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 

Abstract—The minimum noise figure of an electrical 

amplifier is Fe=1. E. Desurvire’s traditional optical noise 

Fpnf of an optical amplifier has the minimum value Fpnf=2. 

If Fpnf is a noise figure then power, gain and Fe need to be 

redefined. Fpnf is in conflict with physics and Fe. The correct 

optical noise figure Fo,IQ, observable in coherent I&Q 

receivers, has the minimum Fo,IQ=1 and is compatible with 

Fe. In the derivation of the consistent unified noise figure 

FIQ for all frequencies, from Fe and Fo,IQ, thermal noise 

energy is needed. Its usual simplified expression kT is now 

replaced by Nyquist’s correct result. This holds also in a 

unified homodyne noise figure FI, against which H. Haus’ 

unified noise figure Ffas is discussed.  

 
Index Terms—Noise figure, Optical amplifiers, Optical fiber 

communication 

 

I. INTRODUCTION 

QUATION, figure and reference numbering of the original 

paper [17] is continued here. The correct optical I&Q noise 

figure IQoF ,  as the 1:1 equivalent of the electrical noise figure 

eF  has been derived in [17]. Nothing needs to be changed there 

regarding optical noise figure (NF). The same is true for the 

optical homodyne NF Fo,I.   

This paper adds to the description of the unified NF FIQ  for 

all frequencies. Thermal noise energy must be corrected from 

its usual simplified expression kT to Nyquist’s accurate 

expression, in order to “avoid the UV catastrophe” (Section III). 

For sake of completeness, the unified NF fasF  [6] of pioneer 

H. Haus is compared against the corrected unified homodyne 

NF IF  (Section IV). But we start with a discussion: 

II. DISCUSSION OF NOISE FIGURE ISSUES  

A caution about lab jargon: When NF is given as a factor and 

not in dB then in reality the noise factor (= SNR quotient) is 

meant. “noise figure” = (10 dB)·log10(“noise factor”). 

The reason for deriving IQoF ,  [17] is illustrated in Fig. 5. 

The insertion of a photodiode into the signal path [3] as a kind 

of extra power meter defies NF definition (linear channel, 
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2 available quadratures, minimum amplifier NF equals 1) [18]. 

The resulting traditional optical NF of E. Desurvire [3], called 

pnfF  in [6], is in conflict with ~150 years of science:  
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High-frequency engineers would reject the idea of inserting 

an extra squaring power meter into the linear signal path. And 

so should optical engineers. But the photodiode needed for 

pnfF  definition acts as a squarer and power meter. 

Subsequently the needed “power”=“P”
22 ~~ PI , i.e. 

electrical power of a photocurrent I flowing through a load 

resistor, is proportional to the square of the optical power P. It 

holds 
2

~ EP  where E is the optical field. This means 

“P” ~ 
4

E !  

By definition,  
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where “out” means “with device” and “in” means “without 

device”. If we set pnfFF   and derive this NF using “P”
2~ I  

then we find that any amplifier with gain signalGG   has a 

supposed gain 
2GGsignal  !  

Let’s see where pnfF  brings us. NF definition must not 

depend on detector type or frequency f. The photodiode can be 

conducted, and with Novoptel GmbH, Helmerner Weg 2, 33100 Paderborn, 

Germany (e-mail: info@novoptel.com). 
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replaced by a thermal power detector (bolometer). Now “P” 

 2~   is proportional to the square of the detected 

temperature difference  . Thermal power detectors can be 

built at all frequencies. With appropriate preamplifiers they can 

detect even smallest powers. We decrease f until we arrive in 

the electrical domain. Here we find “P” ~ 
4

U  where U is the 

input voltage, again 
2GGG signal  , and  

2
epnf FF  ! We 

have two competing NF for the same amplifier at the same f. 

pnfF  claims eF  to be wrong, and vice versa. 

All this is direct consequence of calling pnfF  a NF. So, 

either pnfF  is a NF, or basic physics 
2

~ UP  and G and eF  

are correct. We know the latter holds.  

All the same, pnfF  [3] has great historic merits in the 

development of optical communication.  

pnfF  = 2 is found for an ideal optical amplifier. This irritates 

because the sensitivity of an ideal optical receiver with 2 

available quadratures is not degraded by an ideal optical 

preamplifier.  

