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Abstract

In this article a theoretical linear modal analysis of Euler-Bernoulli L-shaped beam structures is
performed by solving two sets of coupled partial differential equations of motion. The first set, with
two equations, corresponds to in-plane bending motions whilst the second set with four equations
corresponds to out-of-plane motions with bending and torsion. The case is also shown of a single
cantilever beam taking into account rotary inertia terms. At first for the case of examination of the
results for the L-shaped beam structure, an individual modal analysis is presented for four selected
beams which will be used for modelling an L-shaped beam structure; in order to investigate the
influence of rotary inertia terms and shear effects. Then, a theoretical and numerical modal analysis is
performed for four models of the L-shaped beam structure consisting of two sets of beams, in order to
examine the effect of the orientation of the secondary beam (oriented in two ways) and also shear
effects. The comparison of theoretical and finite element simulations shows a good agreement for both
in-plane and out-of-plane motions, which validates the theoretical analysis. This work is essential to
make progress with new investigations into the nonlinear equations for the L-shaped beam structures
within Nonlinear Normal Mode theory.

Keywords: L-shaped beam structure, modal analysis, elastic continua dynamics, Euler-Bernoulli
beams, Autoparametric structure

1. Introduction

There has been continuous interest in the dynamics of L-shaped coupled structures exhibiting
nonlinearities and autoparametric coupling since the 1960s. Roberts and Cartmell in [1,2] studied
certain autoparametric resonances within an L-shaped beam structure, and Balachandran and Nayfeh
performed nonlinear modal analysis considering only in-plane motions [3]. Warminski et al. in [4]
formulated the third order partial differential nonlinear equations for an L-shaped beam structure with
different flexibilities in the two orthogonal directions, without taking into account rotary inertia
effects. Ozonato et al. studied post-buckled chaotic vibrations of an L-shaped beam structure
considering only in-plane bending nonlinear motions [5]. Nayfeh and Pai [6], studied many cases of
autoparametric excitations of beams. In Georgiades et al. [7] the linear equations of motion have been
derived for an L-shaped beam structure, considering the inextensionality conditions and rotary inertia
terms. That study demonstrated well separated in-plane and out-of-plane motions, which has also been
shown with Abaqus Finite Element (FE) simulations. Also the necessity for rotary inertia terms in out-
of-plane bending was confirmed. In the case that the rotary inertia terms are neglected then the
torsional equation of the secondary beam becomes uncoupled from the rest of the out-of-plane
motions, and modal analysis for torsion of the secondary beam leads to very different results from the
numerical simulations.
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In this article we start from the equations of motion and then a theoretical linear modal
analysis of the L-shaped Euler Bernoulli beam structure is undertaken considering in-plane and out-of-
plane motions. Using two sets of dimensions four models are built in the Abaqus software in order to
compare the theoretical with the numerical results. Initially FE models are built and theoretical and
numerical modal analyses are undertaken for each one of the individual beams to examine shear and
rotary inertia effects in the dimensions of the beams that are considered. Finally, the results for the L-
shaped beam structure of the analytical model are compared with the numerical results to validate the
theoretical linear modal analysis.

2. Theory
2.1 Equations of motion

Beams constructed of isotropic material are considered, with constant cross section with respect to the
longitudinal direction (Fig.1). The equations of motion were derived in [7] and are given by,

In-plane motions (bending),

—my ¥y — Dg, 1" + 84l¢, U5’ = 0, 1)
—my(Wy — Sp1¢ + digc) — Dy, w3” + 85I, Wy = 0, (2)
with boundary conditions,
v1(0,t) = 0, v1(0,t) =0,

=841, U1 (14, t) + Dg,v1"(Iy, t) — lymy i1 (L, t) = 0,
—Dg,v1' (11, £) — Dy, w3 (0, 1) + Iy, 64851, V1 (11, £) — I, 65w (12, 1) +

I I
+ %5455{—1),,2 WiV (15, ©) —wiV (0,0)] — I,,85w5' (0, )} = 0, (3a-d)
w,(0,t) =0, wy(0,t) =0,
Dy, wy' (I3, 1) + 85I, (=g + B (14, 1)) = 0, wy (I, t) = 0. (4a-d)
Out-of-plane motions,
bending,
—lefll + 611n1W1H - DThW{V = 0, (5)
—my (U + S2@1¢ + Wac) + 821, U7 — D, vy’ =0, (6)
torsion,
et ,Dfléoi' = 0;, @)
—lg, (P — 6163Wic) + De, 03 = 0, (8)
with boundary conditions,
Wl(ol t) = 01 W{(O, t) = 01
—6&1 1, Wi(ly, t) + Dy wi" (I4,t) + 821z, ¢1 (14, t) — D, v, (0,t) = 0,
—Dn1W{,(l1, t) - 6163sz(pé(0, t) = 0, (9a-d)
91(0,t) =0,
g
—Dg, @111, t) + 82151, ¢1 (14, t) + 821z, 1, (15, t) + De,v7'(0,8) + m—225zfﬂ'é'(0. t) +
+6, 222 (1Y (1,,£) - v} (0,6)) = 0, (10a,b)
2
1,(0,t) =0, v5(0,t) =0,
=817, (U312, t) + $1(11, 1)) + Dg, vy (I, £) = 0, vy (l,,t) = 0, (11a-d)
(p2(0, t) =0, (pé(ZZI t) =0. (123.,b)



The coordinates uj, vi, w;, denote the displacements of a selected arbitrary point of the primary
(horizontal) beam in the absolute X;,Y1,Z; coordinate set, and u,, V,, W,, are the displacements of the
secondary (vertical) beam in the local coordinate set X,,Y,,Z, fixed to the centre of a cross-section at
point C (see Fig.1), and ¢1, ¢, are angles of rotation about the &; and &, axes respectively. The dot and
prime mean derivatives with respect to time and space, respectively.

The Kronecker delta function is used in order to model the effect of rotary inertia terms in the final
equations.

The following transformations, are applied

Wy = wy = $3vic + Use, Vo = V2 + S2901¢ + Wi, P2 = 92 — Wy, (13a-c)
to express the local displacements and rotations of the secondary beam in terms of global
displacements and rotations. For in-plane bending the rotary inertia terms have a very small influence
and can be neglected. Therefore using 6, = 85 = 0, and considering the inertia terms for out-of-plane
bending 6; = 6, = 63 = 1, and also using eq. (13a-c) in eq. (1-12), then the equations of motion and

the boundary conditions are given by,
a) In-plane motions,

myiy + Dg,vi¥ =0, m, W, + D, Wi’ =0, (14a,b)
with boundary conditions,
v1(0,t) =0, v1(0,t) =0, D¢ vi"(ly,t) = lbmyii (4, t), Dg,vi' (L4, t) = =Dy, W' (0, t),

W,(0,t) = 0,  W;(0,t) = —vj(l, )W, (I, t) =0, W,"(l,,t) =0, (15a-h),

b) Out-of-plane motions,
mywy — I Wi + Dy wi¥ =0, myV, —I.,V;' + Dg, V3" =0,
Ig, 1 — Dg @Y =0, Ig,$y — D, ¢y =0, (16a,d)
with boundary conditions,
w;(0,t) =0, w;(0,t) =0,

Iy, W (L, ©) + Dy wi" (L3, 6) + I, 1 (L, £) — D¢, V3" (0,8) = 0,

Dy, wi'(ly,t) + Dg,¢2(0,t) = 0, (17a-d)
§01(0, t) = O,
" Iz ..
D, 1Ly, t) + Ig, Wi (1y, ) = Ie, Vo (I, t) — Dg, V' (0,8) — m—ZZVZ”(O, t) —
1z, D

—=222 (VY (1, 6) = V4 (0,0)) = 0, (18a,b)
VZ (0: t) = Wl(lll t)! VZI(O' t) = (pl(lli t)!
—Iz,V3 (L5, t) + D¢, V3" (Ip,t) = 0, V) (15, t) = 0, (19a-d)

! In this boundary condition, W, (0,t) = u,., but the axial displacement is of second order due to the
inextensionality condition, therefore it is neglected for the first order linear problem.
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¢2(0! t) = _W:{(lli t)r ¢é(l2! t) = 0 (Zoa!b)

In the next section a theoretical modal analysis of the equations of motion is performed (eq. 14-20).
2.2 Modal analysis
2.2.1 In-plane motion

Using the method of separation of variables in space and time, by means of,

v1(51,t) = Yy(s1) - a,(t), Wa(sz,t) = Yy (s2) - aw (t), (21a,b)

the equations of in-plane motion (eq. 14) take the form,

YJV(Sl) - H{‘;Yv(sﬂ =0, Yd}/(sl) - MI‘}VYW(SI) =0,
i (t — D D
a()_aw()__wizn=_ﬁ‘u§=_ﬂ‘u§v, (22a-c)

ay(t)  aw(® my m,

The equality on the left hand side of equation (22c) arises from the fact that for linear modes the two

beams must execute synchronous motion, therefore they must have the same period. Using equations
(21), (22) and also eq. (14a), the boundary conditions of eq. (15) take the form,

LO=0  BO=0  ¥UL)=-Z2V),
D¢, ¥y (11, 0) = =Dy, ¥i7(0),  %y(0) =0,
Yir(0) = ~¥5(), Yiy(l) =0, Y (1) =0. (23a-h)

