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Note: All MATLAB® codes provided in this
presentation, have been written and
augmented by the presenter (Amir
Parnianifard).



Engineering Optimization
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v’ Linear versus Nonlinear Programming

v' Continuous Optimization versus Discrete Optimization.

v" Unconstrained Optimization versus Constrained Optimization.
v Single or Many Objectives.

v' Deterministic Optimization versus Stochastic Optimization.




Eng. Optimization using Evolutionary Algorithms

» In  computational intelligence, an Evolutionary
Algorithm (EA) is a subset of evolutionary

computation, a generic population-based
metaheuristic optimization algorithm. An EA uses Initialization
mechanisms inspired by biological evolution, such as
reproduction, mutation, recombination, and /\Mutation
selection. 1L
Selection
» Genetic Algorithm (GA) is the most popular type of
EA. A search heuristic known as a genetic algorithm LIOSSOVer
was motivated by Charles Darwin's theory of natural =
. erminaton
selection[57], [58].

» Differential Evolution (DE) is based on vector
differences and is therefore primarily suited for
numerical optimization problems.



Differential Evolution Algorithm

The algorithmic procedure of DE can be summarized as follows:

1.

Randomly select the N individuals uniformly on the intervals [ij,x]V], where ij and ijare the upper
and lower bounds of decision parameters.

Each of the N individuals undergoes mutation, recombination, and selection. Mutation can expand the
search space.

For a given exact individual u, randomly select three parameters such that the indices i, ry , 7, and r3
are distinct.

Add the weighted difference of two of the vectors to the third r;,, = 1y + a(r, — r3), which a called a
mutation factor and can be a constant from [0,2], and ;. is called the donor vector.

These three parameters are replaced to selected individual u if the rand () > CR, where CR is a
constant probability in U[0,1].

If the fitness function of the updated individual is less than the original individual u, then u is removed
from the set of individuals, and an updated one is replaced.

Until a stopping condition is met, mutation, recombination, and selection proceed.



DE Optimizer (MATLAB Code)

Input: Fitness function of problem, Lower and Upper limits of design variables, Number of Initial Papulation,

and Maximum Number of Iteration by Algorithm

Output: The Optimum results for design variables and the relevant fitness function (in the optimum point).

function [Opt_var,Opt_cost] = DEO(objFcn,LoB,UpB,NoPapulation,MaxIteration)
% This is the code for Differential evolution (DE)
%% Parameter Adjustement

nVar = length(LoB);

CR =0.5; % Crossover Rate

FF = 1-exp(-norm(0.05*(UpB-LoB)))* rand();
%Initial Papulation

individuals = (UpB-LoB).*rand(NoPapulation ,nVar) + LoB;
% figure('Position', [400, 400, 800, 300]); hold on
%% Optimization

for iter = 1 : Maxlteration

for i = 1:NoPapulation

indO = individuals;

indO(i,:) = [];

X = individuals(i,:);

Cost_X = objFcn(X);

cost(i,1) = Cost_X;

var_X(i,:) = X;

idx = randperm(NoPapulation-1,3);

X1 = indO(idx(1),:);

X2 =indO(idx(2),:);

X3 = indO(idx(3),:);

d_rand = randperm(nVar,1);

ford = 1:nVar
if d==d_rand || rand <= CR

u(d) = X1(d) + FF *rand()* (X2(d) - X3(d));

if u(d) < LoB(d) | | u(d) > UpB(d)

u(d) = (UpB(d) - LoB(d))/2 + LoB(d);

end

else

u(d) = X(d);

end

end

if objFcn(u) < Cost_X
individuals(i,:) = u;

end

end

[best_cost(iter),nr] = min(cost);
best_var(iter,:) = var_X(nr,:);
end

[Opt_cost,nr] = min(best_cost);
Opt_var = best_var(nr,:);

end




Metamodeling (Learning From Data)
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Shortcoming: High Computation Cost in case of using
evolutionary algorithm for simulation-optimization

In solving complex real- world engineering optimization
problems, an evolutionary algorithm may require thousands
of function evaluations in order to provide a satisfactory
solution, whereas each evaluation requires hours of
computer run-time.

