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A B S T R A C T

The stiffness of the Exechon hybrid manipulator is a crucial performance indicator as the
manipulator is used as a 5-axis machine tool. Normally, the serial module of the Exechon is
not included in the kinematic and stiffness analysis. In terms of kinematics, the parallel and
serial modules are said to be decoupled, i.e. parallel module can be solved for position and the
serial module can be used to compensate the parasitic orientation of the parallel platform. This
is only possible when the serial module is a perfect spherical wrist. However, several models
of Exechon technology have an offset wrist rather than a spherical one. Such an offset makes
it impossible to obtain a kinematic decoupling.

In all publications available in the literature, the Exechon is considered to have a perfect
spherical wrist. Therefore, this paper presents the inverse kinematics and compliance model of
Exechon manipulators with offset wrists. The unknown coefficients in the compliance model
are determined by optimizing the model against experimental data. The resulting predictions
are then compared against more experimental results to validate the model.

. Introduction

The use of parallel kinematic machines (PKM) or parallel manipulators [1,2] in industrial applications is relatively recent.
lthough a plethora of applications for the Delta robot and the Stewart platform [3,4] can be found in industry, most of the PKMs
esigns have not been exploited in production lines. An important reason for this is the relatively small workspace of conventional
KMs as well as their poor dexterity. Aiming to tackle this, the Tricept robot was presented [5,6] as a hybrid robot that combines
3-DOF (degrees of freedom) parallel module with a 3-DOF serial module mounted in the parallel platform.

Simple in conception, the parallel module of the Tricept is basically a serial UP1 chain which in turn is controlled by 3 actuated
-DOF legs which do not add any constraints to the end-effector of the UP chain. Hence, the UP leg is fully unactuated making
he control and manufacturing of the robot more complex. Vowing to get rid of this unactuated leg, the Exechon manipulator (see
ig. 1a) was designed as a new hybrid robot with an overconstrained 3-legged parallel module [7,8]. The Exechon has been already
sed in several applications, particularly, the Exechon is used in manufacturing [9] as a 5-axis machine.

Due to its application in manufacturing, the stiffness of the Exechon is important in order to improve the quality of the machined
arts. Stiffness models for the parallel module of the Exechon are available in the literature [10–12] as they are for the Exechon-
ike 3-SPR machine developed in Tianjin University [13]. In general, researchers only focus in the parallel module of this hybrid
achine due to its decoupled nature brought by the spherical wrist mounted as serial module. To the knowledge of the authors, all
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Fig. 1. (a) The Exechon XMini, (b) Offset in the wrist of the Exechon XMini.

the published papers that study the Exechon consider a perfectly spherical wrist. The spherical wrist allows the kinematic decoupling
of the modules, using the parallel one for positioning and the serial one for orientating. The decoupling property is exploited when
solving the kinematics of the Exechon [14–17] to obtain closed form solutions.

Nevertheless, among the fairly large number of Exechon models, there are some whose wrist is not spherical, but present an
offset between the two axes of the R joints in the serial module. Fig. 1b shows the 2-DOF serial module of the Exechon XMini,
Fig. 1a, a smaller model built of mainly carbon fiber. The two R joint axes of the wrist of the XMini will be called here 𝐒𝑆1 and
𝐒𝑆2. As shown in Fig. 1b, these axes do not intersect and an offset of 50 mm is present between them.

Although the complexity of obtaining a compliance model of the Exechon is indifferent to the type of wrist, the inverse
kinematics, required to obtain the stiffness in each configuration, is severely affect and no closed form solution is expected for
the problem, in a similar way to what happens with fully serial 6-DOF robots with offset wrists [18]. In its simplest form, without
offset between joint axes, neither at the base, nor at the wrist, the inverse kinematics is not only decoupled, but also has closed
form solution, see [14,16] where such a solution is presented.

In [17], we presented the position analyses of an Exechon robot featuring only the offsets at its base, but not at the wrist. The
perfectly spherical wrist of the manipulator considered in such a publication still allowed the decoupling of position and orientation,
however no closed form solution can be found. In this paper we first obtain the inverse kinematics of an Exechon manipulator, which
not only features an offset writs, but it also presents offsets between the axes of the joints connecting the legs to the base.

Now in this paper, the addition of an offset at the wrist not only will allow the analysis of models like the XMini, whose nominal
dimensions include such an offset, but it can also work as a completely generalized kinematic model in which such offsets can
be seen as manufacturing errors and, thus, we can compute the total error at the end-effector due to such imperfections. Table 1
summarizes these three cases of Exechon manipulator.