The mode shapes can be determined from the solution of the ordinary differential equations of
(22a,b), which is a trivial problem and those solutions are given by,

Y,(s1) = Cysin(uys1) + C; cos(uysy) + Cg sinh(pys1) + C4 cosh(uys1),
Yw(s1) = Dy sin(uyys,) + Dy cos(uyyS,) + D3 sinh(uyys,) + Dy cosh(pyys,),  (24a,b)

The constants in these equations are determined as functions of C; and are given in Appendix-A by
means of some appropriate algebraic manipulations and using the boundary conditions (eq. 23a-c,e-h)
and eq. (24a,b). These constants are given by,
C; = —Cq, (25a)
—cos(iyly)—cosh(iyly) + 2252 sin (1)~ sinh (il )]
C; = { } = C;1Cp,

mi
malp
mq

25h
Ev]cosh(pply)—cos(uyly)] (25D)

sinh(uyly)—sin(uyly)+

c —cos(tply) —cosh(pply)+"E 2 sin(uyly)=sinh(uyly)] . 25
— = — , C
* sinh(yl)=sin (uply)+ 222 cosh (pl) —cos(upl)] Cu (250)

D, — pyfcos(pyli)—cosh(puyly)+Cp[—sin(pyly)—sinh(uyls)]} C (26a)
1 u {1L sin(uplz) L[cos(/,Lle)sinh(/,Lle)—sin(uwlz)cosh(uwlz)][cos(/,twlz)+cosh(/,Lle)]} 1
"sinh(pyylz) sinh(uyyl2)[sin(uyyl2)sinh(uyylz)+cos(uylz)cosh(uyylz)+1]

by using equation (26a) and equations (A.5,7,8) the other constants for equation (24b) are given as,

D, = _[ sinh(uwlz)cos(uwlz)—sin(uwlz)cosh(uwlz)
2 sin(uwly)sinh(uyly)+cos(uyly)cosh(uyly)+1



x ty{cos(uply)—cosh(uyly)+Cp[=sin(uyly)—sinh(upls)]} C,, (26b)
{ _ sin(uwlz) I[cos(uwlz)sinh(uWlz)—sin(uWlz)cosh(uwlz)][cos(uW12)+cosh(quz)]} 1
Bt sinh(pylz) sinh(uyyl2)[sin(uyylz)sinh(uyylz)+cos(uyylz)cosh(uylz)+1]

D ={Sin(uwlz) [COS(Mwlz)Sinh(Mwlz)—Sin(#wlz)cosh(#wlz)][COS(Mwlz)+Cosh(Itwlz)]}
3 sinh(uwl) sinh(uw 1) [sin(uwlz)sinh(uwlz)+cos(uwiz)cosh(pwlz)+1]

% —tv{cos(uvly) —cosh(uyly) +Cp=sin(uyly)—sinh(uyl)]} Cy, (26c)
u { . sin(uwla) | [cos(uwlz)sinh(uwlz)—sin(uwlz)cosh(uwlz)][cos(uwlz)+cosh(uwlz)]} 1
W1 sinh(uylz) " sinh(uyyl2)[sin(uylz)sinh(pylz)+cos(uyylz)cosh(uyylz)+1]

_ [ sinh(uwlz)cos(uwlz)—sin(uwlz)cosh(uwlz)
4 sin(uwlz)sinh(uyly)+cos(uyly)cosh(uyly)+1

% pyfcos(uyls)—cosh(pyly)+Cp[—sin(pyls)—sinh(uyl)]} C,.(264)
u {1| sin(uyyl2) l[cos(uwlz)sinh(/,Lwlz)—sin(/,Lle)cosh(uwlz)][cos(/,Lwlz)+cosh(uwlz)]} 1
W sinh(uylz)” sinh(uyyl2)[sin(uylz)sinh(uylz)+cos(uyylz)cosh(uyylz)+1]

The natural frequencies can be determined through equation (23d), and u,, which are defined by the
roots of a transcedental equation. This equation originates from the boundary condition equation (23d)
and equations (24a,b) and is given by,

Dcllilz; [—Cy sin(uyly) — C5 cos(uyly) + C3 sinh(uyly) + C4 cosh(uyly)] = Dnzliav[Dz — Dyl (27)

by also using eq. (25,26) and some manipulations, it emerges that,

4 m1D3 . .
2 x {=sin(uyly) = sinh(uyly) = [cos(iyly) + cosh(pyl)] X
my Dy,

—cos(ply)—cosh(yly) +7 22 sin(uyly)-sinh (kL))
sinh(uyly)=sin(uyl) + 22 cosh(uply)—cos (uyls))
« {1 + sin(””le) [cos(””le)sinh(“”le)—sin(””TLZ)cosh(””TLZ)][cos(”"le)+cosh(”"—ylz)]} y

sinh(””le) sinh(”"TlZ) [sin(”’}’/#)sinh(””le)+cos(””le)cosh(””le)+1]

l l l l
X [sin (Mv 2) sinh (,u,, 2) + cos (Mv 2) cosh (Ilu 2) + 1] +
v l v l 4 ! y l
; Hvlz Hvla) _ oo (Holz Hvlz
+2 [smh( ” )cos( ” ) sm( ) )cosh( ” )]X
X {cos(uyly) — cosh(uy,ly) — [sin(uy,ly) + sinh(uyl;)] X
[—cos(uvll)—cosh(uvll)+’"212“”(sin(uvll)—sinh(uvll)) }
=0,

mi

(28)

. . [}
sinh(uply)=sin(uply) +2 26 (cosh(uyl1)—cos(iy11))
_ MKy _ 4 myDy,
y== /—D (29)
uw mazDg,

It should be noted that it is very difficult to obtain explicit formulae for the roots of the transcedental
equation (28). Considering parameters for a given L-shaped beam structure, then the roots of this
equation can be found easily by examining the zero crossings of the plot of this equation with respect

to u,.

with,



2.2.2 Out-of-plane motion

Using the method of separation of variables in space and time for out-of-plane motion, by means of,

w1(s1,t) = Yy (s1) - hy (1), Vo(sz, ) = Yy (s2) - hy (0,
®1(s1,t) =Y, (51) * ho(0), P2(s2,t) = Yo (s2) - ha (D),

equations (16) then take the form,

I I "
VY +nd () v —nd Y = 0¥ +nf ((2) v — iy, = 0,

mq
Y, +n3Y, =0,Yy +n4Ye =0,

hw () = hy(t) = hy(t) = he(t) = h(1),

h 2 DPmoo Do Paoo Do
h(t)_ Wout = my w = m, Ny = Ig, 77<p— Ig, No»

(30a-d)

(31a-f)

Similarly to the case of the in-plane motions, equation (31e) arises from the fact that for linear modes
the two beams must execute synchronous motions with the same period. Consequently the solution of
the differential equation in the time domain will be the same for all the variables. Therefore, using

equations (30,31), the boundary conditions (17-20) take the form,
Y, (0) =0, Y, (0) =0,
wzznutlnlyvfz(ll) + Dnlyv(;,(ll: t) - I{Z wcz)utygo (ll) - sz Y‘}”(O) =0,
Dy, Yy (1) + D¢, Y4, (0) = 0,
Iz
Dg, Yo (L) — @iyele, Yo (L) + Ig, gy, Yy (1) — D, Yy (0) + wgutm—zzYi}'(O) -

Iz, D
—22 (R (L) - 1 (0) = 0,

Yy (0) =Yy, (1), ¥y (0) = Y(p(l1),
wauele, Yy(z) + Dg, ¥y (1) = 0, Y/ (1) =0,
Yo (0) = =Y, (1y), Yo(l2) = 0.

As shown in Appendix-B the general solutions of equations (31a,b) are given by,
Y,y (s1) = E;sin(d;s;) + E, cos(dys;) + E5 sinh(d,s;) + E4 cosh(d;s;),
Yy (sz) = Fysin(fisz) + F; cos(fys2) + F3 sinh(f;s3) + F, cosh(f;s;),

with,

(32a-d)

(33a,b)

(34a-d)

(35a,b)

(36a,b)



dl = Z y d2 = 4 y
R R A e A
fi= " ,fz = " . (37ab)
The general solutions of equations (31c,d) are given by,
Y,(s1) = K4 sin(n(psl) + K, cos(n(psl),
Yo (s2) = My sin(esz) + M cos(nes2). (38a,b)

The mode shapes for out-of-plane motion are defined by equations (36) and (38), and the general
solution constants have been determined with respect to E; through the boundary conditions (32-35),
as explained in Appendix-C. These constants are given by,

d
Ey = Eq3, Ez = —d—;Ez%a Ey = —Ejy, (39a-c)

F; = E3(q1096 + 97), F2 = quoE2, F3 = E2(q109s + q9), Fa = Ez(q1 — q10), (40a-d)

K; = E;(q1092 + 4394 t q5), K, =0, (41a,b)

M, =E, {Dq:% [d?sin(dl;) + d,dysinh(d,l,)] + D [d?cos(dly) + d%cosh(dzll)]},
212 @2
M, = Ey{q3[—d cos(d ly) + dycosh(d,l;)] + dysin(dyly) + dysinh(d,l;)}. (42a,b)