Less-Expensive methods to handle complex simulation
modeling and complex problems

To overcome computation cost, researchers have applied
sampling-based learning methods such as Artificial Neural
Networks, Radial Basis Functions (RBF), Kriging (Gaussian
Process) and polynomial regression model. These methods
can ‘learn’ the problem behaviors and approximate the
function value. These approximation models can speed up
the function evaluation as well as estimation the function
value with an acceptable accuracy.
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Metamodel Based Simulation-Optimization

Step 1: Choosing an experimental design for generating design points.

Step 2: Run original simulation model (function evaluation) according to
each generated design points and collect the relevant responses.

Step 3: Fitting the metamodel over the observed input-output dataset.
Step 4: Validating the metamodel.

Step 5: Using fitted metamodel (cheep) instead of original simulation
model (expensive) for optimization and sensitivity analysis.

Design of experiments Function eva luations Metamodel




Experimental Designs

a) Full factorial,

The idea of the classical DOE
is to reach as much
information as possible from
a limited number of
experiments.

A good experimental design
has to be space filling and
non- collapsing rather than to
concentrate on the boundary.
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Experimental Designs Latin Hypercube Sampling (LHS)

 One of the common method for designing simulation experimentsist4s. [ .

* LHS was first introduced by McKay et al. (1979). ________ '

o | | | |

* In general, for n input variables, m sample points are produced randomly ~ |-———4drrrrre

into m intervals or scenarios (with equal probability). For the particular | &+ ® & &'
instance the LHS design for m = 4,n = 2 is shown in here | | LA

1. In LHS, each input range divided into m subranges (integer) with equal probability magnitudes and numbered from
1tom.

2. LHS place all m intervals by random value between lower and upper bounds relevant to each interval, since each
integers 1,2, ..., m appears exactly once in each row and each column of the design space. Note that, within each cell
of design, the exact input value can be sampled by any distribution, e.g., uniform, Gaussian or etc.

Three common choices are available to ensure appropriate space filling of sample points in LHS design:

1. Minimax: This design tries to minimizing the maximum distances in design space between any location for each design
point and its nearest design points.

2. Maximin: In this design attempt to be maximized the minimum distance between any two design points.

3. Desired Correlational function: Inspired by (Iman & Conover, 1982) in the case of non-independent multivariate input
variables the desired correlation matrix can be used to produce distribution free sample points in LHS.



Latin Hypercube Sampling (LHS)

Note: the MATLAB® function “lhsdesign”
is located in Deep Learning Toolbox.
Make sure install Deep Learning
Toolbox.

Input: Number of sample points, Lower
and Upper bound for design variables,
and type of LHS.

Output: Designed sample points in
upper and lower range.

MATLAB® code

function [LHS_Samp] = LHS_Design(NSamp,MinRangeSamp,MaxRangeSamp,Type)
[~,NVar]=size(MinRangeSamp);

switch Type

case 'maximin'

Train_lhs = lhsdesign(NSamp,NVar, 'criterion’,'maximin');
case 'none'

Train_lhs = lhsdesign(NSamp,NVar, 'criterion’,'none');
case 'correlation’

Train_lhs = lhsdesign(NSamp,NVar, 'criterion’,'correlation’);
end

LHS_Samp=[];

for sa = 1:NSamp

for va = 1:NVar

L = MinRangeSamp(1,va);

U = MaxRangeSamp(1,va);

X = Train_lhs(sa,va)*(U-L)+L;

XR(1,va) = X;

end

LHS _Samp = [LHS_Samp;XR];

end

end




Metamodel 1: Polynomial Regression (PR)

