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Abstract 
In this article a theoretical linear modal analysis of Euler-Bernoulli L-shaped beam structures is 

performed by solving two sets of coupled partial differential equations of motion. The first set, with 

two equations, corresponds to in-plane bending motions whilst the second set with four equations 

corresponds to out-of-plane motions with bending and torsion. The case is also shown of a single 

cantilever beam taking into account rotary inertia terms. At first for the case of examination of the 

results for the L-shaped beam structure, an individual modal analysis is presented for four selected 

beams which will be used for modelling an L-shaped beam structure; in order to investigate the 

influence of rotary inertia terms and shear effects. Then, a theoretical and numerical modal analysis is 

performed for four models of the L-shaped beam structure consisting of two sets of beams, in order to 

examine the effect of the orientation of the secondary beam (oriented in two ways) and also shear 

effects. The comparison of theoretical and finite element simulations shows a good agreement for both 

in-plane and out-of-plane motions, which validates the theoretical analysis. This work is essential to 

make progress with new investigations into the nonlinear equations for the L-shaped beam structures 

within Nonlinear Normal Mode theory. 

 

Keywords: L-shaped beam structure, modal analysis, elastic continua dynamics, Euler-Bernoulli 
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1. Introduction 
 

There has been continuous interest in the dynamics of L-shaped coupled structures exhibiting 

nonlinearities and autoparametric coupling since the 1960s. Roberts and Cartmell in [1,2] studied 

certain autoparametric resonances within an L-shaped beam structure, and Balachandran and Nayfeh 

performed nonlinear modal analysis considering only in-plane motions [3]. Warminski et al. in [4] 

formulated the third order partial differential nonlinear equations for an L-shaped beam structure with 

different flexibilities in the two orthogonal directions, without taking into account rotary inertia 

effects. Ozonato et al. studied post-buckled chaotic vibrations of an L-shaped beam structure 

considering only in-plane bending nonlinear motions [5]. Nayfeh and Pai [6], studied many cases of 

autoparametric excitations of beams. In Georgiades et al. [7] the linear equations of motion have been 

derived for an L-shaped beam structure, considering the inextensionality conditions and rotary inertia 

terms. That study demonstrated well separated in-plane and out-of-plane motions, which has also been 

shown with Abaqus Finite Element (FE) simulations. Also the necessity for rotary inertia terms in out-

of-plane bending was confirmed. In the case that the rotary inertia terms are neglected then the 

torsional equation of the secondary beam becomes uncoupled from the rest of the out-of-plane 

motions, and modal analysis for torsion of the secondary beam leads to very different results from the 

numerical simulations.  
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In this article we start from the equations of motion and then a theoretical linear modal 

analysis of the L-shaped Euler Bernoulli beam structure is undertaken considering in-plane and out-of-

plane motions. Using two sets of dimensions  four models are built in the Abaqus software in order to 

compare the theoretical with the numerical results. Initially FE models are built and theoretical and 

numerical modal analyses are undertaken for each one of the individual beams to examine shear and 

rotary inertia effects in the dimensions of the beams that are considered. Finally, the results for the L-

shaped beam structure of the analytical model are compared with the numerical results to validate the 

theoretical linear modal analysis. 

2. Theory 

2.1 Equations of motion 

 

Beams constructed of isotropic material are considered, with constant cross section with respect to the 

longitudinal direction (Fig.1). The equations of motion were derived in [7] and are given by, 
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The coordinates u1, v1, w1, denote the displacements of a selected arbitrary point of the primary 

(horizontal) beam in the absolute X1,Y1,Z1 coordinate set, and  u2, v2, w2, are the displacements of the 

secondary (vertical) beam in the local coordinate set X2,Y2,Z2 fixed to the centre of a cross-section at 

point C (see Fig.1), and φ1, φ2 are angles of rotation about the 1 and 2 axes respectively. The dot and 

prime mean derivatives with respect to time and space, respectively.  

The Kronecker delta function is used in order to model the effect of rotary inertia terms in the final 

equations. 

The following transformations, are applied  
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to express the local displacements and rotations of the secondary beam in terms of global 

displacements and rotations. For in-plane bending the rotary inertia terms have a very small influence 

and can be neglected. Therefore using        , and considering the inertia terms for out-of-plane 

bending           , and also using eq. (13a-c) in eq. (1-12), then the equations of motion and 

the boundary conditions are given by, 
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1
 In this boundary condition,   (   )     , but the axial displacement is of second order due to the 

inextensionality condition, therefore it is neglected for the first order linear problem. 
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In the next section a theoretical modal analysis of the equations of motion is performed (eq. 14-20).  

2.2 Modal analysis 

2.2.1 In-plane motion 

 

Using the method of separation of variables in space and time, by means of,  
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the equations of in-plane motion (eq. 14) take the form, 
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The equality on the left hand side of equation (22c) arises from the fact that for linear modes the two 

beams must execute synchronous motion, therefore they must have the same period. Using equations 

(21), (22) and also eq. (14a), the boundary conditions of eq. (15) take the form, 
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The mode shapes can be determined from the solution of  the ordinary differential equations  of  

(22a,b), which is a trivial problem and those solutions are given by,  
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The constants in these equations are determined as functions of    and are given in Appendix-A by 

means of some appropriate algebraic manipulations and using the boundary conditions (eq. 23a-c,e-h) 

and eq. (24a,b). These constants are given by, 
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by using equation (26a) and equations (A.5,7,8) the other constants for equation (24b) are given as, 
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The natural frequencies can be determined through equation (23d), and    which are defined by the 

roots of a transcedental equation. This equation originates from the boundary condition equation (23d) 

and equations (24a,b) and is given by, 
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by also using eq. (25,26) and some manipulations, it emerges that, 
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It should be noted that it is very difficult to obtain explicit formulae for the roots of the transcedental 

equation (28). Considering parameters for a given L-shaped beam structure, then the roots of this 

equation can be found easily by examining the zero crossings of the  plot of this equation with respect 

to   . 
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2.2.2 Out-of-plane motion 