The natural frequencies of the linear modes for out-of-plane motion are given by the roots of the
transcendental equation. This arises from boundary condition (33b) using also equations (39-42),

D¢, (41042 + 4344 + q5)1y cos(nply) —
2 : di .
—wayelz, |q3 sin(dqly) + cos(dqly) — d—2q3 sinh(d;l;) — cosh(d,l;) | +

+1z, w50 [(q1096 + 97) sin(fily) + g1 cos(filz) +

+(q109s t+ q9) sinh(f>1;) + (q1 — q10) cosh(f,1;)] +

12
+ <wout y Dg'2> [(q1 — 910)fF — q10/] —

I(szz
- =2 —=2[(q1096 + q7)fi* sin(f1l2) + qrofi* cos(fily) +

+(q10qs + 99) 7 sinh(f213) + (g1 — q10)f2' cosh(f2ly) = quof? — (@1 — q10) 7] = 0, (43)

It should be noted that the parameters g; (i=1...10) are frequency dependent, and are used to simplify
the expressions. They are defined explicitly in Appendix-C. Explicit formulae for the roots of equation
(43) are very difficult to obtain. In the case of an L-shaped beam structure with specific dimensions,



the natural frequencies are the roots of this transcendental equation (43) and can be found easily by
examining the zero crossings of the plot of this equation with respect to w ;-

2.2.3 Cantilever beam

In the case of a single cantilever beam in which rotary inertia terms are considered, the equation of
motion and boundary conditions arising (e.g. by equation (16a or b), (17), or (19) by eliminating terms
which corresponds to the connection with the other beam) are given by,

mV —IV" + DV =0, (44)
with boundary conditions,
V(0,t) =0, V'(0,t) =0,
—IV'(L,t) + DV'"'(L,t) = 0, V'"(L,t) =0, (45a-d)

using the separation of variables by means of,

V(s,t) =Y(s)a(t), (46)
in equations (44), leads to,
YV 4+ n? (i) Y" —n?y = 0,%= —w?y = —%nz, (47a,b)
with boundary conditions,
Y(0) =0, Y'(0) =0,
w2, 1Y' (L) + DY"'(L) = 0, Y"(L) = 0. (48a-d)

The solution of the equation (47a) with the necessary boundary condition (eg. 48c) and eg. (B.9-B.11),
as defined in Appendix-B, leads to a transcendental equation. The roots of this transcendental equation
define the natural frequencies of the beam in bending, considering also the inertia terms. This
transcendental equation is given by,

D[-0}scos(oyL) — Dy oissin(oyL) — 0y 504 scosh(o,5L) + Dyo3 gsinh(a, 5L)] +
+w2,¢1[0y scos(oy5L) + Dyoy gsin(oy sL) — 0y scosh(ozsL) + Dyoyssinh(a, 5L)] = 0, (49)

In the case where rotary inertia terms are neglected the transcendental equation (49) when
eq.(47b,B.12) is considered, takes the form,

.02 2 - w?
—cos 4’(m ‘Uo)/D.L — Dy osin 4’(m wo)/D-L — cosh 4’(m wo)/D-L +
’ 2
+Dy osinh +|(m wo)/D L ]=0, (50)



for which we also have,

sin ( (o), >+sinh(‘*/(m'w5)/D-L>
o Ty e T8 )

The roots of equation (50) with respect to w, denote the natural frequencies of a cantilever beam, when
the rotary inertia terms are neglected.

DL,O =

(51)

3. Models

In order to validate the theoretical results of modal analysis, four FE models were constructed in the
Abaqgus program consisting of two sets of beams (with indices a, b respectively). The material for all
the models was aluminium of density, p=2800 kg/m®, Young’s modulus E=70 MPa, Poisson’s ratio
v=0.33, and shear modulus, G,,=26.32 MPa. The dimensions of the beams for each set are,

lig X big X hiq = 0.2m X 0.004m X 0.003m,
l,4 X byg X hyy = 0.15m X 0.004m x 0.003m,
lip X b1p X hyp = 0.18m %X 0.01295m X 0.00216m,
lp X byp X hyp = 0.21m X 0.01295m X 0.00216m.

For each set of dimensions two different models were constructed with two different orientations of
the secondary beam (Figures 2a,c). In the first orientation the secondary beam is oriented in such a
way that its width is in the same direction as the width of the primary beam (Figure 2a). In the second
model the secondary beam has a transversal orientation (Figure 2c).

The parameters used in equations (14,16) are defined as follows:

a) For model 1 with dimensions given for the first set of beams with the first orientation of the
secondary beam, and also considering the warping coefficient for torsional rigidity [6],

3
My q = pbighia = 0.034 kg/m, Iy , = p=7e = 4480 x 10~°kg m,

MN,a
33 33
hig'bigthiahia

— _ - _ pbighi, 4
I, = p (Matiethiatie) - 7000 x 10-kg m, Dy, , = E 222 = 0,630 Pam’,

23
D, = E% — 1.120 Pam®*,

M,a

D, = G123biahda (1 - fj:ll N s ( tanh ("2’;”1‘1)» = 0.513 Pam*,

1a

My = pbyghae = 0.034 kgim, I, = p%”za = 4.480 x 10~ kg m,
hza'b23a+b2a'h§a

— _ - _ haabd, 4
I, = p (Matiatiealie) - 7000 x 10 kgm, Dg,, = E™2%% = 1120 Pam’,

23
D, = E% — 0.630 Pam®,

N2,a
De,, = Giz3hsahda <1 - 1"5:22“ N s < tan h(Z"ZZ))) = 0513 Pam’, (52a-l)
b) For model 2 and using the first set of dimensions but with the transversal orientation of the
secondary beam,

I, =pleta_5590%108kgm D, = E2e"a_ 0630 pam’
$2at P 12 ' gm, $2at 12 ) !

23
D, = E% = 1.120 Pam®, (53a-c)

M2,a,t



the other parameters are the same as those for the first orientation of the secondary beam
(model 1).

c) For model 3 the dimensions are given by the second set of beams and they take the first
orientation of the secondary beam, being defined by,

My = phiphyy = 0.078 kgim, I, = p =it bib — 1,095 x 106 kg m,
Rypb3p+bip-h3)

_ _ - _ bip-h3 _ 4
Isclyb—p(T)—1125X10 Skgm, Dg,,=E221=0761Pam’,

D, = E’“’izblb 27.364 Pam*

M1,b

D, , = G125 biphiy (1 — s, ( tanh (”;"’”))) = 1.024 Pam?,

1b

My = phaphap = 0.078 kg/m, I, , = p% 1.095 x 106 kg m,

3 3
I, = p (L) = 1125 x 10" kg m, Dy, = E% = 27.364 Pam®,

D E% 0.761 Pam®,

M2,b

De,, = G123 baphdy (1 -~ 17;’52:22: A < tanh (’;?b))) = 1.024 Pam®, (54a-)

2b

d) Finally for model 4, using the second set of dimensions but with the secondary beam oriented
in the transversal manner, they are given by,

I, =pheha_3045%10-8kgm D, = E2¢"a_ 0761 pam’
$2at P 12 ' gm, $2at 12 ) !

13
D, = E% = 27.364 Pam’, (55a-c)

N2,at

The other parameters are the same as those for the first orientation of the secondary beam
(model 3).

According to Vlasov’s theory the shear effects are dominant only in cases where the dimensions with
respect to the length have a ratio higher than 0.1 [9], and for the second set of dimensions (models 3
and 4) we expect to observe some shear effects for the higher modes. This is due to the fact that the
widths in the second set of beams are one order of magnitude higher than those of the first set of
beams, whereas the lengths are of the same order.

Before modelling the L-shaped beams a modal analysis of a single cantilever beam was performed in
Abaqus, with the dimensions used for the L-shaped beam structure. We modelled them using two
kinds of elements, denoted as wire (B31) and shell (S4) elements, and also considering shear effects.
The difference in the results obtained by using these two kinds of elements, with examination
restricted to the first 5 bending modes for each one motion (in-plane and out-of-plane bending), was
less than 1%. Therefore only the results of the model with wire elements are presented here noting
that 150 elements were used for all cases. In order to perform a comparison between the mode shapes
we selected specific points on each beam which corresponded to a division of the beam length into 30
elements for all cases.

Furthermore the four FE models of the L-shaped beam structures were constructed in Abaqus in order
to perform numerical modal analysis. For each model, and to ensure correct numerical results, two
kinds of elements were used in the form of wire (B31) and shell (S4) elements, for which shear effects
were also considered. In the case of wire modelling, 150 elements were used for each beam. In the
case of shell modelling and a) model-1, 150 elements in the longitudinal direction X 30 elements for
each beam, were used and b) models-2 and 4, 151 elements in the longitudinal direction X 16 elements
for the primary beam and 150 elements in the longitudinal direction X 16 elements for the secondary
beam, were used and c) in model-3, 150 elements in the longitudinal direction X 16 elements for all
beams were used. In order to compare mode shapes between the theory and the FE simulations we
selected specific points in each beam. In the case of models 1 and 3, the selection of points
corresponds to division of the beam lengths into 30 elements. In the case of models 2 and 4 the
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primary beam was divided into 31 elements and the secondary beam was divided into 30 elements.

