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Research Interest
✓ Engineering Design Optimization

✓ Surrogate Modelling

✓ Uncertainty Quantification

✓ Robust Design

✓ Digital-Twins

✓ Computational Intelligence

✓ Optimal Control

✓ Robot Trajectory Planning

✓ Wireless Sensor Networks.

Note: All MATLAB® codes provided in this 
presentation, have been written and 
augmented by the presenter (Amir 
Parnianifard).



Engineering Optimization

Optimization is the process of finding values of 
the variables that minimize or maximize the 
objective function while satisfying the 
constraints. 

𝑀𝑖𝑛 𝑜𝑟 𝑀𝑎𝑥: 𝑓 𝑋

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑔𝑗 𝑋 ≤ 0,

 𝑗 = 1,2, … , 𝐽 

✓ Linear versus Nonlinear Programming
✓ Continuous Optimization versus Discrete Optimization. 
✓ Unconstrained Optimization versus Constrained Optimization. 
✓ Single or Many Objectives. 
✓ Deterministic Optimization versus Stochastic Optimization.



Eng. Optimization using Evolutionary Algorithms

➢ In computational intelligence, an Evolutionary 
Algorithm (EA) is a subset of evolutionary 
computation, a generic population-based 
metaheuristic optimization algorithm. An EA uses 
mechanisms inspired by biological evolution, such as 
reproduction, mutation, recombination, and 
selection.

➢ Genetic Algorithm (GA) is the most popular type of 
EA. A search heuristic known as a genetic algorithm 
was motivated by Charles Darwin's theory of natural 
selection[57], [58]. 

➢ Differential Evolution (DE) is based on vector 
differences and is therefore primarily suited for 
numerical optimization problems. 



Differential Evolution Algorithm
The algorithmic procedure of DE can be summarized as follows:

1. Randomly select the 𝑁 individuals uniformly on the intervals 𝑥𝑗
𝐿, 𝑥𝑗

𝑈 , where 𝑥𝑗
𝐿 and 𝑥𝑗

𝑈are the upper 

and lower bounds of decision parameters. 

2. Each of the 𝑁 individuals undergoes mutation, recombination, and selection. Mutation can expand the 
search space. 

3. For a given exact individual 𝑢, randomly select three parameters such that the indices 𝑖, 𝑟1 , 𝑟2  and 𝑟3  
are distinct. 

4. Add the weighted difference of two of the vectors to the third 𝑟𝑖+1 = 𝑟1 + 𝛼 𝑟2 − 𝑟3 , which 𝛼 called a 
mutation factor and can be a constant from 0,2 , and 𝑟𝑖+1 is called the donor vector. 

5. These three parameters are replaced to selected individual 𝑢 if the 𝑟𝑎𝑛𝑑 () >  𝐶𝑅, where 𝐶𝑅 is a 
constant probability in 𝑈 0,1 .

6. If the fitness function of the updated individual is less than the original individual 𝑢, then 𝑢 is removed 
from the set of individuals, and an updated one is replaced.  

7. Until a stopping condition is met, mutation, recombination, and selection proceed. 



DE Optimizer (MATLAB Code)
Input: Fitness function of problem, Lower and Upper limits of design variables, Number of Initial Papulation, 
and Maximum Number of Iteration by Algorithm
Output: The Optimum results for design variables and the relevant fitness function (in the optimum point).

function [Opt_var,Opt_cost] = DEO(objFcn,LoB,UpB,NoPapulation,MaxIteration)
% This is the code for Differential evolution (DE)
%% Parameter Adjustement
nVar = length(LoB);
CR = 0.5; % Crossover Rate
FF = 1-exp(-norm(0.05*(UpB-LoB)))* rand();
%Initial Papulation
individuals = (UpB-LoB).*rand(NoPapulation ,nVar) + LoB;
% figure('Position', [400, 400, 800, 300]); hold on
%% Optimization
for iter = 1 : MaxIteration
for i = 1:NoPapulation
ind0 = individuals;
ind0(i,:) = [];
X = individuals(i,:);
Cost_X = objFcn(X);
cost(i,1) = Cost_X;
var_X(i,:) = X;
idx = randperm(NoPapulation-1,3);
X1 = ind0(idx(1),:);
X2 = ind0(idx(2),:);
X3 = ind0(idx(3),:);
d_rand = randperm(nVar,1);