 

Using the method of separation of variables in space and time for out-of-plane motion, by means of, 
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Similarly to the case of the in-plane motions, equation (31e) arises from the fact that for linear modes 

the two beams must execute synchronous motions with the same period. Consequently the solution of 

the differential equation in the time domain will be the same for all the variables. Therefore, using 

equations (30,31), the boundary conditions (17-20) take the form, 
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As shown in Appendix-B the general solutions of equations (31a,b) are given by,  
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The general solutions of equations (31c,d) are given by, 
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The mode shapes for out-of-plane motion are defined by equations (36) and (38), and the general 

solution constants have been determined with respect to    through the boundary conditions (32-35), 

as explained in Appendix-C. These constants  are given by, 
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The natural frequencies of the linear modes for out-of-plane motion are given by the roots of the 

transcendental equation. This arises from boundary condition (33b) using also equations  (39-42), 
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It should be noted that the parameters    (i=1...10) are frequency dependent, and are used to simplify 

the expressions. They are defined explicitly in Appendix-C. Explicit formulae for the roots of equation 

(43) are very difficult to obtain. In the case of an L-shaped beam structure with specific dimensions, 
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the natural frequencies are the roots of this transcendental equation (43) and can be found easily by 

examining the zero crossings of the  plot of this equation with respect to     . 

 

2.2.3 Cantilever beam 

 

In the case of a single cantilever beam in which rotary inertia terms are considered, the equation of 

motion and boundary conditions arising (e.g. by equation (16a or b), (17), or (19) by eliminating terms 
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The solution of the equation (47a) with the necessary boundary condition (eq. 48c) and eq. (B.9-B.11), 

as defined in Appendix-B, leads to a transcendental equation. The roots of this transcendental equation 

define the natural frequencies of the beam in bending, considering also the inertia terms. This 

transcendental equation is given by, 
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for which we also have,  
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The roots of equation (50) with respect to ω0 denote the natural frequencies of a cantilever beam, when 

the rotary inertia terms are neglected. 

3. Models  
 

In order to validate the theoretical results of modal analysis, four FE models were constructed in the 

Abaqus program consisting of two sets of beams (with indices     respectively). The material for all 

the models was aluminium of density, ρ=2800 kg/m
3
, Young’s modulus E=70 MPa, Poisson’s ratio 

ν=0.33, and shear modulus, G12=26.32 MPa. The dimensions of the beams for each set are, 
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For each set of dimensions two different models were constructed with two different orientations of 

the secondary beam (Figures 2a,c). In the first orientation the secondary beam is oriented in such a 

way that its width is in the same direction as the width of the primary beam (Figure 2a). In the second 

model the secondary beam has a transversal orientation (Figure 2c). 

 

The parameters used in equations (14,16) are defined as follows: 
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b) For model 2 and using the first set of dimensions  but with the transversal orientation of the 
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the other parameters are the same as those for the first orientation of the secondary beam 

(model 1). 

c) For model 3 the dimensions are given by the second set of beams and they take the first 

orientation of the secondary beam, being defined by, 
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d) Finally for model 4, using the second set of dimensions but with the secondary beam oriented 

in the transversal manner, they are given by, 
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The other parameters are the same as those for the first orientation of the secondary beam 

(model 3). 

 

According to Vlasov’s theory the shear effects are dominant only in cases where the dimensions with 

respect to the length have a ratio higher than 0.1 [9], and for the second set of dimensions (models 3 

and 4) we expect to observe some shear effects for the higher modes. This is due to the fact that the 

widths in the second set of beams are one order of magnitude higher than those of the first set of 

beams, whereas the lengths are of the same order. 

Before modelling the L-shaped beams a modal analysis of a single cantilever beam was performed in 

Abaqus, with the dimensions used for the L-shaped beam structure. We modelled them using two 

kinds of elements, denoted as wire (B31) and shell (S4) elements, and also considering shear effects. 

The difference in the results obtained by using these two kinds of elements, with examination 

restricted to the first 5 bending modes for each one motion (in-plane and out-of-plane bending), was 

less than 1%. Therefore  only the results of the model with wire elements are presented here noting 

that 150 elements were used for all cases. In order to perform a comparison between the mode shapes 

we selected specific points on each beam which corresponded to a division of the beam length into 30 

elements for all cases. 

Furthermore the four FE models of the L-shaped beam structures were constructed in Abaqus in order 

to perform numerical modal analysis. For each model, and to ensure correct numerical results, two 

kinds of elements were used in the form of wire (B31) and shell (S4) elements, for which  shear effects 

were also considered. In the case of wire modelling, 150 elements were used for each beam. In  the 

case of shell modelling  and a) model-1, 150 elements in the longitudinal direction ⨉ 30 elements for 

each beam, were used and b) models-2 and 4, 151 elements in the longitudinal direction ⨉ 16 elements 

for the primary beam and 150 elements in the longitudinal direction ⨉ 16 elements for the secondary 

beam, were used and  c) in model-3, 150 elements in the longitudinal direction ⨉ 16 elements for all 

beams were used. In order to compare mode shapes between the theory and the FE simulations we 

selected specific points in each beam. In the case of models 1 and 3, the selection of points 

corresponds to division of the beam lengths into 30 elements. In the case of models 2 and 4 the 
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primary beam was divided into 31 elements and the secondary beam was divided into 30 elements. 