4. Results-Discussion

In order to validate the theoretical modal analysis the theoretical results were compared with the FE
simulations in terms of the natural frequencies and mode shapes. The comparison of mode shapes was
carried out using the Modal Assurance Criterion (MAC). The MAC comparison between two mode
shape vectors Yyac1 and Y uac 2 can be estimated using the following formula [8],

|{YMAC,1}T{YMAC,2}|2

MAC(Y, Y = : 56
(Ywac.1 Yacz) ({YMAC,1}T{YMAC,1})({YMAC,Z}T{YMAC,Z}) (0)
noting that the superscript T defines the transpose.
In the case of in-plane motion of the L-shaped beam structure the mode shape is given by,
Ymac} = [V}, (w317, (57a)

for which the mode shape vector is determined at the aforementioned selected points. In the case of
out-of-plane motion for the structure then the mode shape is given by,

Waac} = [, ) ol (¥,}] (57b)

Figures 2a,b (c,d) depict the mode shapes using Abaqus for the 10th modes of in-plane and out-of-
plane motion, respectively, for model 1 (model 2).

4.1 Results for single beams

Theoretical modal analysis was performed for a single cantilever beam in bending by finding the roots
of transcendental equations (49) considering the inertia terms and (50) neglecting the inertia terms for
all the beams used in the modelling of the L-shaped structure. The dimensions are defined in the
previous section and the inertia and stiffness terms are defined by equations (53-56). For both sets of
beam dimensions the results for the primary and the secondary beam are similar, therefore only an
analysis for the secondary beam is presented in this paper. In Tables 1.1-2 (1.3-4) the results of the
examination of the modal analysis of the secondary beam of model 1 (model 2) in bending are shown.
The frequencies which resulted from theoretical analysis, with and without considering the inertia
terms, are presented there, and also the frequencies from the FE simulations. There is also a
comparison of the natural frequencies from the theoretical results which demonstrates the effect of the
rotary inertia terms, and a comparison of the theoretical with the FE simulation results in terms of
frequencies and mode shapes. In the case of the in-plane bending of model 1 (Table 1.1) the inertia
terms clearly have no significant effect. The comparison of theoretical results with FE simulations,
shown in Table 1.1, shows that they are in very good agreement in terms of frequencies and MAC.
Therefore it may be concluded that the shear effect for the first five modes is not significant. In the
case of out-of-plane bending of the secondary beam of model 1, the results are shown in Table 1.2.The
inertia and shear effects are also insignificant there. The results for the secondary beam of model 2 are
shown in Tables 1.3 (1.4) for in-plane bending (out-of-plane bending). In the case of in-plane bending
the shear and rotary inertia effects are insignificant but in out-of-plane bending of the secondary beam
(model 2) the shear and rotary inertia effects are more dominant, as shown in Table 1.4.
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4.2 In-plane motions of L-shaped beam structure

Considering the in-plane motions in this structure then a comparison of the theoretical and numerical
results for the four models, taking into account just the first 10 modes, is presented in Tables 1.5-1.7.
In Table 1.5 the theoretical results for model 1 are in a very good agreement with those from FE
simulations. There is no significant difference between the results of the wire and the shell element
models, and the maximum relative difference between the numerical and theoretical results is 2%,
whereas the MAC diagonal values are 1.00. Figure 3a depicts the theoretical and numerical (wire
model) results for the 10" mode shape for both beams (the same scale coefficient is used for both
beams undergoing theoretical mode shapes) with a good agreement and this confirms the high MAC
values.

In the case of model 2 for which the secondary beam is placed in the transversal configuration, the
results are shown in Table 1.6. In this table there is a good agreement between the natural frequencies
for both models, with less than a 4% difference, for the first nine modes. Therefore, the shear effect
influence is minimal. In the case of the wire model for the 1% mode and then in the case of the shell
model for the 9" mode there is a low MAC value due to numerical errors. It should be highlighted that
in the 10™ mode there is greater discrepancy in the natural frequencies for both models, and also there
are low MAC values due to the imposed inextensionality conditions. More precisely, the axial
displacement of the primary beam due to the inextensionality condition, is a second order nonlinear
term, and this has been neglected from the formulation. Figure 3b depicts the theoretical and
numerical wire model 10" mode shape for the 2" model, using the same scale coefficient for both
beams for the theoretical mode shape. Examining the FE mode shape of the secondary beam in Figure
3b it is possible to notice a displacement at the clamped end (x=0) which is due to the axial
displacement of the primary beam, this was neglected in the theoretical modal analysis. Therefore the
coupling between bending in the secondary beam and the axial motion of the primary beam has been
neglected, and so this axial displacement makes a significant difference to this mode shape. The mode
shape from the shell model in Abaqus is presented in Figure 2b, in which the axial displacement or
shortening of the primary beam is visible. The theoretical and numerical results for model 3,
presented in Table 1.7, are in a good agreement, with a minimal shear effect. This is justified further
on from examination of Figure 3c. In this figure (Fig.3c), the theoretical and numerical results for the
wire model of the 10™ mode shape are depicted with the same scale coefficient for both beams in the
theoretical mode shapes, and they are in a good agreement.

In model 4 the secondary beam is oriented in the transversal direction, therefore in the higher modes it
is expected that the influence of shear effects will be apparent. The results of modal analysis for model
4 are shown in Table 1.8, in which the theoretical results are in a relatively good agreement with the
finite element simulations results. The differences in the natural frequencies of the theoretical results
with those of the corresponding finite element simulations are higher than the differences shown by
the other models e.g. Tables 1.5-7. Detailed examination of the mode shapes for this model (4)
indicates that the low MAC values for the 6™ and 9™ modes of the B31 wire element model in Table
1.8 are due to numerical errors. Similarly, the low MAC values for the 5" and 8™ modes in the case of
the S4 shell element model are also due to numerical errors. For both the B31 and S4 element models
the low MAC values in Table 1.8 for the 7" mode seem to be due to shear effects. Examination of the
10™ mode shapes of the finite element models shows, apart from the influence of some shear effects,
that there is also significant axial displacement in the primary beam, and this is similarly for model 2,
and it explains the low MAC values and the relative differences in the natural frequencies (Table 1.8)
for this mode. Figure 3d depicts the theoretical and numerical results for the wire element model
specifically the 10" mode. By considering the mode shape of the secondary beam from the finite
element simulation in Figure 3d, it is clear that at the clamped end (x=0) there is a significant
displacement caused by the axial displacement of the primary beam, and this explains the low MAC
values for this mode. Also it is expected that shear effects will be more dominant in this mode due to
significant displacements of the secondary beam.

In conclusion, for in-plane motion the comparison of theoretical with numerical results shows a
relatively good mutual agreement, which tends to validate the analytical work undertaken for in-plane
motion.
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4.3 Out-of-plane motions of the L-shaped beam

The theoretical and FE simulations results for all the models and the comparison considering the out-
of-plane motions are all shown in Tables 1.9-1.12. Similarly to the case of in-plane motion, these
Tables show the theoretical and numerical wire and shell model natural frequencies, the % relative
difference between the theoretical and numerical results and also the MAC analysis for the
comparison of the theoretical mode shapes with each one of the mode shapes from the FE simulations.
Table 1.9 presents the results for model 1. Both FE models and theory are in a very good agreement
with 1% of maximum relative difference in the natural frequencies, and the MAC diagonal is 1.00, all
across the modes. Figures 4a,b depict the theoretical and FE wire model simulation mode shape for the
10™ mode of the 1% model, noting that all the theoretical motions for bending and torsion have the
same scale coefficient. More precisely, Figure 4a(b) depicts the mode shape in bending (torsion), and
there is a good agreement between the theoretical and FE simulations which confirms the MAC value.
The results for model 2 in Table 1.10 present again a good agreement between the FE simulations with
the theoretical values. The maximum relative difference is 2% in the natural frequencies, and the
MAC diagonal is equal to 1.00 for all the mode shapes. Figures 4c,d depict the theoretical and FE wire
model simulations for mode 10 for the 2™ model. In Figure 4c (d) the theoretical and FE simulation
mode shape in bending (torsion) are in a good agreement, which validates the high MAC value. Table
1.11 shows the results for model 3, in which the theory is seen to be in good accordance with the FE
simulations. The highest relative difference in natural frequencies is 4% for the 9" mode noting that
there is clear evidence of shear effect influences, and that all the others have a maximum of 3%
difference. For all the mode shapes the MAC diagonals show high values, apart from mode 9 which is
just acceptable. Figures 5a, b depict the theoretical and FE wire model mode shapes for mode 10 for
model No.3. It should be noted that in bending there is some difference in the mode shapes (Fig.5a)
but the displacement values are very small, due to numerical errors. The dominant motions in this
mode are the rotations (Fig. 5b). There is a very good agreement between the theoretical and
numerical simulation mode shapes (Fig.5a b), which is confirmed by the MAC value in Table 1.11.
The results for model 4 show a very good agreement between the theory and the FE simulation results
as shown in Table 1.12. The maximum relative difference in the natural frequencies is 1% and the
MAC values are between 0.99-1.00, neglecting the 7" mode for the wire elements model which is
again lower due to numerical error. Figures 5c, d depict the theoretical and FE wire model simulation
mode shape for mode 10 for the 4™ model. Also in Figure 5 ¢ (d) the mode shapes in bending (torsion)
suggest very good agreement between the theoretical and the FE simulations, and this justifies the high
MAC value in Table 1.12.

