduction, mutation, recombination, and
selection.

➢ Genetic Algorithm (GA) is the most popular type of
EA. A search heuristic known as a genetic algorithm
was motivated by Charles Darwin's theory of natural
selection[57], [58].

➢ Differential Evolution (DE) is based on vector
differences and is therefore primarily suited for
numerical optimization problems.

Differential Evolution Algorithm
The algorithmic procedure of DE can be summarized as follows:

1. Randomly select the 𝑁 individuals uniformly on the intervals 𝑥𝑗
𝐿, 𝑥𝑗

𝑈 , where 𝑥𝑗
𝐿 and 𝑥𝑗

𝑈are the upper

and lower bounds of decision parameters.

2. Each of the 𝑁 individuals undergoes mutation, recombination, and selection. Mutation can expand the
search space.

3. For a given exact individual 𝑢, randomly select three parameters such that the indices 𝑖, 𝑟1 , 𝑟2 and 𝑟3
are distinct.

4. Add the weighted difference of two of the vectors to the third 𝑟𝑖+1 = 𝑟1 + 𝛼 𝑟2 − 𝑟3 , which 𝛼 called a
mutation factor and can be a constant from 0,2 , and 𝑟𝑖+1 is called the donor vector.

5. These three parameters are replaced to selected individual 𝑢 if the 𝑟𝑎𝑛𝑑 () > 𝐶𝑅, where 𝐶𝑅 is a
constant probability in 𝑈 0,1 .

6. If the fitness function of the updated individual is less than the original individual 𝑢, then 𝑢 is removed
from the set of individuals, and an updated one is replaced.

7. Until a stopping condition is met, mutation, recombination, and selection proceed.

DE Optimizer (MATLAB Code)
Input: Fitness function of problem, Lower and Upper limits of design variables, Number of Initial Papulation,
and Maximum Number of Iteration by Algorithm
Output: The Optimum results for design variables and the relevant fitness function (in the optimum point).

function [Opt_var,Opt_cost] = DEO(objFcn,LoB,UpB,NoPapulation,MaxIteration)
% This is the code for Differential evolution (DE)
%% Parameter Adjustement
nVar = length(LoB);
CR = 0.5; % Crossover Rate
FF = 1-exp(-norm(0.05*(UpB-LoB)))* rand();
%Initial Papulation
individuals = (UpB-LoB).*rand(NoPapulation ,nVar) + LoB;
% figure('Position', [400, 400, 800, 300]); hold on
%% Optimization
for iter = 1 : MaxIteration
for i = 1:NoPapulation
ind0 = individuals;
ind0(i,:) = [];
X = individuals(i,:);
Cost_X = objFcn(X);
cost(i,1) = Cost_X;
var_X(i,:) = X;
idx = randperm(NoPapulation-1,3);
X1 = ind0(idx(1),:);
X2 = ind0(idx(2),:);
X3 = ind0(idx(3),:);
d_rand = randperm(nVar,1);

for d = 1:nVar
if d == d_rand || rand <= CR
u(d) = X1(d) + FF *rand()* (X2(d) - X3(d));
if u(d) < LoB(d) || u(d) > UpB(d)
u(d) = (UpB(d) - LoB(d))/2 + LoB(d);
end
else
u(d) = X(d);
end
end
if objFcn(u) < Cost_X
individuals(i,:) = u;
end
end
[best_cost(iter),nr] = min(cost);
best_var(iter,:) = var_X(nr,:);
end
[Opt_cost,nr] = min(best_cost);
Opt_var = best_var(nr,:);
end

Metamodeling (Learning From Data)
❑ Shortcoming: High Computation Cost in case of using

evolutionary algorithm for simulation-optimization

• In solving complex real- world engineering optimization
problems, an evolutionary algorithm may require thousands
of function evaluations in order to provide a satisfactory
solution, whereas each evaluation requires hours of
computer run-time.

❑ Less-Expensive methods to handle complex simulation
modeling and complex problems

• To overcome computation cost, researchers have applied
sampling-based learning methods such as Artificial Neural
Networks, Radial Basis Functions (RBF), Kriging (Gaussian
Process) and polynomial regression model. These methods
can ‘learn’ the problem behaviors and approximate the
function value. These approximation models can speed up
the function evaluation as well as estimation the function
value with an acceptable accuracy.