 

4. Results-Discussion 
 

In order to validate the theoretical modal analysis the theoretical results were compared with the FE 

simulations in terms of the natural frequencies and mode shapes. The comparison of mode shapes was 

carried out using the Modal Assurance Criterion (MAC). The MAC comparison  between two mode 

shape vectors YMAC,1 and Y MAC,2 can be estimated using the following formula [8], 

 

   (             )  
|{      }

 
{      }|

 

({      }
 
{      })({      }

 
{      })

.   (56) 

 

noting that  the superscript T  defines the transpose. 

In the case of in-plane motion of the L-shaped beam structure the mode shape is given by, 

 

{    }  [{  } {  }] ,     (57a) 

 

for which  the mode shape vector is determined at the aforementioned selected points. In the case of 

out-of-plane motion for the structure then the mode shape is given by,   

 

{    }  [{  } {  } {  } {  }]
 
.   (57b) 

 

Figures 2a,b (c,d) depict the mode shapes using Abaqus for the 10th modes of in-plane and out-of-

plane motion, respectively, for model 1 (model 2).  

4.1 Results for single beams 

 

Theoretical modal analysis was performed for a single cantilever beam in bending by finding the roots 

of transcendental equations (49) considering the inertia terms and (50) neglecting the inertia terms for 

all the beams used in the modelling of the L-shaped structure. The dimensions are defined in the 

previous section and the inertia and stiffness terms are defined by equations (53-56). For both sets of 

beam dimensions the results for the primary and the secondary beam are similar, therefore only an 

analysis for the secondary beam is presented in this paper. In Tables 1.1-2 (1.3-4) the results of the 

examination of the modal analysis of the secondary beam of model 1 (model 2) in bending are shown. 

The frequencies which resulted from theoretical analysis, with and without considering the inertia 

terms, are presented there, and also the frequencies from the FE simulations. There is also a 

comparison of the natural frequencies from the theoretical results which demonstrates the effect of the 

rotary inertia terms, and a comparison of the theoretical with the FE simulation results in terms of 

frequencies and mode shapes. In the case of the in-plane bending of model 1 (Table 1.1) the inertia 

terms clearly have no significant effect. The comparison of theoretical results with FE simulations, 

shown in Table 1.1, shows that they are in very good agreement in terms of frequencies and MAC. 

Therefore it may be concluded that the shear effect for the first five modes is not significant. In the 

case of out-of-plane bending of the secondary beam of model 1, the results are shown in Table 1.2.The 

inertia and shear effects are also insignificant there. The results for the secondary beam of model 2 are 

shown in Tables 1.3 (1.4) for in-plane bending (out-of-plane bending). In the case of in-plane bending 

the shear and rotary inertia effects are insignificant but in out-of-plane bending of the secondary beam 

(model 2) the shear and rotary inertia effects are more dominant, as shown in Table 1.4.   
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4.2 In-plane motions of L-shaped beam structure 

 

Considering the in-plane motions in this structure then a comparison of the theoretical and numerical 

results for the four models, taking into account just the first 10 modes, is presented in Tables 1.5-1.7. 

In Table 1.5 the theoretical results for  model 1 are in a very good agreement with those from FE 

simulations. There is no significant difference between the results of the wire and the shell element 

models, and the maximum relative difference between the numerical and theoretical results is 2%, 

whereas the MAC diagonal values are 1.00. Figure 3a depicts the theoretical and numerical (wire 

model) results for the 10
th
 mode shape for both beams (the same scale coefficient is used for both 

beams undergoing theoretical mode shapes) with a good agreement and this confirms the high MAC 

values. 

In the case of model 2 for which the secondary beam is placed in the transversal configuration, the 

results are shown in Table 1.6. In this table  there is a good agreement between the natural frequencies 

for both models, with less than a 4% difference, for the first nine modes. Therefore, the shear effect 

influence is minimal. In the case of the wire model for the 1
st
 mode and then in the case of the shell 

model for the 9
th
 mode there is a low MAC value due to numerical errors. It should be highlighted that 

in the 10
th

 mode there is greater discrepancy in the natural frequencies for both models, and also there 

are low MAC values due to the imposed inextensionality conditions. More precisely, the axial 

displacement of the primary beam due to the inextensionality condition, is a second order nonlinear 

term, and this has been neglected from the formulation. Figure 3b depicts the theoretical and 

numerical wire model 10
th
 mode shape for the 2

nd
 model, using the same scale coefficient for both 

beams for the theoretical mode shape. Examining the FE mode shape of the secondary beam in Figure 

3b it is possible to notice a displacement at the clamped end (x=0) which is due to the axial 

displacement of the primary beam, this was neglected in the theoretical modal analysis. Therefore the 

coupling between bending in the secondary beam and the axial motion of the primary beam has been 

neglected, and so this axial displacement makes a significant difference to this mode shape. The mode 

shape from the shell model in Abaqus is presented in Figure 2b, in which the axial displacement or 

shortening of the primary beam is visible. The theoretical and numerical results for model 3,  

presented in Table 1.7, are in a good agreement, with a minimal shear effect. This is justified further 

on from examination of Figure 3c. In this figure (Fig.3c), the theoretical and numerical results for the 

wire model of the 10
th
 mode shape are depicted with the same scale coefficient for both beams in the 

theoretical mode shapes, and they are in a good agreement. 