In conclusion, there is very a good agreement in the natural frequencies with a maximum relative
difference of 4% only in one case, and between 0.99-1.00 MAC values, apart from one case which is
due to shear effect influence. These results validate the theoretical analysis for out-of-plane motion,
and also the comparison shows that shear effect influences are negligible for the modes examined.

5. Conclusions

In this article we performed a theoretical modal analysis of an L-shaped beam structure, by solving
two sets of coupled equations of motion for in-plane bending and out-of-plane bending and torsion.
Two sets of dimensions were considered for the FE models. For each beam a theoretical and
numerical modal analysis was performed to examine the inertia and shear effects. It was shown for
both models that for in-plane bending the shear and inertia effects are insignificant and for out-of-
plane bending the shear and inertia effects are more significant especially for the second beam.

Then, four models of the L-shaped beam structure were constructed with two configurations
of the secondary beam and the second one of these was oriented in the transversal direction. Both
theoretical and numerical modal analyses were performed for the four models, and the results were
compared. For both solutions, for in-plane motion and out-of-plane motion there is a good agreement
between the theory and the FE simulations, which tends to validate the theoretical analysis. In the case
of in-plane motion for the two models, in the 10" mode there is a high discrepancy due to the coupling
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of axial motion of the primary beam with the in-plane bending motion of the secondary beam, which
was neglected in the theoretical approach. Also in some of the higher modes some discrepancies
occurred due to shear effects. Considering the out-of-plane motions, a comparison of the theoretical
with numerical results shows smaller differences and in these cases the shear effects are negligible. It
should be noted that although in the case of a simple cantilever beam the shear effect is more
dominant even in the lower modes, in the L-shaped beam structure the situation is different. In in-
plane motion of the L-shaped beam the first mode of each beam is coupled together, which results in 2
modes. Therefore, a shifting of the corresponding second mode of the cantilever beam to a higher
mode in the L-shaped beam structure is expected. Considering this phenomenon the shear effects
attributed, generally speaking, to higher modes are shifted to even higher modes in the case of the L-
shaped beam structure.

Finally, the theoretical modal analysis performed in this article for an L-shaped beam structure can
give relatively accurate results for the first modes, and will be used to discretise the nonlinear
equations for the second order approximation, with a projection to the linear mode shapes in order to
continue with nonlinear modal analysis of the L-shaped beam structure.
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8. Appendix-A

In this appendix the coefficients of the mode shapes (eq. 24a,b) are determined for in-plane bending,
through the boundary conditions (eq. 23a-c,e-h). All the coefficients are stated as functions of constant
Cy.

Starting from equation 23a and using eq. 24a, we get,

C, = —C,p, (A1)
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also, by using equation 23b, and then considering eq. 24a, it is shown that,
C3 = _Cli (25&)

Applying equation 23c with equation 24a and then taking equations 25a,b, we get,

—cos(uyly)—cosh(uy,l )+w[sin(u 1;)—sinh(u,l4)]
C, = { - L m - - }=C1CL. (25b)

sinh(yuyly)=sin(uyly) + "2 cosh(uyly) ~cos (kyla)]

Therefore the constants in equation 24a are given by equations 25a,b and also by,

—cos(pply) —cosh(pply)+"E 2 sin(uyly)=sinh(uyly)] 5
Cy=-— = —C,C;.  (25¢
¥ sinh(yl)=sin (uply)+ 222 cosh (pl) —cos(upl)] G (250)
Equation 23e with equation 24b leads to,
D4, = _Dz, (A5)

then making use of equation 23g, and equation 24b, and then taking into account (A5), we have ,

_ sin(uwlz) cos(uwlz)+cosh(upwls)
D =Dy (sinh(uwlz)) +D, ( sinh(uyly) ) (A.6)

Equation 23h, and equation 24b, A.5-6, leads to,

_ cos(uwlz)sinh(uwlz)—sin(uwlz)cosh(uwly)
D, =Dy {Sin(ﬂwlz)Sinh(#le)+COS(#W12)COSh(#le)+1}’ (A7)
Therefore, using A.7 in A.6 we obtain,

D. = {Sin(uwlz) [cos(uwzz)sinhwzz)—sin(uwzz)cosh(uwzzn[cos(uwzz>+cosh(uwlz)]}: D.C (A8)
3 1 Usinh(uwly) sinh(uwly)[sin(uwlz)sinh(uwls)+cos(uwlz)cosh(uwls)+1] =g '

Finally, using 23f, with 24, 25a,b, A.5,7,8, gives the following,

D, = — myfcos(uyli)—cosh(pyly) +Cp[=sin(pyly) —sinh(uyl)]} C (A 9)
1 (1) v '
or,
D. = — tv{cos(uyly)—cosh(pyly)+Cp[=sin(uyly)—sinh(uyl )]} C (26a)
1 u {“ s.in(quz) %[cos(uwlz)sinh(uwlz)—sin(u.le)cosh(quz)][cos(uwlz)+cosh(uwlz)]} 1
sinh(uylz) sinh(uylz)[sin(uyylz)sinh(pylz)+cos(uylz)cosh(uylz)+1]

9. Appendix-B

The general solution of the ODE which arises from the out-of-plane bending and takes the inertia
terms into account is not trivial and is presented within this appendix.

In both cases of out-of-plane bending the ODEs (eq. 31a,b) are structurally the same but with different
coefficients, and in general can be written as follows,

YV 4+ b2dY" — b2%Y = 0. (B.1)
The characteristic polynomial for this form of ODE is,
P(k) = k* + b%dk? — b? =0, (B.2)
with d>0.

This equation is trivial to solve since it is a bi-squared polynomial, therefore the roots are given by,
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b2d+Vb*d2+4b? . [b2d+Vb%*dZ+4b2 . . .
Pa— J_% = 4 /M — tio,.  (imaginary)
—h2 442 2 —h2 442 2
J b d+\/l; d“+4b — i\/ b d+\/l; d<+4b — iO'z, (real). (B3)

k3,4 =+

Considering the roots (B.3) of the characteristic polynomial (B.2) the general solution of equation
(B.1) is given by,

Y(s) = B; exp(ioys) + B, exp(—ioys) + Bz exp(0,5) + B, exp(—a,s). (B.4)
Using the hyperbolic and trigonometric identities,

sinh(x) = w, cosh(x) = exp(x)+2exp(_x)

exp(ix)—exp(—ix)

exp(iz)+exp(=ix) (B.5a-d)
21 ’ |

, cos(x) = >

sin(x) =
we have,

exp(x) = sinh(x) + cosh(x), exp(—x) = cosh(x) — sinh(x),
exp(ix) = isin(x) + cos(x), exp(—ix) = cos(x) — isin(x). (B.6a-d)

Therefore substituting relations (B.6a-d) in equation (B.4), and after some algebraic manipulations, we
get the final form of the general solution of equation (B.1),

Y(s) = L, sin(oy8) + L, cos(oys) + Lz sinh(a,s) + L, cosh(ays), (B.7)
where the constants L; (i=1,..4) are determined through the boundary conditions.

Equation 47a is in the form of eq. (B.1) therefore the mode shapes are as given by equation (B.7),
with,

O2;s = \/_172(;)4. 774(5) +4’72. (B.8a,b)

Considering equation (48a) and eq. (B.7) we get,
L4_ = —Lz, (Bg)
Also, equation (48b) and eq. (B.7,9), give,

L3 = _%Lll (B.lO)

02,5
Then, taking equation (48d), and eq. ( B.7,9-10), yields,

02 ¢sin(oy,5L)+04 502 ¢sinh (o2 5L)

L2 = _L1 = _LlDL' (Bll)

02 scos(oy,sL)+0Zscosh(oysL)
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In the case when the inertia terms are neglected (1=0) equation (B.3) takes the form,

01,0 = 020 — ﬁ (812)

10. Appendix-C

In this appendix, the coefficients of the mode shapes for out-of-plane motion are obtained (eg. 36,38).
Starting from equation (31a), and using equation (36a), we get,

Also, taking equation (32a), and eq. (36a), gives,

E4 = —Ez. (C2)
Then applying equation (32b), and eg. (36a, C.2), shows that,

d
Esy = _( 1/d2)E1. (C.3)
Equation (34a), and eq. (36a,b, C.2-3), combine to give,
_ : dy - _
F,=E; [sm(dlll) — ( /dz) smh(dzll)] + E3[cos(dql;) — cosh(d,l)] — F, =

= Eip1 + Exp, — Fy. (C.4)

Then equation (34b), and eq. (36b,38a), together with eq.(C.1), develop to show that,

_ iRt Fs
L7 sin(ngly)’ (C.5)
Applying equation (35b), and eg. (38b), gives,
M, = M, tan(nel,). (C.6)
Using equation (34d), with eq. (36b), leads to,
_ 1 _ f_z 2 . f_z 2
F, = —Sin(fllz)[ Fycos(fily) + Fy (fl) sinh(f,1,) + F, (fl) cosh(lez)]. (C.7)