Metamodel Based Simulation-Optimization

Step 1: Choosing an experimental design for generating design points.

Step 2: Run original simulation model (function evaluation) according to
each generated design points and collect the relevant responses.

Step 3: Fitting the metamodel over the observed input-output dataset.

Step 4: Validating the metamodel.

Step 5: Using fitted metamodel (cheep) instead of original simulation
model (expensive) for optimization and sensitivity analysis.

Experimental Designs

The idea of the classical DOE
is to reach as much
information as possible from
a limited number of
experiments.

A good experimental design
has to be space filling and
non- collapsing rather than to
concentrate on the boundary.

Experimental Designs

• One of the common method for designing simulation experiments is LHS.

• LHS was first introduced by McKay et al. (1979).

• In general, for 𝑛 input variables, 𝑚 sample points are produced randomly
into 𝑚 intervals or scenarios (with equal probability). For the particular
instance the LHS design for 𝑚 = 4,𝑛 = 2 is shown in here

Latin Hypercube Sampling (LHS)

𝑥2

𝑥1

1. In LHS, each input range divided into 𝑚 subranges (integer) with equal probability magnitudes and numbered from

1 to 𝑚.

2. LHS place all 𝑚 intervals by random value between lower and upper bounds relevant to each interval, since each

integers 1,2, … , 𝑚 appears exactly once in each row and each column of the design space. Note that, within each cell

of design, the exact input value can be sampled by any distribution, e.g., uniform, Gaussian or etc.

Three common choices are available to ensure appropriate space filling of sample points in LHS design:
1. Minimax: This design tries to minimizing the maximum distances in design space between any location for each design

point and its nearest design points.
2. Maximin: In this design attempt to be maximized the minimum distance between any two design points.
3. Desired Correlational function: Inspired by (Iman & Conover, 1982) in the case of non-independent multivariate input

variables the desired correlation matrix can be used to produce distribution free sample points in LHS.

Latin Hypercube Sampling (LHS)

function [LHS_Samp] = LHS_Design(NSamp,MinRangeSamp,MaxRangeSamp,Type)
[~,NVar]=size(MinRangeSamp);
switch Type
case 'maximin'
Train_lhs = lhsdesign(NSamp,NVar,'criterion','maximin');
case 'none'
Train_lhs = lhsdesign(NSamp,NVar,'criterion','none');
case 'correlation'
Train_lhs = lhsdesign(NSamp,NVar,'criterion','correlation');
end
LHS_Samp=[];
for sa = 1:NSamp
for va = 1:NVar
L = MinRangeSamp(1,va);
U = MaxRangeSamp(1,va);
X = Train_lhs(sa,va)*(U-L)+L;
XR(1,va) = X;
end
LHS_Samp = [LHS_Samp;XR];
end
end

Note: the MATLAB® function “lhsdesign”
is located in Deep Learning Toolbox.
Make sure install Deep Learning
Toolbox.

Input: Number of sample points, Lower
and Upper bound for design variables,
and type of LHS.

Output: Designed sample points in
upper and lower range.

MATLAB® code

Metamodel 1: Polynomial Regression (PR)

Commonly, the main purpose of PR is the approximation of
true response function based on Taylor series expansion
around a set of design points.

𝑦 = 𝑓 𝑋 = መ𝛽0 + ෍

𝑖=1

𝑚

መ𝛽𝑖 𝑥𝑖 + 𝜀

𝑦 = 𝑓 𝑋

= መ𝛽0 + ෍

𝑖=1

𝑘

መ𝛽𝑖 𝑥𝑖 + ෍

𝑖=1

𝑘

መ𝛽𝑖𝑖 𝑥𝑖
2 + ෍

𝑖=1

𝑘

෍

𝑖<𝑗=2

𝑘

መ𝛽𝑖j 𝑥𝑖𝑥𝑗 + 𝜀

First Order

Second Order
𝒚 = 𝑿𝜷 + 𝜺

𝜷 = 𝑿′𝑿 −1𝑿′𝒚

The least-squares estimators must satisfy
𝜕𝐿

𝜕𝛽
, thus the least squares estimator of 𝛽 is obtained by:

𝒚 =

𝑦1
𝑦2

⋮
𝑦𝑛

𝑿 =

1 𝑥11 𝑥12

1 𝑥21 𝑥22

⋮ ⋮ ⋮
1 𝑥𝑛1 𝑥𝑛2

… 𝑥1𝑚

… 𝑥2𝑚

 ⋮
… 𝑥𝑛𝑚

𝜷 =

𝛽1

𝛽2

⋮
𝛽𝑛

, 𝜺 =

𝜀1
𝜀2

⋮
𝜀𝑛

Note: To train different order of PR, the MATLAB® toolbox below suggested to be used.

https://www.mathworks.com/matlabcentral/fileexchange/34765-polyfitn

https://www.mathworks.com/matlabcentral/fileexchange/34765-polyfitn

Metamodel 2: Radial Basis Function (RBF)

The RBF employs a linear combination of independent symmetric
functions based on the Euclidean distances to compute the
approximation function of response (interpolation model).

ℎ x = 𝑒𝑥𝑝 −γ x − x𝑛
2

Each (x𝑛, 𝑦𝑛) influences ℎ x based on x − x𝑛

Standard form of RBF:

መ𝑓 x = ෍

𝑛=1

𝑁

𝑤𝑛𝑒𝑥𝑝 −γ x − x𝑛
2

The learning algorithm to find w1, … , wN by minimizing the sum square
error of model based on the training data points (x1, 𝑦1), …., (x𝑁, 𝑦𝑁)

The RBF interpolate the sample points, the SSE is expected to be 𝑆𝑆𝐸 ≈ 0.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝑆𝐸 = ෍

𝑛=1

𝑁

𝑓 𝑥𝑛 − መ𝑓 𝑥𝑛

2

N equations N unknowns: 𝑓 𝑥𝑛 = መ𝑓 𝑥𝑛 for 𝑛 = 1, … , 𝑁

𝑋0

𝑑𝑖 = 𝑋0 − 𝐶𝑖

𝑋1

Radial Basis Function (RBF)

𝝋 =

𝑒𝑥𝑝 −γ x1 − x1
2 … 𝑒𝑥𝑝 −γ x1 − x𝑁

2

𝑒𝑥𝑝 −γ x2 − x1
2 … 𝑒𝑥𝑝 −γ x2 − x𝑁

2

⋮ ⋮ ⋮
𝑒𝑥𝑝 −γ x𝑁 − x1

2 … 𝑒𝑥𝑝 −γ x𝑁 − x𝑁
2

𝒘 =

𝑤1
𝑤2

⋮
𝑤𝑛

, 𝒚 =

𝑦1
𝑦2

⋮
𝑦𝑛

𝝋. 𝒘 = 𝒀

If 𝝋 is invertible then 𝒘 = 𝝋−𝟏. 𝒀

“exact interpolation”

MATLAB® code

function Ps = RBF_Sur(X_S,R_S,x0)
Nf = size(R_S,2);
for f = 1:Nf
Y = R_S(:,f);
N = size(X_S,1);
phi = zeros(N,N);
gamma = 0.05;
for i = 1 : N
xi = X_S(i,:);
for j = 1 : N
xj = X_S(j,:);
rb = exp(-gamma*norm(xi-xj)^2) ;
phi(i,j) = rb ;
end
end
W = inv(phi)*Y;
for s = 1 : N
xs = X_S(s,:);
rbs = exp(-gamma*norm(x0-xs)^2);
hx(s) = W(s) * rbs ;
end
Ps(f) = sum(hx);
end
end

MATLAB code for RBF:

Input: Input data (designed training sample points), output data (collected
responses from original model over designed sample points), and X0 (new
sample point that we are interested to predict response for this point using RBF.

Output: The approximated response for point X0 .

Metamodel Validation

R-square Index: The 𝑅2 coefficient is defined as: 𝑅2= 1 −
σ𝑗=1

𝑚 𝑦𝑗 − ෝ𝑦𝑗
2

σ𝑗=1
𝑚 𝑦𝑗 − ഥ𝑦𝑗

2 = 1 −
𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

Relative Maximum Absolute Error (RMAE)

While the larger magnitude of R-square indicates better overall accuracy, the smaller amount of RMAE indicates the
smaller local error.