In model 4 the secondary beam is oriented in the transversal direction, therefore in the higher modes it 

is expected that the influence of shear effects will be apparent. The results of modal analysis for model 

4 are shown in Table 1.8, in which the theoretical results are in a relatively good agreement with the 

finite element simulations results. The differences in the natural frequencies of the theoretical results 

with those of the corresponding finite element simulations are higher than the differences shown by 

the other models e.g. Tables 1.5-7. Detailed examination of the mode shapes for this model (4) 

indicates that the low MAC values for the 6
th
 and 9

th
 modes of the B31 wire element model in Table 

1.8 are due to numerical errors. Similarly, the low MAC values for the 5
th

 and 8
th

 modes in the case of 

the S4 shell element  model are also due to numerical errors. For both the B31 and S4 element models  

the low MAC values in Table 1.8 for the 7
th
 mode seem to be due to shear effects. Examination of the 

10
th
 mode shapes of the finite element models shows, apart from the influence of some shear effects, 

that there is also significant axial displacement in the primary beam, and this is similarly for model 2,    

and it explains the low MAC values and the relative differences in the natural frequencies (Table 1.8) 

for this mode. Figure 3d depicts the theoretical and numerical results for the wire element model 

specifically the 10
th

 mode. By considering the mode shape of the secondary beam from the finite 

element simulation in Figure 3d, it is clear that at the clamped end (x=0) there is a significant 

displacement caused by the axial displacement of the primary beam, and this explains the low MAC 

values for this mode. Also it is expected that shear effects will be more dominant in this mode due to 

significant displacements of the secondary beam. 

In conclusion, for in-plane motion the comparison of theoretical with numerical results shows a 

relatively good mutual agreement, which tends to validate the analytical work undertaken for in-plane 

motion. 
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4.3 Out-of-plane motions of  the L-shaped beam 

 

The theoretical and FE simulations results for all the models and the comparison considering the out-

of-plane motions are all shown in Tables 1.9-1.12. Similarly to the case of in-plane motion, these 

Tables show the theoretical and numerical wire and shell model natural frequencies, the % relative 

difference between the theoretical and  numerical results and also the MAC analysis for the 

comparison of the theoretical mode shapes with each one of the mode shapes from the FE simulations. 

Table 1.9 presents the results for model 1. Both FE models and theory are in a very good agreement 

with  1% of maximum relative difference in the natural frequencies, and the MAC diagonal is 1.00, all 

across the modes. Figures 4a,b depict the theoretical and FE wire model simulation mode shape for the 

10
th
 mode of the 1

st
 model, noting that all the theoretical motions for bending and torsion have the 

same scale coefficient. More precisely, Figure 4a(b) depicts the mode shape in bending (torsion), and 

there is a good agreement between the theoretical and FE simulations which confirms the MAC value. 

The results for model 2 in Table 1.10 present again a good agreement between the FE simulations with 

the theoretical values. The maximum relative difference is 2% in the natural frequencies, and the 

MAC diagonal is equal to 1.00 for all the mode shapes. Figures 4c,d depict the theoretical and FE wire 

model  simulations  for mode 10 for the 2
nd

 model. In Figure 4c (d) the theoretical and FE simulation 

mode shape in bending (torsion) are in a good agreement, which validates the high MAC value. Table 

1.11 shows the results for model 3, in which the theory is seen to be in good accordance with the FE 

simulations. The highest relative difference in natural frequencies is 4% for the 9
th
 mode noting that 

there is clear evidence of shear effect influences, and that all the others have a maximum of 3% 

difference. For all the mode shapes the MAC diagonals show high values, apart from mode 9 which is 

just acceptable. Figures 5a, b depict the theoretical and FE wire model mode shapes for mode 10 for 

model No.3. It should be noted that in bending there is some difference in the mode shapes (Fig.5a) 

but the displacement values are very small, due to numerical errors. The dominant motions in this 

mode are the rotations (Fig. 5b). There is a very good agreement between the theoretical and 

numerical simulation mode shapes (Fig.5a b), which is confirmed by the MAC value in Table 1.11. 

The results for model 4 show a very good agreement between the theory and the FE simulation results 

as shown in Table 1.12. The maximum relative difference in the natural frequencies is 1% and the 

MAC values are between 0.99-1.00, neglecting the 7
th
 mode for the wire elements model which is 

again lower due to numerical error. Figures 5c, d depict the theoretical and FE wire model simulation 

mode shape for mode 10 for the 4
th
 model. Also in Figure 5 c (d) the mode shapes in bending (torsion) 

suggest very good agreement between the theoretical and the FE simulations, and this justifies the high 

MAC value in Table 1.12. 

In conclusion, there is very a good agreement in the natural frequencies with a maximum relative 

difference of 4% only in one case, and between 0.99-1.00 MAC values, apart from one case which is 

due to shear effect influence. These results validate the theoretical analysis for out-of-plane motion, 

and also the comparison shows that shear effect influences are negligible for the modes examined. 

 

5. Conclusions 
 

In this article we performed a theoretical modal analysis of an L-shaped beam structure, by solving 

two sets of coupled equations of motion for in-plane bending and out-of-plane bending and torsion. 

Two sets of dimensions  were considered for the FE models. For each beam a theoretical and 

numerical modal analysis was performed to examine the inertia and shear effects. It was shown for 

both models that for in-plane bending the shear and inertia effects are insignificant and for out-of-

plane bending the shear and inertia effects are more significant especially for the second beam. 

Then, four models of the L-shaped beam structure were constructed with two configurations 

of the secondary beam and the second one  of these was oriented in the transversal direction. Both 

theoretical and numerical modal analyses were performed for the four models, and the results were 

compared. For both solutions, for in-plane motion and out-of-plane motion there is a good agreement 

between the theory and the FE simulations, which tends to validate the theoretical analysis. In the case 

of in-plane motion for the two models, in the 10
th
 mode there is a high discrepancy due to the coupling 
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of axial motion of the primary beam with the in-plane bending motion of the secondary beam, which 

was neglected in the theoretical approach. Also in some of the higher modes some discrepancies 

occurred due to shear effects. Considering the out-of-plane motions, a comparison of the theoretical 

with numerical results shows smaller differences and in these cases the shear effects are negligible. It 

should be noted that although in the case of a simple cantilever beam the shear effect is  more 

dominant even in the lower modes, in the L-shaped beam structure the situation is different. In in-

plane motion of the L-shaped beam the first mode of each beam is coupled together, which results in 2 

modes. Therefore, a shifting of the corresponding second mode of the cantilever beam to a higher 

mode in the L-shaped beam structure is expected. Considering this phenomenon the shear effects 

attributed, generally speaking, to higher modes are shifted to even higher modes in the case of the L-

shaped beam structure.  