for d = 1:nVar
if d == d_rand || rand <= CR
u(d) = X1(d) + FF *rand()* (X2(d) - X3(d));
if u(d) < LoB(d) || u(d) > UpB(d)
u(d) = (UpB(d) - LoB(d))/2 + LoB(d);
end
else
u(d) = X(d);
end
end
if objFcn(u) < Cost_X
individuals(i,:) = u;
end
end
[best_cost(iter),nr] = min(cost);
best_var(iter,:) = var_X(nr,:);
end
[Opt_cost,nr] = min(best_cost);
Opt_var = best_var(nr,:);
end



Metamodeling (Learning From Data)
❑ Shortcoming: High Computation Cost in case of using 

evolutionary algorithm for simulation-optimization  

• In solving complex real- world engineering optimization 
problems, an evolutionary algorithm may require thousands 
of function evaluations in order to provide a satisfactory 
solution, whereas each evaluation requires hours of 
computer run-time. 

❑ Less-Expensive methods to handle complex simulation 
modeling and complex problems

• To overcome computation cost, researchers have applied 
sampling-based learning methods such as Artificial Neural 
Networks, Radial Basis Functions (RBF), Kriging (Gaussian 
Process) and polynomial regression model. These methods 
can ‘learn’ the problem behaviors and approximate the 
function value. These approximation models can speed up 
the function evaluation as well as estimation the function 
value with an acceptable accuracy.



Metamodel Based Simulation-Optimization

Step 1: Choosing an experimental design for generating design points.

Step 2: Run original simulation model (function evaluation) according to 
each generated design points and collect the relevant responses.

Step 3: Fitting the metamodel over the observed input-output dataset.

Step 4: Validating the metamodel.

Step 5: Using fitted metamodel (cheep) instead of original simulation 
model (expensive) for optimization and sensitivity analysis. 



Experimental Designs

The idea of the classical DOE 
is to reach as much 
information as possible from 
a limited number of 
experiments.

A good experimental design 
has to be space filling and 
non- collapsing rather than to 
concentrate on the boundary.



Experimental Designs

• One of the common method for designing simulation experiments is LHS.

•  LHS was first introduced by McKay et al. (1979). 

• In general, for 𝑛 input variables, 𝑚 sample points are produced randomly 
into 𝑚 intervals or scenarios (with equal probability). For the particular 
instance the LHS design for 𝑚 = 4,𝑛 = 2 is shown in here  

Latin Hypercube Sampling (LHS)

𝑥2

𝑥1

1. In LHS, each input range divided into 𝑚 subranges (integer) with equal probability magnitudes and numbered from 

1 to 𝑚.

2. LHS place all 𝑚 intervals by random value between lower and upper bounds relevant to each interval, since each 

integers 1,2, … , 𝑚 appears exactly once in each row and each column of the design space. Note that, within each cell 

of design, the exact input value can be sampled by any distribution, e.g., uniform, Gaussian or etc.

Three common choices are available to ensure appropriate space filling of sample points in LHS design:
1. Minimax: This design tries to minimizing the maximum distances in design space between any location for each design 

point and its nearest design points. 
2. Maximin: In this design attempt to be maximized the minimum distance between any two design points. 
3. Desired Correlational function: Inspired by (Iman & Conover, 1982) in the case of non-independent multivariate input 

variables the desired correlation matrix can be used to produce distribution free sample points in LHS. 



Latin Hypercube Sampling (LHS)

function [LHS_Samp] = LHS_Design(NSamp,MinRangeSamp,MaxRangeSamp,Type)
[~,NVar]=size(MinRangeSamp);
switch Type
case 'maximin'
Train_lhs = lhsdesign(NSamp,NVar,'criterion','maximin');
case 'none'
Train_lhs = lhsdesign(NSamp,NVar,'criterion','none');
case 'correlation'
Train_lhs = lhsdesign(NSamp,NVar,'criterion','correlation');
end
LHS_Samp=[];
for sa = 1:NSamp
for va = 1:NVar
L = MinRangeSamp(1,va);
U = MaxRangeSamp(1,va);
X = Train_lhs(sa,va)*(U-L)+L;
XR(1,va) = X;
end
LHS_Samp = [LHS_Samp;XR];
end
end

Note: the MATLAB® function “lhsdesign” 
is located in Deep Learning Toolbox. 
Make sure install Deep Learning 
Toolbox. 