𝑅𝑀𝐴𝐸 =
max 𝑦1 − ො𝑦1 , 𝑦2 − ො𝑦2 , … , 𝑦𝑚 − ො𝑦𝑚

1
𝑚

σ𝑗=1
𝑚 𝑦𝑗 − ෝ𝑦𝑗

2

Cross-validation

The cross-validation method can be used when collecting new data or further information about simulation model is

costly. The cross validation uses an existed data and does not require to re-run of the expensive simulation. This

method also called leave-𝑘-out cross-validation to validate metamodel (i.e., in each run 𝑘 sample points would be

removed from an initial training sample points). The leave-one-out cross validation (𝑘 = 1) is briefly explained in

follows that is most popular than others.

Leave One-Out Cross-Validation

Step 1: Delete 𝑠𝑡ℎ input combination and relevant output from the complete set of 𝑙
combination (𝑠 = 1,2, … , 𝑙).

Step 2: Approximate the new model by employing 𝑙 − 1 remain rows 𝑠−1.

Step 3: Predict output for left-out point (𝑠−1) with metamodel which obtained from
Step 2.

Step 4: Implementing the preceding three previous steps for all input combination
(sample points) and computing 𝑛 predictions (ො𝑦𝑠).

Step 5: The prediction result can be compared with the associated output in original
simulation model. The total comparison can be done through a scatter plot or eyeball to
decide whether or not metamodel is acceptable

Uncertainty in Model
In practice, most engineering problems have been affected by
different sources of variations. One of the main challenges of
SO is address uncertainty in the model, by a variety of
approaches, such as robust optimization, stochastic
programming, random dynamic programming, and fuzzy
programming. Uncertainty is undeniable which effect on the
accuracy of simulation results while making variability on them.
In uncertain condition, robust SO allows us to define the
optimal set point for input variables while keeping the output
as closer as possible to ideal point, also with at least variation.

Metamodel-Based Robust Simulation Optimization
Robust simulation-optimization is about solving simulation model with uncertain data in a computationally
tractable way. The main goal of robustness strategy is to investigate the best level of input factors setting for
obtaining desirable output goal which is insensitive to the changeability of uncertain parameters.

Step 1: Conduct crossed array experimental design

Crossed two sets of sample points with dimension 𝑠 × 𝑟, when (𝑠 = 1,2, … , 𝑙) and (𝑟 = 1,2, … , 𝑚). First
for design factors (𝑋 = 1,2, … , 𝑛𝑥) as an inner array (𝑠 × 𝑛𝑥). Second for uncertain variables (𝑍 =
1,2, … , 𝑛𝑧) as an outer array (𝑟 × 𝑛𝑧). In this context, LHS method is used in order to design sample points
in both the inner and the outer array sets.

Due to the stochastic nature of the simulation model, repeated runs of the simulation model with the
same combination of input variables, lead to different outputs. Furthermore, each input combination (𝑠 =
1,2, … , 𝑙) repeats 𝑚 times (𝑟 = 1,2, . . . , 𝑚), while 𝑚 is the number of scenarios with uncertain variables.
If 𝑌 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑠) is the 𝑠-dimensional vector with the simulation output, then the mean and variance
for each input combination are computed.

Algorithmic Steps

Metamodel-Based Robust Simulation Optimization

Step 2: Run simulation model

Run the simulation model for each crossed (𝑠 × 𝑟)
sample point and collect simulation outputs (𝑦𝑠𝑟).