In this paper, after the inverse kinematics of this Exechon manipulator with offset wrist is solved, a semi-analytical compliance
model is obtained for the whole robot, considering both serial and parallel modules. See [19] for one of the few examples where
the serial part of a hybrid robot, the Tricept, is considered in the stiffness model as a spherical wrist. See also [20] for an example
of stiffness model of a hybrid (parallel–parallel) robot.

In general, if detailed information of the components that integrate the manipulator is known, an accurate compliance model
can be built. However, it is common that many structural details of the machine are not known, including not only the materials
the parts are made of, but also how the parts are mounted, the stiffness of the actuators after a complex transmission system is
included, etc. Hence, in this paper we employ a different framework that allows modeling the compliance with less information of
how the robot is built.

We first sketch a model based in the overall Jacobian matrix [13,19,21–25]. Other techniques for stiffness computation in parallel
manipulators can be found in [26–30]. We then propose a quadratic in terms of the legs length to model the local compliance of a
group of components modeled as a single element in the analysis. With this assumptions, the model can be written in terms of all the
unknown quantities. Then, using experimental data, the model is optimized applying direct multi-search (DMS) [31] method. After
2
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Table 1
Cases of offsets in the Exechon manipulator.

Wrist Spherical Spherical Offset
Base offsets × ✓ ✓

Decoupling ✓ ✓ ×
Closed form IK ✓ × ×
IK solved in [14,16] [17] None

the optimization, the unknown values in the model are determined and the model is able predict the compliance in any direction
and in any configuration.

The rest of the paper is organized as follows: We first introduce the notation used throughout the paper in Section 2. Section 3
presents the geometry of the Exechon manipulator with offset wrist. Section 4 solves the coupled inverse kinematics of the robot.
In Section 5, the system of constraints and that of actuations are obtained. The compliance equations are reminded in Section 6. In
Section 7, the compliances of the different elements of the manipulator are computed in terms of several unknowns. Section 8 shows
how these unknowns are obtained using an optimization process. In Section 9 these results are applied to a case study considering
the Exechon XMini. Finally, in Section 10, some conclusions are drawn.

2. Notation

The notation used through the paper is now introduced.
The symbol ‘‘∶=’’ is used for definition of variables. Three-dimensional vectors are written in lowercase bold letters, such as

𝐯 ∈ R3. 𝐒 ∈ R6 ≅ se(3) is used for screw coordinate vectors. In order to avoid the introduction of more symbols, we use 𝐒 for both
the screw coordinates of an axis and the geometric element itself. Unit vectors are hatted, 𝐮̂ ∈ S2. Dot product is represented by
central dot ⋅, while matrix multiplication is denoted by juxtaposition, unless otherwise specified — see Section Section 7.

Coordinate systems are named with non-italic capital letters, while points are presented in italic capital letters. For example, in
Fig. 2 frame O has origin at point 𝑂. Let A and B be two coordinate systems with origins at 𝐴 and 𝐵, respectively, and let 𝑃 and
𝑄 be two points. Then the notation from [32] is used to manage coordinate systems. Namely, A𝐫𝑃∕𝑄 is the vector from point 𝑄 to
point 𝑃 in coordinate system A. While A𝐫𝑃 ∶= A𝐫𝑃∕𝐴 is the position vector of point 𝑃 in frame A. A

B𝐑 ∈ SO (3) is the rotation matrix
that relates the orientation of frame B to that of frame A, such that A𝐫𝑃 = A

B𝐑
B𝐫𝑃 + A𝐫𝐵 . The canonical triad defining frame A but

expressed in frame B is denoted by {B 𝐢̂A, B𝐣A, B𝐤̂A}
𝑑(𝑃 ,𝑄) ∈ R is the Euclidean distance between points 𝑃 and 𝑄. Rot(𝛽, 𝐯̂) ∈ SO(3) is the rotation matrix representing a rotation

of 𝛽 radians about an axis that passes through the origin and that is parallel to 𝐯̂. Adj(𝜓) ∈ R4×4 returns the adjoint representation
of Euclidean displacement 𝜓 ∈ SE(3). Null() represents the null space of a matrix, while ()t is its transpose. Finally, aug() and diag()
represent, respectively, the augmented matrix of an ordered set of column vectors, and the diagonal matrix with diagonal elements
equal to an ordered set of scalars.

Table 2 gives a quick reference to important symbols used in the thesis.