Input: Number of sample points, Lower 
and Upper bound for design variables, 
and type of LHS.

Output: Designed sample points in 
upper and lower range.  

MATLAB® code



Metamodel 1: Polynomial Regression (PR)

Commonly, the main purpose of PR is the approximation of 
true response function based on Taylor series expansion 
around a set of design points.

𝑦 = 𝑓 𝑋 = መ𝛽0 + ෍

𝑖=1

𝑚

መ𝛽𝑖 𝑥𝑖 + 𝜀

𝑦 = 𝑓 𝑋

= መ𝛽0 + ෍

𝑖=1

𝑘

መ𝛽𝑖 𝑥𝑖 + ෍

𝑖=1

𝑘

መ𝛽𝑖𝑖 𝑥𝑖
2 + ෍

𝑖=1

𝑘

෍

𝑖<𝑗=2

𝑘

መ𝛽𝑖j 𝑥𝑖𝑥𝑗 +  𝜀

First Order

Second Order
𝒚 = 𝑿𝜷 +  𝜺 

𝜷 = 𝑿′𝑿 −1𝑿′𝒚

The least-squares estimators must satisfy
𝜕𝐿

𝜕𝛽
, thus the least squares estimator of 𝛽 is obtained by:

𝒚 =

𝑦1
𝑦2

⋮
𝑦𝑛

𝑿 =

1 𝑥11 𝑥12

1 𝑥21 𝑥22

⋮ ⋮ ⋮
1 𝑥𝑛1 𝑥𝑛2

 

… 𝑥1𝑚

… 𝑥2𝑚

 ⋮
… 𝑥𝑛𝑚

 

𝜷 =

𝛽1

𝛽2

⋮
𝛽𝑛

, 𝜺 =

𝜀1
𝜀2

⋮
𝜀𝑛

Note: To train different order of PR, the MATLAB® toolbox below suggested to be used.  

https://www.mathworks.com/matlabcentral/fileexchange/34765-polyfitn 

https://www.mathworks.com/matlabcentral/fileexchange/34765-polyfitn


Metamodel 2: Radial Basis Function (RBF)

The RBF employs a linear combination of independent symmetric 
functions based on the Euclidean distances to compute the 
approximation function of response (interpolation model). 

ℎ x = 𝑒𝑥𝑝 −γ x − x𝑛
2

Each (x𝑛, 𝑦𝑛) influences ℎ x  based on x − x𝑛  

Standard form of RBF:

መ𝑓 x  = ෍

𝑛=1

𝑁

𝑤𝑛𝑒𝑥𝑝 −γ x − x𝑛
2

The learning algorithm to find w1, … , wN by minimizing the sum square 
error of model based on the training data points (x1, 𝑦1), …., (x𝑁, 𝑦𝑁)

The RBF interpolate the sample points, the SSE is expected to be 𝑆𝑆𝐸 ≈ 0.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝑆𝐸 = ෍

𝑛=1

𝑁

𝑓 𝑥𝑛 − መ𝑓 𝑥𝑛

2

N equations N unknowns: 𝑓 𝑥𝑛 = መ𝑓 𝑥𝑛     for    𝑛 = 1, … , 𝑁

𝑋0

𝑑𝑖 = 𝑋0 − 𝐶𝑖

𝑋1
 



Radial Basis Function (RBF)

𝝋 =

𝑒𝑥𝑝 −γ x1 − x1
2 … 𝑒𝑥𝑝 −γ x1 − x𝑁

2

𝑒𝑥𝑝 −γ x2 − x1
2 … 𝑒𝑥𝑝 −γ x2 − x𝑁

2

⋮ ⋮ ⋮
𝑒𝑥𝑝 −γ x𝑁 − x1

2  …  𝑒𝑥𝑝 −γ x𝑁 − x𝑁
2

 

𝒘 =

𝑤1
𝑤2

⋮
𝑤𝑛

, 𝒚 =

𝑦1
𝑦2

⋮
𝑦𝑛

𝝋. 𝒘 = 𝒀

If 𝝋 is invertible then  𝒘 = 𝝋−𝟏. 𝒀

“exact interpolation”  