Commonly, the main purpose of PR is the approximation of
true response function based on Taylor series expansion
around a set of design points.

m
First Order y = f(X) ZBO+ZBixi+€
i=1
f(X% ) o
Second Order , i
z z 'Xi+z z Bijxixj + €
=1 i=1 i=1i<j=2
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The least-squares estimators must satlsfy 9% thus the least squares estimator of 8 is obtained by:

op’
B=XX)"'Xy

Note: To train different order of PR, the MATLAB® toolbox below suggested to be used.

https://www.mathworks.com/matlabcentral/fileexchange/34765-polyfitn



https://www.mathworks.com/matlabcentral/fileexchange/34765-polyfitn

Metamodel 2: Radial Basis Function (RBF)

The RBF employs a linear combination of independent symmetric 0"€"®
functions based on the Euclidean distances to compute the ‘

approximation function of response (interpolation model).

Each (X, ¥,) influences h(x) based on |[x — x,||

Standard form of RBF:  h(x) = exp(—vllx — x,|1?)

N . .
FOO = > wnexp(=ylix = xal® = :
n=1 : Xo
The learning algorithm to find w4, ..., wy by minimizing the sum square /‘ 0 u
error of model based on the training data points (X1, y1), -, &Xn, Yn) o "
N R 2 m . m
Minimize SSE = 2 (f(xn) — f(xn)) .

n=1 - (]

The RBF interpolate the sample points, the SSE is expected to be SSE = 0. di = X, - G| N

N equations N unknowns: f(x,) = f(x,) for n=1,..,N



Radial Basis Function (RBF)

exp(—vllx; — X1||2) v exp(—=yllx; — XNHZ) ]
Q= exp(—vllx; — X1||2) . exp(=yllx; — XNHZ)
lexp(—vllxy — x| 2) . exp(—yllxy — XNHZ) -
(W1 ] (V1]
w
W = 52 ) y — :ysz (p.W - Y
[ Wh | Yn_
If @ is invertible then w=¢ LY

“exact interpolation”
MATLAB code for RBF:

Input: Input data (designed training sample points), output data (collected
responses from original model over designed sample points), and X0 (new
sample point that we are interested to predict response for this point using RBF.

Output: The approximated response for point X0 .

MATLAB® code

function Ps = RBF_Sur(X_S,R_S,x0)
Nf = size(R_S,2);

for f = 1:Nf

Y = R_S(:,f);

N = size(X_S,1);

phi = zeros(N,N);

gamma = 0.05;

fori=1:N

xi = X_S(i,:);

forj=1:N

xj = X_S(j,:);

rb = exp(-gamma*norm(xi-xj)*2) ;
phi(i,j) =rb ;

end

end

W = inv(phi)*Y;

fors=1:N

xs = X_S(s,:);

rbs = exp(-gamma™*norm(x0-xs)"2);
hx(s) = W(s) * rbs ;

end

Ps(f) = sum(hx);

end

end




Metamodel Validation

2
=1V — Mean S E
R-square Index: The R? coefficient is defined as: R2=1 — ]_1(3’] 7 _ ¢ Meanoquare srror

2
}'n=1(3’j ~ yj)

Variance

Relative Maximum Absolute Error (RMAE)

While the larger magnitude of R-square indicates better overall accuracy, the smaller amount of RMAE indicates the
smaller local error.

maxi|y: = Y1l [y2 = Yal, o [Ym = I}

1 N2
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Cross-validation

The cross-validation method can be used when collecting new data or further information about simulation model is
costly. The cross validation uses an existed data and does not require to re-run of the expensive simulation. This
method also called leave-k-out cross-validation to validate metamodel (i.e., in each run k sample points would be
removed from an initial training sample points). The leave-one-out cross validation (k = 1) is briefly explained in

follows that is most popular than others.



Leave One-Out Cross-Validation

Step 1: Delete st input combination and relevant output from the complete set of [
combination (s = 1,2, ..., ).