While H. Haus [6] exposed pnfF  to violate NF definition, 

the proposed solutions fasF  (very rare case, optical homodyne 

NF for 1 quadrature, other than eF  for 2 quadratures), aseF  (no 

NF because it is not the SNR degradation factor in any optical 

receiver) also have a minimum value of 2 for an ideal amplifier, 

other than eF . Usually the value 2 (instead of 1) is explained 

by claiming that optical amplifiers be special. 

But standard optical amplifiers such as EDFAs are not 

special. They amplify 2 quadratures and add Gaussian 

amplitude (field) noise in the 2 quadratures [17], like standard 

electrical amplifiers. Also not special is optical detection noise 

(photon/particle aspect manifests) [19] as opposed to electrical 

source noise (thermal origin). Special in the light of detection 

noise are true homodyne detection and direct detection because 

these keep only 1 degree-of-freedom or quadrature and 

suppress the other. For an ideal optical amplifier one 

heuristically finds [18] the minimum 

receiverin  squadrature available ofnumber 

amplifierin  squadrature available ofnumber 
opt,minF  (66) 

where optF  is any optical NF. Even though optical direct 

detection is nonlinear, also pnfF  obeys (66) with 1 available 

quadrature in receiver. aseF  is not covered by (66), given that 

aseF  is not the NF in any known optical receiver. Clearly it 

makes sense to have the same number of available quadratures 

in amplifier and receiver, and to choose this number equal to 2 

like in the electrical case eF . This is confirmed by the correct 

NF 1, IQoF  of a standard optical amplifier [17].  

Instead of claiming 2o,minF  to be normal ( pnfF , 

Iofas FF , , also aseF , all with standard optical amplifier) one 

could with the same right claim 21opt,minF  to be normal 

(degenerate parametric optical preamplifier with 21o,IQF  

blocks one quadrature and increases I&Q receiver sensitivity to 

that of a true homodyne receiver). Both is mathematically 

correct, but none should be considered as the normal case. 

I have been criticized for deriving IQoF , , IoF ,  [17] in 

semiclassical description. There, a photocurrent I has a one-

sided noise power spectral density (PSD) 2eI due to a Poisson 

distribution of photoelectrons. Indeed one can alternately 

assume zero point fluctuations with energy hf/2 per mode. They 

give rise to the same noise PSD 2eI in a photocurrent I.  Fig. 6 

is similar to Fig. 1, but the splitters are replaced by 22 couplers 

and each of the 4 inputs gets zero point fluctuations. 

Interferences of zero point fluctuations from the LO coupler 

inputs with the LO signal eventually cancel upon photocurrent 

subtraction. Interferences of zero point fluctuations with the 

received signal are negligible since the LO is strong. 

Interferences of zero point fluctuations in 2,1RXE  from the 

signal coupler inputs with the LO signal add upon photocurrent 

subtraction. Using zero point fluctuations, exactly the known 

IQoF ,  and IoF ,  are obtained in the end. Likewise, pnfF  can 

be calculated with either semiclassical shot noise or zero point 

fluctuations.  
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Fig. 6: Coherent I&Q receiver with polarization matching 

III. CORRECT THERMAL NOISE AT ALL FREQUENCIES  

In the derivation of a unified NF fasF  [6] the mean value of 

detectable thermal photons per mode was given (in other, 

equivalent nomenclature) as  hfkTn  ; see eqn. (13) of 

[6]. Mean thermal noise energy or thermal PSD is hence 

kThfn  . In [17] I have adopted this and have derived the 

unified I&Q NF IQF , using the optical I&Q NF IQoF , . But in 

unified noise figures the term kT needs to be corrected at high 

frequencies! Total thermal power is finite. It is expedient to 

write 

 
1


kThfe

hf
Tk           thermal power spectral density. (67) 



The right hand side is eqn. (7) in [20], by Nyquist. Only for 

kThf   it approaches kT. The left hand side Tk  is defined 

such that where k was written in the derivation of IQF  this is 

now replaced by k  . k   is a frequency- and temperature-

dependent function which approaches the Boltzmann constant 

k in the case kThf  , and 0 in the case kThf  .  

In agreement with Tk  (67), total noise energy or spectral 

density per mode is Tkhf 2 . Here 2hf  stands for zero 

point fluctuations which we can alternately express by shot 

noise.   