MATLAB® code

function Ps = RBF_Sur(X_S,R_S,x0)
Nf = size(R_S,2);
for f = 1:Nf
Y = R_S(:,f);
N = size(X_S,1); 
phi = zeros(N,N);
gamma = 0.05; 
for i = 1 : N
xi = X_S(i,:);
for j = 1 : N
xj = X_S(j,:);
rb = exp(-gamma*norm(xi-xj)^2) ; 
phi(i,j) = rb ;
end
end
W = inv(phi)*Y; 
for s = 1 : N
xs = X_S(s,:);
rbs = exp(-gamma*norm(x0-xs)^2); 
hx(s) = W(s) * rbs ;
end
Ps(f) = sum(hx); 
end 
end

MATLAB code for RBF:

Input: Input data (designed training sample points), output data (collected 
responses from original model over designed sample points), and X0 (new 
sample point that we are interested to predict response for this point using RBF.

Output: The approximated response for point X0 . 



Metamodel Validation

R-square Index: The 𝑅2 coefficient is defined as: 𝑅2= 1 −
σ𝑗=1

𝑚 𝑦𝑗 − ෝ𝑦𝑗
2

σ𝑗=1
𝑚 𝑦𝑗 − ഥ𝑦𝑗

2 = 1 −
𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

Relative Maximum Absolute Error (RMAE)

While the larger magnitude of R-square indicates better overall accuracy, the smaller amount of RMAE indicates the 
smaller local error.

𝑅𝑀𝐴𝐸 =
max 𝑦1 − ො𝑦1 , 𝑦2 − ො𝑦2 , … , 𝑦𝑚 − ො𝑦𝑚

1
𝑚

σ𝑗=1
𝑚 𝑦𝑗 − ෝ𝑦𝑗

2

Cross-validation

The cross-validation method can be used when collecting new data or further information about simulation model is 

costly. The cross validation uses an existed data and does not require to re-run of the expensive simulation. This 

method also called leave-𝑘-out cross-validation to validate metamodel (i.e., in each run 𝑘 sample points would be 

removed from an initial training sample points). The leave-one-out cross validation (𝑘 = 1) is briefly explained in 

follows that is most popular than others.



Leave One-Out Cross-Validation

Step 1: Delete 𝑠𝑡ℎ input combination and relevant output from the complete set of 𝑙 
combination (𝑠 = 1,2, … , 𝑙). 

Step 2: Approximate the new model by employing 𝑙 − 1 remain rows 𝑠−1.

Step 3: Predict output  for left-out point (𝑠−1) with metamodel which obtained from 
Step 2.

Step 4: Implementing the preceding three previous steps for all input combination 
(sample points) and computing 𝑛 predictions ( ො𝑦𝑠).

Step 5: The prediction result can be compared with the associated output in original 
simulation model. The total comparison can be done through a scatter plot or eyeball to 
decide whether or not metamodel is acceptable



Uncertainty in Model
In practice, most engineering problems have been affected by 
different sources of variations. One of the main challenges of 
SO is address uncertainty in the model, by a variety of 
approaches, such as robust optimization, stochastic 
programming, random dynamic programming, and fuzzy 
programming. Uncertainty is undeniable which effect on the 
accuracy of simulation results while making variability on them. 
In uncertain condition, robust SO allows us to define the 
optimal set point for input variables while keeping the output 
as closer as possible to ideal point, also with at least variation. 



Metamodel-Based Robust Simulation Optimization
Robust simulation-optimization is about solving simulation model with uncertain data in a computationally 
tractable way. The main goal of robustness strategy is to investigate the best level of input factors setting for 
obtaining desirable output goal which is insensitive to the changeability of uncertain parameters. 

Step 1: Conduct crossed array experimental design 

Crossed two sets of sample points with dimension 𝑠 × 𝑟, when (𝑠 = 1,2, … , 𝑙) and (𝑟 = 1,2, … , 𝑚). First 
for design factors (𝑋 = 1,2, … , 𝑛𝑥) as an inner array (𝑠 × 𝑛𝑥). Second for uncertain variables (𝑍 =
1,2, … , 𝑛𝑧) as an outer array (𝑟 × 𝑛𝑧). In this context, LHS method is used in order to design sample points 
in both the inner and the outer array sets. 