Therefore substituting C.4, into equation (C.7), provides,

cos(fyly) + (57)2 cosh(fyly) (57)2 sinh(fyl,)
f=—h sin(f1l2) th sin(filz) "

[cosh(fyl5)sin(dyly) = (da/d;)sinh(dyl)cosh(f1)]
+E(f2/1)* sin(f1ly) ’

[COSh(lez)COS(dlll) - COSh(dzll)COSh(lez)] _
+E,(f2/ f1)? SintiL) =

= —Fp3 + F3ps + E1ps + E;pe. (C.8)
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Then using equation (34c), together with eg. (36a), we obtain the following,
Fl(—D(2f13 + wtz,utlngl)cos(fllz) + FZ(D§2f13 - wcz)utlfzfl)Sin(fllZ) +
+F3(D§2f23 + wgutlg'zfz)COSh(lez) + F4(D{2f23 + wtz)utI(ZfZ)Sinh(fZIZ) =
= Fip; + Fopg + F3pg + F4p10 = 0. (C.9)

Equations (C.9) and (C.4,8) provide,

_ Ps — P3P7 — P1o P1P10 + PspPy P2P10 + PeP7\ _
Fy = —F, —p (RS (R TN
PaP7 + Do Pap7 + Do PaP7 + Do
= Fqg + E1p11 + E2p12. (C.10)
Also, using (C.8,10) in eq. ( C.5) we get,

K. = F,[f1(qspa — p3) + f2qs] + E1[f1(P11D4 + Ps) + fop11] + Ex[f1(P12P4 + D6) + f2D12]
L = =

sin(n(pll)

= F2q; + E1q4 + Exqs. (C.12)
Equation 35a and eq.(36a, 38b, C.2, C.3), gives,

MZ = El [dl COSh(dzll) - d1 COS(dlll)] + EZ [dl Sin(dlll) + dz Sinh(dzll)] =,
= E1p13 + EaD1a- (C.12)

Also, taking into account equation (C.12) and so eq. (C.6) takes the final form,

M; = E1piztan(Nely) + Expiatan(ely). (C.13)

Equation (35a) and eq. (38b, 36a) , and also considering eq. ( C.2-3), provides the following,

M, =E; Dy [d? sin(d,l,) + dyd; sinh(dyl))] + E, Py [d? cos(dql;) + d3E, cosh(d,l,)] =,
Dgne Dg,Me

= E1p15 + E3p16. (C.14)
Therefore from equations (C.13,14) it arises that,

_ P1ie—P1atan(Maelz)) _
El N EZ (Pls tan(’?cblz)—Pls) N Ez‘]s- (C'15)
So equation (C.15), with eq. ( C.14), gives,

M; = E;(q3p15 + D16)- (C.16)

By considering equation (C.15) eq. (C.4) we obtain the form,

Fy = E;(q3py +p2) — F, = q1E; — F,. (C.17)

From equation (C.15) and eq. (C.10) results,

F3 = F5q3 + E;(q3p11 + P12) = F2q5 + E2qo. (C.18)

Also, using equations (C.15 and C.18) eq. (C.8) becomes,

Fy = F,(qsps — p3) + E2(qopa + q3ps + ps) = F2q6 + Ezq,. (C.19)
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It is shown that by utilising (C.15) the equation (C.11) becomes,

Ky = F,q; + E;(q394 + qs). (C.20)

Equation (32c) together with eq. (36a, C.2-3,15, 38a, C.1, C.20, 36b,C.17-19), generates the
following,

_I{Zwtzmt(FZqZ + E5(q3q4 + q5))sin(mpll) -
—Deo[Fo(=qefi® + f2ag) + Ex(—aq7 £ + qof)] +
+Dy, E;[—q3d3cos(dyly) + disin(dily) — qzdid5cosh(dyly) — disinh(d,ly)] +
+a)gut1n1E2 [qzdicos(dqly) — qzdycosh(d,ly) — dysin(dily) — dysinh(d,ly)] = 0, (C.21)

which, with some simple algebraic manipulation, leads to,

17203t (a3qa+a5)sin(nply)+De2 (—a7 f2 +13d9)—
—Ig2w3,¢025i1n(Mpl1)—De2(—a6 f2+f3ds)

F2=E2{

—Dy1{-az[dicos(dql1)+didbcosh(daly)|+d3sin(d 1) —d3sinh(dal4)}—

_Inlwgut{qS[dlcos(dlll)_dICOSh(dZll)]_dlsin(dlll)_dZSinh(dzll)}} = E,qy,. (C.22)

The parameters p; (i=1,...16) are used in order to simplify the expressions and make the algebraic
manipulations simpler and they are given by,

. d .
pr = [sin(d:12) = (“1/,) sinh(ds10)], pz = [eos(dyly) — cosh(dy1)],  (C23ab)
f2)? f2\%;
_ cos(fllz)+(f1) cosh(f,ls) _ (f1) sinh(f,1;) 2dab
Ps = Sin(fil) P | (C.24a.0)
_ 2 [cosh(fzlz)sin(d4l1)—(dy/dy)sinh(d,li)cosh(f;,15)]
ps = (f2/f1) sin(fily) )

[cosh(f>l3)cos(dl)—cosh(dyli)cosh(f,l5)]
pe = (f2/f1)? — 1s;n(fllz) = 2 (C.25a,b)

b7 = (—D{2f13 + wgutlfzfl)cos(f1l2)! Ps = (D{2f13 - wfz)utI{ZfI)Sin(fIZZ)v (C.26a,b)
Do = (D§2f23 + wgutlizfz)COSh(lez): P10 = (D{2f23 + wgutlngz)sinh(lez), (C.27a,b)

P11 = — (%), P12 = — (%), P13 = [d; cosh(d;l;) — d; cos(dql4)], (C.28a,b,c)

. . D i )
P14 = [dysin(dqly) + d; sinh(d;ly)], p1s = Dfn;q, [d% sin(d;ly) + dyd, sinh(d,14)],
2
P1e = D?n;q, [df cos(dly) + dj cosh(d,11)]. (C.29a,b,c)
2

The final definition of the constants for the mode shape equations (36) and (38) for the simplified
expressions are defined through a set of parameters g; (with i=1,..10) which are given by,

q1 = (q3p1 + p2) =
_ Dp1|dfcos(dyly)+dbcosh(daly)|-Denatan(nely)[disin(dly)+dysinh(daly)]
- {D§Zn¢tan(n¢lz)[—dlcos(dlll)+dlcosh(d211)]—D,71[d%sin(d111)+d1dzsinh(d2ll)]}
X [sin(dyly) — (dy/d3)sinh(d,l1)] + cos(d,ly) — cosh(d,ly), (C.30)

_ [as(f1pat/fo)—p3fil
sin(ngly)

qz
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B (DeafE sinh(fo 1) +1gowuefsinh(fola) )sin(fily)~
Sin(n(pll){(fz/fl)z [—D{2f13COS(fllz)+1§2wfz;utflcos(fﬂz)]Sinh(fz12)+[D(2f23005h(f2lz)+1{2w(2;utf2COSh(lez)]Sin(f112)}

—Dzz 1 Stn(f1lz —Izzwout 1Sin(f1lz)Sin(f1lz +—D<2 1 CO0S(J1l2 +I(2w0ut 1c0s(f1lz)]|cos(f1l)+(f2/f1)“cos 202
[De2fisin(fila)~Ieawouersin(fala)]sin(flo) +[-DgafP cos(fyla) Heawouefrcos(ala)|[cos(ala)+ (fa/ 1) cosh(fala)] |

X

f1(f2/f1)%sinkh(fo13) f1€05(f112)+f1(f2/f1)ZCOSh(lez)}
— 31
sin(fily) fz] sin(ngly)sin(filz) ! (C.31)

qs = (P16—P14tan(7’l¢lz))

- pPiztan(Molz)—P1s
Dy1[d%cos(dqly)+d5cosh(daly)|-Deznaldisin(dly)+dzsinh(daly)]tan(nels)

- Dgpna[—dicos(dqly)+d cosh(dzl)]tan(nely)—Dy[d2sin(d 1) +d dpsinh(dy1y)]’

(C.32)

— [P11(fiD4tf2)+f1D5] —
sin(ngply)

qs

_ [sin(d112)~(3L)sinh(dz 10| [Dga 5 sinh(fol2) + g2 wBuefasinh(fo o) ]sin(fi L)+
sin(nel ){(f2/f1)2sinh(f212)[-DgafEcos(filx) +1z2 w3y e ficos(filo) | +sin(fil2)[Dez f3 cosh(f2 1) +ga w3y facosh(f212) |}

+(f2/f1)2[—D{2f13COS(fllz)“{zwgutflws(fllz)][COSh(fzlz)Sin(dll1)-(dl/dz)smh(dzll)COSh(fzlz)]] 5

(fz/f1)25inh(lez) f1(f2/f1)2[COSh(fzlz)Sin(dl11)—(dl/dz)smh(dz11)005h(f2lz)]
X [f sin(fily) + fz] + sin(npla)sin(fily) }' (C.33)

— [D12(D4f1t12)+D6f1] —
sin(ngply)

qs

_ {_ [ sin(filp)[cos(d1ly)—cosh(dzL)][Dg2 f5 sinh(f212) +g2 w3yt fo5inh(f12)]+
sin(nel){(f2/f1)2sinh(fo15)[ D2 fEcos(filx) +Iga w3y e f1cos(fil) | +sin(fil2)[De2 £ cosh(f2l) +ga w3y e fcosh(f212) ]}