Finally, the theoretical modal analysis performed in this article for an L-shaped beam structure can 

give relatively accurate results for the first modes, and will be used to discretise the nonlinear 

equations for the second order approximation, with a projection to the linear mode shapes in order to 

continue with nonlinear modal analysis of the L-shaped beam structure. 
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8. Appendix-A 
 

In this appendix the coefficients of the mode shapes (eq. 24a,b) are determined  for in-plane bending, 

through the boundary conditions (eq. 23a-c,e-h). All the coefficients are stated as functions of constant 

  . 

Starting from equation 23a and using eq. 24a, we get, 

 

      ,    (A.1) 
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also, by using equation 23b, and then considering eq. 24a, it is shown that, 

 

      ,     (25a) 

 

Applying equation 23c with equation 24a and then taking equations 25a,b, we get, 
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[   (    )     (    )] 
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[    (    )    (    )]

}      . (25b) 

 

Therefore the constants in equation 24a are given by equations 25a,b and also by, 
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}       . (25c) 

Equation 23e with equation 24b leads to, 

      ,      (A5) 

 

then making use of equation 23g, and equation 24b, and then taking into account (A5), we have , 
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Equation 23h, and equation 24b, A.5-6, leads to, 

 

     {
   (    )    (    )    (    )    (    )

   (    )    (    )    (    )    (    )  
},   (A.7) 

Therefore, using A.7 in A.6 we obtain, 
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Finally, using 23f, with 24, 25a,b, A.5,7,8, gives the following, 
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  ,  (A.9)  

or, 
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9. Appendix-B 
 

The general solution of the ODE which arises from the out-of-plane bending and takes the inertia 

terms into account  is not trivial and is presented within this appendix. 

In both cases of out-of-plane bending the ODEs (eq. 31a,b) are structurally the same but with different 

coefficients, and in general can be written as follows, 

 

                .    (B.1) 

 

The characteristic polynomial for this form of ODE is, 

 

 ( )               ,    (B.2) 

with d>0. 

This equation is  trivial to solve since it is a bi-squared polynomial, therefore the roots are given  by, 
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     ,  (imaginary), 

      √     √        

 
  √     √        

 
    ,  (real). (B.3) 

 

Considering the roots (B.3) of the characteristic polynomial (B.2) the general solution of equation 

(B.1) is given by, 

 

 ( )       (    )       (     )       (   )       (    ). (B.4) 

 

Using the hyperbolic and trigonometric identities, 
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,  (B.5a-d) 

we have,  
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   (  )      ( )      ( ),    (   )     ( )      ( ). (B.6a-d) 

 

Therefore substituting relations (B.6a-d) in equation (B.4), and after some algebraic manipulations, we 

get the final form of the general solution of equation (B.1),  

 

 ( )       (   )       (   )        (   )        (   ),  (B.7) 

 

where the constants Li (i=1,..4) are determined through the boundary conditions. 

 

Equation 47a is in the form of eq. (B.1) therefore the mode shapes are as given by equation (B.7), 

with, 
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Considering equation (48a) and  eq. (B.7) we get, 

 

      ,       (B.9) 

 

Also, equation (48b) and  eq. (B.7,9), give,  

 

    
    

    
  ,       (B.10) 

 

Then, taking equation (48d), and eq. ( B.7,9-10), yields, 
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In the case when the inertia terms are neglected (I=0) equation (B.3) takes the form,  

 

          √ .     (B.12) 

 

 

10. Appendix-C 
 

In this appendix, the coefficients of the mode shapes for out-of-plane motion are obtained (eq. 36,38). 

Starting from equation (31a), and using equation (36a),  we get, 

 

    .      (C.1) 

Also, taking equation (32a), and eq. (36a), gives, 

 

      .      (C.2) 

Then applying equation (32b), and eq. (36a, C.2),  shows that, 
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Equation (34a), and eq. (36a,b, C.2-3), combine to give, 

 

     [   (    )  (
  

  
⁄ )     (    )]    [   (    )      (    )]      

 

             .      (C.4) 

 

Then equation (34b), and eq. (36b,38a), together with  eq.(C.1), develop to show that, 
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Applying equation (35b), and eq. (38b), gives, 
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Using equation (34d), with eq. (36b), leads to, 
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Therefore substituting C.4, into equation (C.7), provides, 
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Then using equation (34c), together with eq. (36a), we obtain the following,  
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Equations (C.9) and (C.4,8) provide, 
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Also, using (C.8,10) in eq. ( C.5) we get, 
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Equation 35a and eq.(36a, 38b, C.2, C.3), gives, 
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Also, taking into account equation (C.12) and so eq. (C.6) takes the final form, 
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Equation (35a) and eq. (38b, 36a) , and also considering eq. ( C.2-3), provides the following, 
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Therefore from equations (C.13,14) it arises that, 
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So equation (C.15), with eq. ( C.14),  gives, 
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By considering equation (C.15) eq. (C.4) we  obtain the form, 
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From equation (C.15) and eq. (C.10) results, 
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Also, using equations (C.15 and C.18) eq. (C.8) becomes, 
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It is shown that by utilising (C.15) the equation (C.11) becomes, 
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Equation (32c) together with eq. (36a, C.2-3,15, 38a, C.1, C.20, 36b,C.17-19), generates the 

following, 

 

 

        
 (       (       ))   (    )   

    [  (     
    

   )    (     
      

 )]   

    
  [     

    (    )    
    (    )        

     (    )    
     (    )]   

     
    

  [       (    )          (    )       (    )        (    )]   , (C.21) 

 

which, with some simple algebraic manipulation, leads to, 
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The parameters pi (i=1,…16) are used in order to simplify the expressions and make the algebraic 

manipulations simpler and they are given by, 
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The final definition of the constants for the mode shape equations (36) and (38) for the simplified 

expressions are defined through a set of parameters    (with i=1,..10) which are given by, 
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TABLE CAPTIONS 
 

Table 1.1. In-plane bending of beam 2 model-1. 