Now consider electrical NF measurement. Since a real power 

detector is thermally noisy the SNR degradation factor 

underestimates the true eF . In particular, a decent amplifier 

with gain G in front of a very, very noisy detector will even 

improve the SNR. To get rid of thermal detector noise one puts 

the source at two different temperatures and measures noises 

with the power detector. Linear extrapolation of the measured 

noises to T = 0 K yields the own thermal noise of the power 

detector. It is subtracted in all NF calculations. This way the 

calculated SNRs and NF become higher. In practice, T = 0 K 

cannot be reached, and maybe the power detector wouldn’t 

even work at T = 0 K. But this does not matter. The NF is simply 

the quotient of SNRs that one would achieve if the power 

detector had no thermal noise.  

The same principle must be applied for the unified IQF . In 

practice, thermal noise occurs also at the unused input 2 

(Fig. 6). It must not enter into the NF equations. To this purpose 

we assume an ideal cooled absorber with temperature 0 K at 

input 2. Thermal noise in the electronics behind the photodiodes 

is likewise eliminated because we have assumed LOP . A 

few control measurements allow isolating and removing these 

thermal noises in a practical receiver. 

There is yet another idealization: In the responsivity 
hf

e
R


  

the efficiency   has been set as 1 . This maximizes the 

SNR. The same 1  is also used in the traditional pnfF .  

The corrected equations ( k   instead of k) are:  
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The change k   instead of k affects also Table I, Figs. 2, 3 and 

other places in [17]. The same change is needed in [18]. We 

recognize thermal source noise Tk , thermal noise exTk  added 

in amplifier, spontaneous emission field noise hf~  added in 

amplifier and shot noise Ghf in detector, all input-referred 

and per mode. For an amplifier it is not important to know the 

individual contributions of eF , IQoF , ; only the resulting IQF  

counts.  

The crossover condition Tkhf   of equally strong thermal 

and quantum noises yields 2lnkThf  . This requires f  = 194 

THz / 28 THz / 4.3 THz / 1.1 THz / 58 GHz at T = 13400 K / 

1940 K / 300 K / 77 K / 4 K, respectively. In [21], a 66 GHz 

electronic circuit operates at 4 K. Quantum noise plays a role 

here. Cryo and space electronics in the mm wave range and 

possible future THz applications need IQF . The same would 

hold for an extremely hot attenuator or amplifier at the CO2 

laser frequency 28 THz.  

IV. UNIFIED HOMODYNE NOISE FIGURE  

This is investigated in order to complete the picture in the 

context of fasF  in [6]. According to eqn. (35) of [17], the signal 

power SP  in a true homodyne receiver appears multiplied by 

LOGPR24 . The same holds for the in-phase part 2oe TBkF   of 

the total received thermal noise power oe TBkF  . We add the 

product to the denominator of (35) and obtain 

outISNR ,  
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In the absence of noise and gain this becomes 

2

2
,
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P
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
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.  (69) 

We get the homodyne / in-phase / single-quadrature NF 
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Note that in the electrical domain, single-quadrature or 

homodyne analysis simply means that the other quadrature is 

suppressed. This can be done by downconversion to baseband 

in a multiplier/mixer, or by degenerate parametric 

amplification. The electrical homodyne NF IeF ,  equals the 

electrical I&Q NF, IQeeIe FFF ,,   because there is (thermal) 

source noise. In (68)-(70) one could write IeF ,  instead of eF .  

IF  will probably not be needed in the electrical domain (mm 

waves at low temperatures) because single-quadrature electric 

amplifiers have no noise advantage over standard electrical 

amplifiers. IF  could be applied for an extremely hot device and 

a homodyne receiver at the CO2 laser frequency. 

For kThf  , H. Haus’ unified NF fasF , eqn. (18) in [6], 

becomes IoF , . This means fasF  is a homodyne NF at optical 

frequencies. fasF  is very similar to IF . Differences are:  

 fasF  contains kT in n instead of the correct Tk . 

 No clear number of quadratures is defined for fasF . Since 

fasF  should generalize the familiar eF  one is left to 

assume that in fasF  there is 1 quadrature at optical f , 1...2 

quadratures at intermediate/thermal f and the usual 2 

quadratures at electrical f. Such transition is of course not 

possible.   

 In fasF  it is defined 0exT  (which is allowed), and all 

added thermal noise is assumed to be contained in a 

sufficiently large spontaneous emission factor spn . For a 

pure attenuator one must guess and set  hfTknsp  . 

Otherwise the needed GF fas 1  is not reached. For 

comparison, GFI 1  is easily derived from the known 

GFFF IoeIe 1,,   and 0spn . 
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