+(f2/f1)2[—D(2f13C05(f1lz)+1{2wtznutflcos(fﬂz)][CUSh(fzlz)COS(d111)—005h(d211)005h(f2lz)]] % %

f1(f2/f1)25inh(lez) f1(f2/f1)2[COSh(fzlz)COS(d111)—005h(d211)005h(f2lz)]
[ sin(fyly) t fz] t sin(nely)sin(filz) }' (C'34)
(£2Ysinn(f,)
qs = (qsps — p3) = — |
6 8 sin(f1lz)

2
(D2 fEsin(fule)~Ig203ucfisin(flo)lsin(filo)=[~Daficos(fila) +g2whuficos(fulo)]|cos(fata)+(12) cosh(fala)]-
(Fo/ f1)?[-Deaf cos(filp) +ga w3y frcos(filp)|sinh(f212)+[D ez f3 cosh(falp) +Igz w3y focosh(fo o) ]sin(filz)

—[De2fEsinh(fol2)+1gwhy i f25inh(f212)]sin(fil2) cos(filp)+(fa/f1)?cosh(fzlz)
- ; ) (C.35)
sin(filz)
q7 = (qoPs + 4305 + Pe) =
2 2
_ (j;—i) [cosh(fzlz)sin(dlll)—(g—;)sinh(dzll)cosh(lez)] 4 (;—i) [cosh(f;l5)cos(dql1)—cosh(dylq)cosh(frl5)] _
q3 sin(filz) sin(f1lz)

20



sin(f1lz)

12\ sinnh(f, 1)
_q3x{(f1) ZZ}X

[sin(d1t)~(3L)sinh(dz10)|[Dga 3 sinh (fol2) + g2 whuefasinh(folo)|sin(fila)+
(f2/ f)2SInh(fo12)[-De2 R cos(filp) +ga w3y frcos(filp)|+sin(filp) [DgafE cosh(fola) +1ga w5y f2c0sh(f215)]

+(f2/f1)2[—D{2f13505(f112)+1{2w(27utf1505(f1lz)][COSh(fzlz)Sin(dlll)—(dl/dz)smh(dzll)COSh(fzlz)]} _

sin(f1lz)

_ {(;—i)zﬁnh(lez)} y

x { Sin(fllz)(COS(dlll)—COSh(dzll))[Dngzasinh(lez)+I€2(1)2f25inh(f2lz)]+
(f2/ f)2sinh(f2 1) [-De2 fi cos(filz) Hgr w2 frcos(filp)|+sin(filp) [Dea f3 cosh(folz) +gr w2 frcosh(f212)]

+[—Dzszcos(fllz)+1zzw2f1cos(f1lz)](fz/f1)2[cosh(fzlz)cos(d111)—cosh(d211)cosh(fzlz)]} (C.36)

s = — (Ps —P3pP7 — Plo) _
8 PaD7 + Do

2
[D{2f13—1{2“)zzzutf1]Sin(f1lz)Sin(f1lz)—COS(f1lz)[—Dzsz+Izzw3utf1][Cos(fﬂz)"'(;—i) COSh(lez)]—
- (Ffo/ fO2sinh(falx) cos(filx) [-Dea fE+1g2 by fi] +[Doa f3 +12 By o] cosh(f2lz)sin(f1 1)

~(Dg2f3 +1(2w12)utf2)5inh(f2lz)Sin(ﬁlz)}’ (C.37)

qo = q3pP11 + P12 =
_ [sin(d1t)~(3)sinh(dz10)|[Dea f5+1c203ue folsinh(fala)sin(F12)+
R (Fo/ f)2sinh(fo12)cos(f112)[-Dea fRH g2 by f1]+sin(filp) cosh(f212) [Dea fi +ga w5y f]

+(f2/f1)2C05(f1lz)[—D§2f13 + 1{2w3utf1][COSh(lez)Sin(d1l1) - (d1/d2)5inh(dzl1)005h(fzlz)]}

B { sinh(fzl2)sin(filz)[cos(d1ly) —cosh(dal)][Dg2f5 +1gawiuefo]+
(f2/ f1)2sinh(fa12)[cos(filz) ~Dga fE+1z2why f] +sin(filz) cosh(fz12)[Dg2 f3 +152 05y f2)
+(f2/f1)2cos(f112)[—Dzsz“{zw(z)utﬁ][COSh(fzlz)COS(d1l1)—COSh(d2ll)COSh(fzlz)]} (C.38)

410 = Ir2w30t(a394+45)sin(npls)+De2 (a7 f2+ 13 d9)—
10 —Iz2why1q25in(Mpl)—De2(—qefE+13 s)

—Dy1{-az|dicos(dql1)+didbcosh(daly)|+d3sin(d 1) —d3sinh(dzl1)}—

1 @30 {43[1€05(da 1)~ 41 COS(da )]~y sin(da )~ dasinh(dz)) (C.39)
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TABLE CAPTIONS

Table 1.1. In-plane bending of beam 2 model-1.

Table 1.2. Out-of-plane bending of beam 2 model-1.

Table 1.3. In-plane bending of beam 2 model-2.

Table 1.4. Out-of-plane bending of beam 2 model-2.

Table 1.5. In-plane motion, model 1.
Table 1.6. In-plane motion, model 2.
Table 1.7. In-plane motion, model 3.
Table 1.8. In-plane motion, model 4.
Table 1.9. Out-of-plane motion, model 1.
Table 1.10. Out-of-plane motion, model 2.
Table 1.11. Out-of-plane motion, model 3.
Table 1.12. Out-of-plane motion, model 4.
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TABLES

Table 1.1.
Mode Freq. Freq., Freq., % Rel.Dif. % Rel. Dif. MAC
FE Theory Theory, with with FE with FE with
(Hz) without InertiaTerms Inertia theory theory
InertiaTerms (Hz) effect (inertia) (inertia)
(Hz) (theory)
1 107.7 107.7 107.7 0.0 0.0 1.000
2 673.4 674.9 674.5 0.1 0.2 1.000
3 1879.6 1889.7 1887.3 -0.1 0.4 1.000
4 3667.0 3703.2 3694.4 -0.2 0.7 1.000
5 6027.3 6121.6 6098.4 -0.4 1.2 1.000
Table 1.2.
Mode Freq. FE Freq., Freq., % Rel.Dif. % Rel. Dif. MAC
(Hz) Theory Theory, with with FE with FE with
without Inertia Terms Inertia theory theory
Inertia (Hz) effect (inertia) (inertia)
Terms (theory)
(Hz)
1 143.5 143.6 143.6 0.0 0.1 1.000
2 896.3 899.9 899.0 0.1 0.3 1.000
3 2496.0 2519.7 2513.9 -0.2 0.7 1.000
4 4853.2 4937.5 4916.8 0.4 1.3 1.000
5 7943.9 8162.1 8107.5 -0.7 2.0 1.000
Table 1.3.
Mode Freq. FE Freq., Freq., % Rel.Dif. % Rel. Dif. MAC
(Hz) Theory Theory, with with FE with FE with
without Inertia Terms Inertia theory theory
Inertia (Hz) effect (inertia) (inertia)
Terms (theory)
(Hz)
1 39.6 39.6 39.6 0.0 0.0 1.000
2 247.8 247.9 247.9 0.0 0.0 1.000
3 693.2 694.2 694.0 0.0 0.1 1.000
4 1356.7 1360.3 1359.5 0.1 0.2 1.000
5 2239.2 2248.7 2246.5 -0.1 0.3 1.000
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Table 1.4.

Mode Freq. FE Freq., Freq., Theory, % Rel.Dif. % Rel. Dif. MAC
(Hz) Theory with Inertia with FE with FE with
without Terms Inertia theory theory
Inertia (Hz) effect (inertia) (inertia)
Terms (theory)
(Hz)
1 236.5 237.2 237.0 0.1 0.2 1.000
2 1455.8 1486.4 1478.8 -0.5 1.6 1.000
3 3967.8 4161.9 4111.9 -1.2 3.5 0.999
4 7497.0 8155.7 7977.1 2.2 6.0 0.997
5 11874.0  13482.0 13019.7 -3.6 8.8 0.993
Table 1.5.
FE Freq., Freq., Freq., %rel. diff. %rel. diff. MAC MAC
Mode Mode FE-a, B31 FE-b,S4 Theory theory with theory with theory theory
(Hz) (Hz) (Hz) FE-a FE-b  with FE-a with FE-b
1 1 25.8 25.8 25.8 0.0 0.0 1.00 1.00
2 3 77.9 78.0 78.0 0.1 0.0 1.00 1.00
3 5 337.2 337.5 337.6 0.1 0.0 1.00 1.00
4 7 573.5 573.8 575.2 0.3 0.2 1.00 1.00
5 9 998.2 999.3 1001.7 0.3 0.2 1.00 1.00
6 11 1628.0 1629.0 1639.1 0.7 0.6 1.00 1.00
7 12 2032.4 2035.2 2048.5 0.8 0.6 1.00 1.00
8 15 3102.7 3106.8 3133.7 1.0 0.9 1.00 1.00
9 16 3529.2 3534.1 3596.6 1.9 1.7 1.00 1.00
10 20 4828.8 4839.2 4896.6 1.4 1.2 1.00 1.00
Table 1.6.
FE Freq., Freq., Freq., % rel. diff. % rel. diff. MAC MAC
Mode Mode FE-c,B31 FE-d,S4 Theory theory with theory theory theory
(Hz) (Hz) (Hz) FE-c with FE-d with FE-c with FE-d
1 1 25.8 25.8 25.9 0.4 0.4 0.96 1.00
2 4 84.8 82.3 84.8 0.0 2.9 0.99 1.00
3 5 365.4 359.4 365.9 0.1 1.8 0.99 1.00
4 8 697.7 692.4 700.4 0.4 1.1 1.00 1.00
5 9 1053.9 1029.5 1058.6 0.4 2.7 1.00 1.00
6 12 1894.7 1892.7 1906.8 0.6 0.7 1.00 1.00
7 13 2275.7 2228.1 2307.0 1.4 3.4 1.00 0.99
8 15 32994 3264.0 3335.0 11 2.1 0.99 0.99
9 18 4284.6 4268.9 4412.1 2.9 3.2 0.99 0.97
10 20 4997.5 4930.8 5126.0 2.5 3.8 0.98 0.95
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Table 1.7.