Table 1.2. Out-of-plane bending of beam 2 model-1. 

Table 1.3. In-plane bending of beam 2 model-2. 

Table 1.4. Out-of-plane bending of beam 2 model-2. 

Table 1.5. In-plane motion, model 1. 

Table 1.6. In-plane motion, model 2. 

Table 1.7. In-plane motion, model 3. 

Table 1.8. In-plane motion, model 4. 

Table 1.9. Out-of-plane motion, model 1. 

Table 1.10. Out-of-plane motion, model 2. 

Table 1.11. Out-of-plane motion, model 3. 

Table 1.12. Out-of-plane motion, model 4. 
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TABLES 
Table 1.1.  

Mode Freq. 
FE 

(Hz) 

Freq., 
Theory 
without 

InertiaTerms 
(Hz) 

Freq., 
Theory, with 
InertiaTerms 

(Hz) 

% Rel.Dif. 
with 

Inertia 
effect 

(theory) 

% Rel. Dif. 
FE with 
theory  

(inertia) 

MAC 
FE with 
theory  

(inertia) 

1 107.7 107.7 107.7 0.0 0.0 1.000 

2 673.4 674.9 674.5 -0.1 0.2 1.000 

3 1879.6 1889.7 1887.3 -0.1 0.4 1.000 

4 3667.0 3703.2 3694.4 -0.2 0.7 1.000 

5 6027.3 6121.6 6098.4 -0.4 1.2 1.000 
 

Table 1.2.  

Mode Freq. FE 
(Hz) 

Freq., 
Theory 
without 
Inertia 
Terms 

(Hz) 

Freq., 
Theory, with 
Inertia Terms 

(Hz) 

% Rel.Dif. 
with 

Inertia 
effect 

(theory) 

% Rel. Dif. 
FE with 
theory  

(inertia) 

MAC 
FE with 
theory  

(inertia) 

1 143.5 143.6 143.6 0.0 0.1 1.000 

2 896.3 899.9 899.0 -0.1 0.3 1.000 

3 2496.0 2519.7 2513.9 -0.2 0.7 1.000 

4 4853.2 4937.5 4916.8 -0.4 1.3 1.000 

5 7943.9 8162.1 8107.5 -0.7 2.0 1.000 
 

 

Table 1.3.  

Mode Freq. FE 
(Hz) 

Freq., 
Theory 
without 
Inertia 
Terms 

(Hz) 

Freq., 
Theory, with 
Inertia Terms 

(Hz) 

% Rel.Dif. 
with 

Inertia 
effect 

(theory) 

% Rel. Dif. 
FE with 
theory  

(inertia) 

MAC 
FE with 
theory  

(inertia) 

1 39.6 39.6 39.6 0.0 0.0 1.000 

2 247.8 247.9 247.9 0.0 0.0 1.000 

3 693.2 694.2 694.0 0.0 0.1 1.000 

4 1356.7 1360.3 1359.5 -0.1 0.2 1.000 

5 2239.2 2248.7 2246.5 -0.1 0.3 1.000 
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Table 1.4.  

Mode Freq. FE 
(Hz) 

Freq., 
Theory 
without 
Inertia 
Terms 

(Hz) 

Freq., Theory, 
with Inertia 

Terms 
(Hz) 

% Rel.Dif. 
with 

Inertia 
effect 

(theory) 

% Rel. Dif. 
FE with 
theory  

(inertia) 

MAC 
FE with 
theory  

(inertia) 

1 236.5 237.2 237.0 -0.1 0.2 1.000 

2 1455.8 1486.4 1478.8 -0.5 1.6 1.000 

3 3967.8 4161.9 4111.9 -1.2 3.5 0.999 

4 7497.0 8155.7 7977.1 -2.2 6.0 0.997 

5 11874.0 13482.0 13019.7 -3.6 8.8 0.993 

 

 

 

 

Table 1.5.  

Mode 
FE 

Mode 

Freq., 
FE-a, B31 

(Hz) 

Freq., 
FE-b, S4 

(Hz) 

Freq., 
Theory 

(Hz) 

% rel. diff. 
theory with 

FE-a 

% rel. diff. 
theory with 

FE-b 

MAC 
theory 

with FE-a 

MAC 
theory 

with FE-b 

1 1 25.8 25.8 25.8 0.0 0.0 1.00 1.00 

2 3 77.9 78.0 78.0 0.1 0.0 1.00 1.00 

3 5 337.2 337.5 337.6 0.1 0.0 1.00 1.00 

4 7 573.5 573.8 575.2 0.3 0.2 1.00 1.00 

5 9 998.2 999.3 1001.7 0.3 0.2 1.00 1.00 

6 11 1628.0 1629.0 1639.1 0.7 0.6 1.00 1.00 

7 12 2032.4 2035.2 2048.5 0.8 0.6 1.00 1.00 

8 15 3102.7 3106.8 3133.7 1.0 0.9 1.00 1.00 

9 16 3529.2 3534.1 3596.6 1.9 1.7 1.00 1.00 

10 20 4828.8 4839.2 4896.6 1.4 1.2 1.00 1.00 

 

 

Table 1.6.  