Step 3: Compute mean and variance for each input
combination

Given that 𝑠 = (1,2, … , 𝑙) is the vector of sample points
(input combination). Each input combination (𝑠) is
repeated 𝑚 times based on uncertainty scenarios.
Therefore, 𝑌 is the 𝑠 × 𝑚 matrix of simulation’s outputs,
and mean ഥ𝑦𝑠 and variance 𝜎s

2 of the simulation model
are computed by

ഥ𝑦𝑠 = ෍

𝑟=1

𝑚

𝑤𝑟. 𝑦𝑠𝑟 , 𝑓𝑜𝑟 (𝑠 = 1,2, … , 𝑙) 𝜎𝑠
2 = ෍

𝑟=1

𝑚

𝑤𝑟 . 𝑦𝑠𝑟
2 − ෍

𝑟=1

𝑚

𝑤𝑟 . 𝑦𝑠𝑟

2

, 𝑓𝑜𝑟 (𝑠 = 1,2, … , 𝑙)

Metamodel-Based Robust Simulation Optimization

Robust dual
surface model

𝑀𝑖𝑛 𝑜𝑟 𝑀𝑎𝑥: 𝑴𝒆𝒂𝒏
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑺𝒕𝒅 ≤ 𝜺

Step 4: Fit input/output data with surrogate model

Fit one surrogate model (e.g., Kriging, RBF, or PR) for mean and another one for variance of output. Here,
Kriging as a modern global surrogate model is used.

Step 5: Validate both surrogate models, using leave-one-out cross-validation

Step 6: Estimate the Pareto frontier by obtaining robust optimal solutions performing dual response
surface methodology

The optimal result depends on value of 𝜀 which can be chosen by the decision maker. Varying this
magnitude provides the capture of Pareto frontier (also called Pareto optimal efficiency) to make trade-off
between mean and variance of the model.

Metamodel-Based Robust
Simulation Optimization

Start

DOE for design

variables (inner array)

DOE for uncertain

variables (outer array)

Run simulation model

and gain output

Compute mean for

each input

combination

Compute variance for

each input

combination

Fit metamodel over

variance

Fit metamodel over

mean

Cross-validationCross-validation

Accept both metamodels

Robust optimization

model

Estimate Pareto

frontier

Yes No

Finish

Flowchart of the proposed approach

Engineering Application (Examples in Electronics and Electrical Engineering)

Optimal Control Design

Optimal Antenna Design

Introduction
Optimal Placement of Antennas

(Maximize coverage, minimize
overlapping, minimize energy

consumption)

Wireless Sensor Networks

 (Localization, positioning of the sensor
nodes)

𝐷

Transmitter

Receiver

𝑦

𝑥

(𝑥𝑡, 𝑦𝑡)

(𝑥𝑟 , 𝑦𝑟)

𝑑𝑟,𝑡

Optimization of Packet Transmission

 (Scheduling and Node Parent Selection, Traffic Aware
Scheduling Algorithm, IEEE 802.15.4e time slotted

channel hopping)

Engineering Application (Examples in Electronics and Electrical Engineering)

Introduction
Robotics

(To optimal trajectory path design, real-
time intelligent control, and optimizing

robot performance.)

Electronics Circuit Design

(Evolutionary electronics, analog circuits,
digital electronics, logic optimization)

Engineering Application (Examples in Electronics and Electrical Engineering)

References
Books

Blondin, M. J., & Pardalos, P. M. (2019). Computational Intelligence and Optimization Methods for Control Engineering (Vol. 150). Retrieved
from http://link.springer.com/10.1007/978-3-030-25446-9

Dellino, G., & Meloni, C. (2015). Uncertainty Management in Simulation- Optimization of Complex Systems. Boston, MA, USA: Springer. Springer.

Kanevski, M., Pozdnoukhov, A., & Timonin, V. (2009). Machine Learning for Spatial Environmental Data. EPFL press.

Kleijnen, Jack, P. C. (2020). Chapter 10 Kriging: methods and applications. In Model order reduction (Vol. 1, pp. 1–466).

Kleijnen, J. P. C. C. (2015). Design and analysis of simulation experiments. Springer Proceedings in Mathematics & Statistics (Vol. 231). Springer,
Cham.

Myers, R., C.Montgomery, D., & Anderson-Cook, M, C. (2016). Response Surface Methodology: Process and Product Optimization Using Designed
Experiments-Fourth Edittion. John Wiley & Sons.

References
Review Papers:

Amaran, S., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2016). Simulation optimization: a review of algorithms and applications. Annals of
Operations Research, 240(1), 351–380.

Jin, R., Du, X., & Chen, W. (2003). The use of metamodeling techniques for optimization under uncertainty. Structural and Multidisciplinary
Optimization (Vol. 25).