FE Freq., Freq., Freq., % rel. diff. % rel. diff. MAC t:,(leﬁfy
Mode Mode FE-e,B31 FE-f,S4 Theory theorywith theory theory with
(Hz) (Hz) (Hz) FE-e with FE-f with FE-e FE-f
1 1 15.2 15.3 15.2 0.0 -0.7 1.00 1.00
2 3 41.4 41.6 41.4 0.0 -0.5 1.00 1.00
3 4 192.2 192.6 192.4 0.1 -0.1 1.00 1.00
4 6 321.1 323.2 321.4 0.1 -0.6 1.00 1.00
5 7 612.2 613.8 613.2 0.2 -0.1 1.00 1.00

6 8 878.9 884.6 881.0 0.2 -0.4 1.00 1.00

7 11 1258.6 1263.8 1263.3 04 0.0 1.00 1.00

8 12 1722.6 1734.7 1729.5 0.4 -0.3 1.00 1.00

9 14 2132.2 2145.0 2146.0 0.6 0.0 1.00 1.00
10 16 2842.5 2864.8 2860.2 0.6 -0.2 1.00 1.00

Table 1.8.

FE Freq., Freq., Freq., % rel. diff. % rel. diff. MAC MAC

Mode Mode FE-h,B31 FE-g,S4 Theory theory with theory theory theory

(Hz) (Hz) (Hz) FE-g with FE-h with FE-g with FE-h
1 1 15.9 16.0 15.9 0.0 -0.6 0.98 1.00
2 3 55.4 57.0 55.4 0.0 -2.9 0.98 1.00
3 6 360.1 373.2 360.5 0.1 -3.5 0.99 1.00
4 8 927.4 946.2 931.3 0.4 -1.6 0.98 0.98
5 9 1070.6 1090.4 1085.0 1.3 -0.5 1.00 0.97
6 13 1857.1 1930.3 1867.2 0.5 -3.4 0.96 0.99
7 16 3005.0 3074.7 3037.5 1.1 -1.2 0.94 0.90
8 18 3278.5 3339.7 3430.6 4.4 2.6 0.99 0.88
9 21 4526.9 4718.6 4586.9 1.3 -2.9 0.91 0.99
10 25 5965.4 5968.4 6356.6 6.2 6.1 0.12 0.11
Table 1.9.

FE Freq., Freq., Freq., % rel. diff. % rel. diff. MAC MAC

Mode Mode FE-a,B31 FE-b, S4 Theory theory with theory theory theory

(Hz) (Hz) (Hz) FE-a with FE-b with FE-a with FE-b

1 2 30.2 30.3 30.2 0.0 -0.3 1.00 1.00
2 4 79.4 79.5 79.4 0.0 -0.1 1.00 1.00
3 6 407.1 408.3 407.7 0.1 -0.1 1.00 1.00
4 8 787.3 788.8 788.4 0.1 -0.1 1.00 1.00
5 10 1285.5 1289.8 1290.2 0.4 0.0 1.00 1.00
6 13 2176.8 2182.2 2187.4 0.5 0.2 1.00 1.00
7 14 2643.2 2652.1 2660.0 0.6 0.3 1.00 1.00
8 17 3981.1 3990.6 4011.0 0.7 0.5 1.00 1.00
9 18 4384.5 4385.5 4406.1 0.5 0.5 1.00 1.00
10 19 4791.2 4802.0 4833.0 0.9 0.6 1.00 1.00
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Table 1.10.

Freq., Freq., Freq., % rel. diff. % rel. diff. MAC MAC
Mode Mode FE-c,B31  FE-d,S4 Theory theory with theory theory theory
(Hz) (Hz) (Hz) FE-c with FE-d with FE-c with FE-d
1 2 29.8 29.9 29.8 0.0 -0.3 1.00 1.00
2 3 77.7 77.9 77.7 0.0 -0.3 1.00 1.00
3 6 393.3 394.4 393.9 0.2 -0.1 1.00 1.00
4 7 629.7 630.4 630.4 0.1 0.0 1.00 1.00
5 10 1246.8 1250.3 1251.1 0.3 0.1 1.00 1.00
6 11 1733.3 1735.1 1738.4 0.3 0.2 1.00 1.00
7 14 2538.6 2545.4 2555.2 0.6 0.4 1.00 1.00
8 16 3390.3 3394.6 3409.5 0.6 0.4 1.00 1.00
9 17 4056.8 3993.3 4079.2 0.5 2.1 1.00 1.00
10 19 4638.3 4583.8 4667.8 0.6 1.8 1.00 1.00
Table 1.11.
Freq., Freq., Freq., %rel. diff. %rel. diff. MAC MAC
Mode Mode FE-e,B31 FE-f,S4 Theory theory theory theory theory
(Hz) (Hz) (Hz) with FE-e with FE-f with FE-e with FE-f
1 2 23.9 24.3 24.0 0.4 -1.3 1.00 1.00
2 5 217.6 217.9 218.2 0.3 0.1 1.00 1.00
3 9 11111 1121.4 1116.6 0.5 -0.4 1.00 1.00
4 10 1160.3 1163.3 1168.8 0.7 0.5 1.00 0.99
5 13 1782.8 1785.7 1812.9 1.7 1.5 1.00 1.00
6 15 2621.1 2696.3 2632.4 0.4 -2.4 1.00 1.00
7 18 3377.7 3422.4 3393.0 0.5 -0.9 1.00 1.00
8 19 3553.7 3560.6 3636.2 2.3 2.1 0.99 0.98
9 22 4871.7 4886.4 5068.8 3.9 3.6 0.97 0.92
10 23 5263.6 5429.7 52915 0.5 -2.6 1.00 0.99
Table 1.12.
FE Freq., Freq., Freq., %rel. diff. % rel. diff. MAC MAC
Mode Mode FE-g,B31 FE-h,S4 Theory theory theory theory theory
(Hz) (Hz) (Hz) with FE-g with FE-h with FE-g with FE-h
1 2 20.6 20.8 20.7 0.5 -0.5 1.00 1.00
2 4 157.5 157.6 157.7 0.1 0.1 1.00 1.00
3 5 297.4 297.8 298.0 0.2 0.1 1.00 1.00
4 7 624.5 625.8 625.4 0.1 -0.1 1.00 1.00
5 10 1115.2 1102.6  1120.0 0.4 1.6 1.00 1.00
6 11 1197.0 1200.8 1200.0 0.3 -0.1 1.00 0.99
7 12 1760.4 1764.4  1784.9 1.4 1.1 0.97 0.99
8 14 2053.9 2066.4 2067.3 0.6 0.0 1.00 1.00
9 15 2528.8 2559.2  2538.8 0.4 -0.8 1.00 0.99
10 17 3208.8 3229.7 3226.34 0.5 -0.1 1.00 0.67
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Figure Captions

Figure 1. Indication of axis orientation and displacements for (a) the primary beam, (b) the secondary
beam.

Figure 2. Characteristic mode shapes of two motions for 1% set of dimensions (a) in-plane bending
motion for the first orientation of the secondary beam (b) out-of-plane motion for the first orientation
of the secondary beam (c) in-plane bending motion for the transversal orientation of the secondary
beam, (d) out-of-plane motion for the transversal orientation of the secondary beam.

Figure 3. 10" Mode shape in in-plane bending for (a) the 1% model, (b) the 2" model, (c) the 3"
model, (d) the 4" model.

Figure 4.10™ Mode shape for out-of-plane motions (a) 1% model bending, (b) 1% model torsion, (c) 2™
model bending, (d) 2™ model torsion.

Figure 5.10" Mode shape for out-of-plane motions (a) 3" model bending, (b) 3 model torsion, (c) 4™
model bending, (d) 4™ model torsion.
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In-plane bending, 18t Model, 10" Mode
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x 10° Out-of-plane: bending 1% Model, 10" Mode
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Out-of-plane: torsion, 15t Model, 10" Mode
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