Mode 
FE 

Mode 

Freq., 
FE-c, B31 

(Hz) 

Freq., 
FE-d, S4 

 (Hz) 

Freq., 
Theory 

(Hz) 

% rel. diff. 
theory with 

FE-c 

% rel. diff. 
theory 

with FE-d 

MAC 
theory 

with FE-c 

MAC 
theory 

with FE-d 

1 1 25.8 25.8 25.9 0.4 0.4 0.96 1.00 

2 4 84.8 82.3 84.8 0.0 2.9 0.99 1.00 

3 5 365.4 359.4 365.9 0.1 1.8 0.99 1.00 

4 8 697.7 692.4 700.4 0.4 1.1 1.00 1.00 

5 9 1053.9 1029.5 1058.6 0.4 2.7 1.00 1.00 

6 12 1894.7 1892.7 1906.8 0.6 0.7 1.00 1.00 

7 13 2275.7 2228.1 2307.0 1.4 3.4 1.00 0.99 

8 15 3299.4 3264.0 3335.0 1.1 2.1 0.99 0.99 

9 18 4284.6 4268.9 4412.1 2.9 3.2 0.99 0.97 

10 20 4997.5 4930.8 5126.0 2.5 3.8 0.98 0.95 
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Table 1.7.  

Mode 
FE 

Mode 

Freq., 
FE-e, B31 

(Hz) 

Freq., 
FE-f, S4 

 (Hz) 

Freq., 
Theory 

(Hz) 

% rel. diff. 
theory with 

FE-e 

% rel. diff. 
theory 

with FE-f 

MAC 
theory 

with FE-e 

MAC 
theory 
with 
FE-f 

1 1 15.2 15.3 15.2 0.0 -0.7 1.00 1.00 

2 3 41.4 41.6 41.4 0.0 -0.5 1.00 1.00 

3 4 192.2 192.6 192.4 0.1 -0.1 1.00 1.00 

4 6 321.1 323.2 321.4 0.1 -0.6 1.00 1.00 

5 7 612.2 613.8 613.2 0.2 -0.1 1.00 1.00 

6 8 878.9 884.6 881.0 0.2 -0.4 1.00 1.00 

7 11 1258.6 1263.8 1263.3 0.4 0.0 1.00 1.00 

8 12 1722.6 1734.7 1729.5 0.4 -0.3 1.00 1.00 

9 14 2132.2 2145.0 2146.0 0.6 0.0 1.00 1.00 

10 16 2842.5 2864.8 2860.2 0.6 -0.2 1.00 1.00 

 

 

 

Table 1.8.  

Mode 
FE 

Mode 

Freq., 
FE-h, B31 

(Hz) 

Freq., 
FE-g, S4 

 (Hz) 

Freq., 
Theory 

(Hz) 

% rel. diff. 
theory with 

FE-g 

% rel. diff. 
theory 

with FE-h 

MAC 
theory 

with FE-g 

MAC 
theory 

with FE-h 

1 1 15.9 16.0 15.9 0.0 -0.6 0.98 1.00 

2 3 55.4 57.0 55.4 0.0 -2.9 0.98 1.00 

3 6 360.1 373.2 360.5 0.1 -3.5 0.99 1.00 

4 8 927.4 946.2 931.3 0.4 -1.6 0.98 0.98 

5 9 1070.6 1090.4 1085.0 1.3 -0.5 1.00 0.97 

6 13 1857.1 1930.3 1867.2 0.5 -3.4 0.96 0.99 

7 16 3005.0 3074.7 3037.5 1.1 -1.2 0.94 0.90 

8 18 3278.5 3339.7 3430.6 4.4 2.6 0.99 0.88 

9 21 4526.9 4718.6 4586.9 1.3 -2.9 0.91 0.99 

10 25 5965.4 5968.4 6356.6 6.2 6.1 0.12 0.11 

 

 

Table 1.9.  

Mode 
FE 

Mode 

Freq., 
FE-a, B31 

(Hz) 

Freq., 
FE-b, S4 

 (Hz) 

Freq., 
Theory 

(Hz) 

% rel. diff. 
theory with 

FE-a 

% rel. diff. 
theory 

with FE-b 

MAC 
theory 

with FE-a 

MAC 
theory 

with FE-b 

1 2 30.2 30.3 30.2 0.0 -0.3 1.00 1.00 

2 4 79.4 79.5 79.4 0.0 -0.1 1.00 1.00 

3 6 407.1 408.3 407.7 0.1 -0.1 1.00 1.00 

4 8 787.3 788.8 788.4 0.1 -0.1 1.00 1.00 

5 10 1285.5 1289.8 1290.2 0.4 0.0 1.00 1.00 

6 13 2176.8 2182.2 2187.4 0.5 0.2 1.00 1.00 

7 14 2643.2 2652.1 2660.0 0.6 0.3 1.00 1.00 

8 17 3981.1 3990.6 4011.0 0.7 0.5 1.00 1.00 

9 18 4384.5 4385.5 4406.1 0.5 0.5 1.00 1.00 

10 19 4791.2 4802.0 4833.0 0.9 0.6 1.00 1.00 
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Table 1.10.  

Mode 
FE 

Mode 

Freq., 
FE-c, B31 

(Hz) 

Freq., 
FE-d, S4 

 (Hz) 

Freq., 
Theory 

(Hz) 

% rel. diff. 
theory with 

FE-c 

% rel. diff. 
theory 

with FE-d 

MAC 
theory 

with FE-c 

MAC 
theory 

with FE-d 

1 2 29.8 29.9 29.8 0.0 -0.3 1.00 1.00 

2 3 77.7 77.9 77.7 0.0 -0.3 1.00 1.00 

3 6 393.3 394.4 393.9 0.2 -0.1 1.00 1.00 

4 7 629.7 630.4 630.4 0.1 0.0 1.00 1.00 

5 10 1246.8 1250.3 1251.1 0.3 0.1 1.00 1.00 

6 11 1733.3 1735.1 1738.4 0.3 0.2 1.00 1.00 

7 14 2538.6 2545.4 2555.2 0.6 0.4 1.00 1.00 

8 16 3390.3 3394.6 3409.5 0.6 0.4 1.00 1.00 

9 17 4056.8 3993.3 4079.2 0.5 2.1 1.00 1.00 

10 19 4638.3 4583.8 4667.8 0.6 1.8 1.00 1.00 

 

Table 1.11.  