Kleijnen, Jack, P. C. (2007). Kriging Metamodeling in Simulation: A Review. Tilburg University, CentER Discussion Paper; Vol. 2007- 13.
Operations research.

Li, Y. F., Ng, S. H., Xie, M., & Goh, T. N. (2010). A systematic comparison of metamodeling techniques for simulation optimization in Decision
Support Systems. Applied Soft Computing, 10(4), 1257–1273.

Soares do Amaral, J. V., Montevechi, J. A. B., Miranda, R. de C., & Junior, W. T. de S. (2022). Metamodel-based simulation optimization: A
systematic literature review. Simulation Modelling Practice and Theory, 114(August 2021).

Wang, G., & Shan, S. (2007). Review of Metamodeling Techniques in Support of Engineering Design Optimization. Journal of Mechanical Design,
129(4), 370–380.

References
Sample Publications by Presenter (Amir Parnianifard) in the scope of this presentation

Parnianifard, A, Azfanizam, A. S., Ariffin, M. K. A., & Ismail, M. I. S. (2018). Kriging-Assisted Robust Black-Box Simulation Optimization in Direct
Speed Control of DC Motor Under Uncertainty. IEEE Transactions on Magnetics, 54(7), 1–10.

Parnianifard, Amir, Azfanizam, A. S., Ariffin, M. K. A., & Ismail, M. I. S. (2018). An overview on robust design hybrid metamodeling : Advanced
methodology in process optimization under uncertainty. International Journal of Industrial Engineering Computations, 9(1), 1–32.

Parnianifard, Amir, Azfanizam, A. S., Ariffin, M. K. A., & Ismail, M. I. S. (2019a). Comparative study of metamodeling and sampling design for
expensive and semi-expensive simulation models under uncertainty. SIMULATION, 96(1), 89–110.

Parnianifard, Amir, Azfanizam, A. S., Ariffin, M. K. A., & Ismail, M. I. S. (2019b). Crossing weighted uncertainty scenarios assisted distribution-
free metamodel-based robust simulation optimization. Engineering with Computers, 36(1), 139–150.

Parnianifard, Amir, Chaudhary, S., Mumtaz, S., Wuttisittikulkij, L., & Imran, M. A. (2023). Expedited surrogate-based quantification of
engineering tolerances using a modified polynomial regression. Structural and Multidisciplinary Optimization, 66(3), 61.

Parnianifard, Amir, Mumtaz, S., Chaudhary, S., Imran, M. A., & Wuttisittikulkij, L. (2022). A data driven approach in less expensive robust
transmitting coverage and power optimization. Scientific Reports, 12, 17725.

Parnianifard, Amir, Rezaie, V., Chaudhary, S., Imran, M. A., & Wuttisittikulkij, L. (2021). New Adaptive Surrogate-Based Approach Combined
Swarm Optimizer Assisted Less Tuning Cost of Dynamic Production- Inventory Control System. IEEE Access, 9, 144054–144066.

Parnianifard, Amir, Zemouche, A., Chancharoen, R., Imran, M. A., & Wuttisittikulkij, L. (2020). Robust optimal design of FOPID controller for five
bar linkage robot in a Cyber-Physical System: A new simulation-optimization approach. PLOS ONE, 15(11), e0242613.

	Slide 1
	Research Interest
	Engineering Optimization
	Eng. Optimization using Evolutionary Algorithms
	Differential Evolution Algorithm
	DE Optimizer (MATLAB Code)
	Metamodeling (Learning From Data)
	Metamodel Based Simulation-Optimization
	Experimental Designs
	Experimental Designs
	Latin Hypercube Sampling (LHS)
	Metamodel 1: Polynomial Regression (PR)
	Metamodel 2: Radial Basis Function (RBF)
	Radial Basis Function (RBF)
	Metamodel Validation
	Leave One-Out Cross-Validation
	Uncertainty in Model
	Metamodel-Based Robust Simulation Optimization
	Metamodel-Based Robust Simulation Optimization
	Metamodel-Based Robust Simulation Optimization
	Metamodel-Based Robust Simulation Optimization
	Slide 22
	Introduction
	Introduction
	References
	References
	References
	Slide 28