Step 2: Approximate the new model by employing [ — 1 remain rows s_;.

Step 3: Predict output for left-out point (s_;) with metamodel which obtained from
Step 2.

Step 4: Implementing the preceding three previous steps for all input combination
(sample points) and computing n predictions (V).

Step 5: The prediction result can be compared with the associated output in original
simulation model. The total comparison can be done through a scatter plot or eyeball to
decide whether or not metamodel is acceptable



Uncertainty in Model

In practice, most engineering problems have been affected by
different sources of variations. One of the main challenges of
SO is address uncertainty in the model, by a variety of
approaches, such as robust optimization, stochastic
programming, random dynamic programming, and fuzzy
programming. Uncertainty is undeniable which effect on the
accuracy of simulation results while making variability on them.
In uncertain condition, robust SO allows us to define the
optimal set point for input variables while keeping the output
as closer as possible to ideal point, also with at least variation.
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Metamodel-Based Robust Simulation Optimization

Robust simulation-optimization is about solving simulation model with uncertain data in a computationally
tractable way. The main goal of robustness strategy is to investigate the best level of input factors setting for
obtaining desirable output goal which is insensitive to the changeability of uncertain parameters.

Due to the stochastic nature of the simulation model, repeated runs of the simulation model with the
same combination of input variables, lead to different outputs. Furthermore, each input combination (s =
1,2,...,1) repeats m times (r = 1,2,...,m), while m is the number of scenarios with uncertain variables.
IfY = (yq,¥2,*, Vs) is the s-dimensional vector with the simulation output, then the mean and variance
for each input combination are computed.

Algorithmic Steps

Step 1: Conduct crossed array experimental design

Crossed two sets of sample points with dimension s X r, when (s = 1,2, ...,1) and (r = 1,2, ..., m). First
for design factors (X = 1,2,...,n,) as an inner array (s X n,). Second for uncertain variables (Z =
1,2,...,m,) as an outer array (r X n,). In this context, LHS method is used in order to design sample points
in both the inner and the outer array sets.



Metamodel-Based Robust Simulation Optimization

Step 2: Run simulation model

Run the simulation model for each crossed (s X r)
sample point and collect simulation outputs (ys,).

Step 3: Compute mean and variance for each input
combination

Given that s = (1,2, ..., 1) is the vector of sample points
(input combination). Each input combination (s) s
repeated m times based on uncertainty scenarios.
Therefore, Y is the s X m matrix of simulation’s outputs,
and mean y; and variance g2 of the simulation model

are computed by

m m m 2
Vs = z Wi Ysr» for (s =12,..,1) 0'52 = z Wr-yszr — Z Wr.Yor | for (s =1,2,..,0)
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Metamodel-Based Robust Simulation Optimization

Step 4: Fit input/output data with surrogate model

Fit one surrogate model (e.g., Kriging, RBF, or PR) for mean and another one for variance of output. Here,
Kriging as a modern global surrogate model is used.

Step 5: Validate both surrogate models, using leave-one-out cross-validation

Step 6: Estimate the Pareto frontier by obtaining robust optimal solutions performing dual response
surface methodology

Robust dual Min or Max: Mean
surface model Subject to: Std < ¢

The optimal result depends on value of & which can be chosen by the decision maker. Varying this

magnitude provides the capture of Pareto frontier (also called Pareto optimal efficiency) to make trade-off
between mean and variance of the model.



Metamodel-Based Robust
Simulation Optimization

Flowchart of the proposed approach
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Engineering Application (Examples in Electronics and Electrical Engineering)
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Engineering Application (Examples in Electronics and Electrical Engineering)
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Engineering Application (Examples in Electronics and Electrical Engineering)

Robotics

(To optimal trajectory path design, real-
time intelligent control, and optimizing
robot performance.) B
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q
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Electronics Circuit Design

(Evolutionary electronics, analog circuits,
digital electronics, logic optimization)
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