Mode 
FE 

Mode 

Freq., 
FE-e, B31 

(Hz) 

Freq., 
FE-f, S4 

 (Hz) 

Freq., 
Theory 

(Hz) 

% rel. diff. 
theory 

with FE-e 

% rel. diff. 
theory 

with FE-f 

MAC 
theory 

with FE-e 

MAC 
theory 

with FE-f 

1 2 23.9 24.3 24.0 0.4 -1.3 1.00 1.00 

2 5 217.6 217.9 218.2 0.3 0.1 1.00 1.00 

3 9 1111.1 1121.4 1116.6 0.5 -0.4 1.00 1.00 

4 10 1160.3 1163.3 1168.8 0.7 0.5 1.00 0.99 

5 13 1782.8 1785.7 1812.9 1.7 1.5 1.00 1.00 

6 15 2621.1 2696.3 2632.4 0.4 -2.4 1.00 1.00 

7 18 3377.7 3422.4 3393.0 0.5 -0.9 1.00 1.00 

8 19 3553.7 3560.6 3636.2 2.3 2.1 0.99 0.98 

9 22 4871.7 4886.4 5068.8 3.9 3.6 0.97 0.92 

10 23 5263.6 5429.7 5291.5 0.5 -2.6 1.00 0.99 

 

Table 1.12.  

Mode 
FE 

Mode 

Freq., 
FE-g, B31 

(Hz) 

Freq., 
FE-h, S4 

 (Hz) 

Freq., 
Theory 

(Hz) 

% rel. diff. 
theory 

with FE-g 

% rel. diff. 
theory 

with FE-h 

MAC 
theory 

with FE-g 

MAC 
theory 

with FE-h 

1 2 20.6 20.8 20.7 0.5 -0.5 1.00 1.00 

2 4 157.5 157.6 157.7 0.1 0.1 1.00 1.00 

3 5 297.4 297.8 298.0 0.2 0.1 1.00 1.00 

4 7 624.5 625.8 625.4 0.1 -0.1 1.00 1.00 

5 10 1115.2 1102.6 1120.0 0.4 1.6 1.00 1.00 

6 11 1197.0 1200.8 1200.0 0.3 -0.1 1.00 0.99 

7 12 1760.4 1764.4 1784.9 1.4 1.1 0.97 0.99 

8 14 2053.9 2066.4 2067.3 0.6 0.0 1.00 1.00 

9 15 2528.8 2559.2 2538.8 0.4 -0.8 1.00 0.99 

10 17 3208.8 3229.7 3226.34 0.5 -0.1 1.00 0.67 
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Figure Captions 
 

Figure 1. Indication of axis orientation and displacements for (a) the primary beam, (b) the secondary 

beam. 

Figure 2. Characteristic mode shapes of two motions for 1
st
 set of dimensions (a) in-plane bending 

motion for the first orientation of the secondary beam (b) out-of-plane motion for the first orientation 

of the secondary beam (c) in-plane bending motion for the transversal orientation of the secondary 

beam, (d) out-of-plane motion for the transversal orientation of the secondary beam. 

Figure 3. 10
th
 Mode shape in in-plane bending for (a) the 1

st
 model, (b) the 2

nd
 model, (c) the 3

rd
 

model, (d) the 4
th
 model.  

Figure 4.10
th

 Mode shape for out-of-plane motions (a) 1
st
 model bending, (b) 1

st
 model torsion, (c) 2

nd
 

model bending, (d) 2
nd

 model torsion. 

Figure 5.10
th
 Mode shape for out-of-plane motions (a) 3

rd
 model bending, (b) 3

rd
 model torsion, (c) 4

th
 

model bending, (d) 4
th
 model torsion.  
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Figure 1.  

 

 

Figure 2 
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Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0.05 0.1 0.15 0.2 0.25

-1

-0.5

0

0.5

1

x-position

D
is

p
la

c
e
m

e
n

t-
s
c
a
le

d

In-plane bending, 1
st

 Model, 10
th

 Mode

 

 

FE-beam 1

Theory-beam 1

FE-beam 2

Theory-beam 2

0 0.05 0.1 0.15 0.2 0.25

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x-position

D
is

p
la

c
e
m

e
n

t-
s
c
a
le

d

In-plane bending, 2
nd

 Model, 10
th

 Mode

 

 

FE-beam 1

Theory-beam 1

FE-beam 2

Theory-beam 2

0 0.05 0.1 0.15 0.2 0.25

-1

-0.5

0

0.5

1

1.5

x-position

D
is

p
la

c
e
m

e
n

t-
s
c
a
le

d

In-plane bending, 3
rd

 Model, 10
th

 Mode

 

 FE-beam 1

Theory-beam 1

FE-beam 2

Theory-beam 2

0 0.05 0.1 0.15 0.2 0.25
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x-position

D
is

p
la

c
e
m

e
n

t-
s
c
a
le

d

In-plane bending, 4
th

 Model, 10
th

 Mode

 

 

FE-beam 1

Theory-beam 1

FE-beam 2

Theory-beam 2

(a) (b) 

(c) 
(d) 



30 

 

 

Figure 4. 
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Figure 5. 
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