Due to the stochastic nature of the simulation model, repeated runs of the simulation model with the 
same combination of input variables, lead to different outputs. Furthermore, each input combination (𝑠 =
1,2, … , 𝑙) repeats 𝑚 times (𝑟 = 1,2, . . . , 𝑚), while 𝑚 is the number of scenarios with uncertain variables.  
If 𝑌 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑠) is the 𝑠-dimensional vector with the simulation output, then the mean and variance 
for each input combination are computed.  

Algorithmic Steps



Metamodel-Based Robust Simulation Optimization

Step 2: Run simulation model

Run the simulation model for each crossed (𝑠 × 𝑟) 
sample point and collect simulation outputs (𝑦𝑠𝑟).

Step 3: Compute mean and variance for each input 
combination

Given that 𝑠 = (1,2, … , 𝑙) is the vector of sample points 
(input combination). Each input combination  (𝑠)  is 
repeated 𝑚  times based on uncertainty scenarios. 
Therefore, 𝑌 is the 𝑠 × 𝑚 matrix of simulation’s outputs, 
and mean ഥ𝑦𝑠 and variance 𝜎s

2 of the simulation model 
are computed by  

ഥ𝑦𝑠 = ෍

𝑟=1

𝑚

𝑤𝑟. 𝑦𝑠𝑟 ,  𝑓𝑜𝑟 (𝑠 = 1,2, … , 𝑙) 𝜎𝑠
2 =  ෍

𝑟=1

𝑚

𝑤𝑟 . 𝑦𝑠𝑟
2 −  ෍

𝑟=1

𝑚

𝑤𝑟 . 𝑦𝑠𝑟

2

, 𝑓𝑜𝑟 (𝑠 = 1,2, … , 𝑙)



Metamodel-Based Robust Simulation Optimization

Robust dual 
surface model

𝑀𝑖𝑛 𝑜𝑟 𝑀𝑎𝑥:  𝑴𝒆𝒂𝒏
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑺𝒕𝒅 ≤ 𝜺 

Step 4: Fit input/output data with surrogate model

Fit one surrogate model (e.g., Kriging, RBF, or PR) for mean and another one for variance of output. Here, 
Kriging as a modern global surrogate model is used.

Step 5: Validate both surrogate models, using leave-one-out cross-validation

Step 6: Estimate the Pareto frontier by obtaining robust optimal solutions performing dual response 
surface methodology 

The optimal result depends on value of  𝜀 which can be chosen by the decision maker. Varying this 
magnitude provides the capture of Pareto frontier (also called Pareto optimal efficiency) to make trade-off 
between mean and variance of the model. 



Metamodel-Based Robust 
Simulation Optimization

Start

DOE for design 

variables (inner array) 

DOE for uncertain 

variables (outer array)

Run simulation model 

and gain output

Compute mean for 

each input 

combination

Compute variance for 

each input 

combination

Fit metamodel over 

variance

Fit metamodel over 

mean

Cross-validationCross-validation

Accept both metamodels

Robust optimization 

model

Estimate Pareto 

frontier

Yes No

Finish

Flowchart of the proposed approach



Engineering Application (Examples in Electronics and Electrical Engineering)

Optimal Control Design

Optimal Antenna Design



Introduction
Optimal Placement of Antennas

(Maximize coverage, minimize 
overlapping, minimize energy 

consumption)

Wireless Sensor Networks

 (Localization, positioning of the sensor 
nodes)

𝐷

Transmitter

Receiver

𝑦

𝑥

(𝑥𝑡, 𝑦𝑡)

(𝑥𝑟 , 𝑦𝑟)

𝑑𝑟,𝑡

Optimization of Packet Transmission

 (Scheduling and Node Parent Selection, Traffic Aware 
Scheduling Algorithm, IEEE 802.15.4e time slotted 

channel hopping)

Engineering Application (Examples in Electronics and Electrical Engineering)



Introduction
Robotics

(To optimal trajectory path design, real-
time intelligent control, and  optimizing 

robot performance.) 

Electronics Circuit Design

(Evolutionary electronics, analog circuits, 
digital electronics, logic optimization) 

Engineering Application (Examples in Electronics and Electrical Engineering)
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