3. Geometry of the Exechon manipulator

Fig. 2 shows a representation of an Exechon hybrid robot. The robot integrates a 3-DOF parallel module and a 2-DOF serial
module. The parallel module consists of a moving platform and a fixed platform connected by three legs. Legs 1 and 3 are RRPR
serial chains, while leg 2 is an RRRPR kinematic chain. From Fig. 2, if 𝑖 = 1, 3, the following geometric constraints hold:

𝐒𝑖2‖𝐒𝑙4‖𝐧̂𝛱
𝐒𝑖1⊥𝐧̂𝛱 , 𝐒𝑖3⊥𝐧̂𝛱
𝐒21⊥𝐒22, 𝐒22⊥𝐒23
𝐒23 ∥ 𝐒24, 𝐒24⊥𝐒25
𝐒25 and 𝐒𝑖4 intersect perpendicularly
3
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Table 2
Quick reference to some specific symbols.
Symbol Definition

𝐒𝑖𝑗 Screw axis of the 𝑖𝑗 joint
𝐭̂ Unit vector parallel to the tool axis
𝐧̂𝛱 Unit vector perpendicular to plane 𝛱 , see Fig. 2
𝐖𝑐𝑖𝑗 , 𝐖𝑎𝑖 Screw axes of wrench of constraint 𝑐𝑖𝑗 and wrench of

actuations 𝑎𝑖
𝐉𝑃𝑎, 𝐉𝑃𝑐 , 𝐉𝑃 Jacobian matrices of actuations, constraints and

overall for the parallel module, respectively
𝐉𝑆𝑎, 𝐉𝑆𝑐 , 𝐉𝑆 Jacobian matrices of actuations, constraints and

overall for the serial module, respectively
𝐂𝑃 , 𝐂𝑆 Compliance matrices for the parallel and serial

module, respectively
𝐂𝑃 , 𝐂𝑆 Local compliance matrices for the parallel and serial

module, respectively
𝐂𝛬,e, 𝐂𝛩,e Linear and torsional compliance matrices of element e

Fig. 2. Geometry of an Exechon manipulator with offset wrist.

Points 𝐴1𝑎, 𝐴2𝑎 and 𝐴3𝑎 are the vertices of an isosceles triangle with base 2𝑑𝐴1 ∶= 𝑑(𝐴1𝑎, 𝐴3𝑎) and height 𝑑𝐴2 ∶= 𝑑(𝐴2𝑎,𝐒11).
Points 𝐵1, 𝐵2 and 𝐵3 also form an isosceles triangle with base 2𝑑𝐵1 ∶= 𝑑(𝐵1, 𝐵3) and height 𝑑𝐵2 ∶= 𝑑(𝐵2, 𝐵1𝐵2).

For 𝑖 = 1, 3, points 𝐴𝑖𝑎, 𝐴𝑖𝑏, and 𝐵𝑖 are coplanar, we call the plane that these point lie on 𝛱 , while plane 𝛬 is the one containing
𝐵1, 𝐵2 and 𝐵3. The joint variables of the actuated joints of each leg are measured as follows: 𝑞𝑖3 ∶= 𝑑(𝐴𝑖𝑏, 𝐵𝑖), 𝑖 = 1, 3, and
𝑞24 ∶= 𝑑(𝐴2𝑏, 𝐵2).

The following offsets are considered between the joints connecting the legs to the base:

𝐸1 ∶= 𝑑(𝐒21,𝐒22), 𝐸2 ∶= 𝐬̂22 ⋅ 𝐫𝐴2𝑏∕𝐴2𝑎
,

𝐸3 ∶= 𝑑(𝐒22,𝐒23) = 𝑑(𝐴2𝑏, 𝐴2𝑐 ),

𝐸4 ∶= 𝑑(𝐒11,𝐒12), 𝐸5 ∶= 𝑑(𝐒31,𝐒32)

The serial module is mounted on the moving platform. This module is a serial 2R chain with its two axes 𝐒𝑆1 and 𝐒𝑆2 being
skew with a normal distance between them equal to 𝑑𝑆 . These two revolute joints are used to orientate the spindle axis, which is
parallel to 𝐭̂. Point 𝑇 represents the tool tip. Point 𝑆′ is the intersection of 𝐒𝑆2 and the common perpendicular between 𝐒𝑆1 and 𝐒𝑆2.
Therefore, the spindle axis is defined as ℒ ∶= ℒ (𝐭̂, 𝑆′). 𝑆′ is located a distance ℎ ∶= 𝑑(𝑆,𝛬) from plane 𝛬, while ℎ ∶= 𝑑(𝐒 ,𝛱).
4
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Fig. 3. Lateral views of the Exechon robot showing internal variables.

Axis 𝐒𝑆1 is perpendicular to 𝛬 and the two axes constituting the serial module are perpendicular to each other. We define the tool
length as 𝑑𝑇 ∶= 𝑑(𝑇 , 𝑆′).

In the nominal dimensions of all commercial Exechon robots, 𝐸𝑖 = 0, ∀𝑖 = 1,… , 5. In all the analyses that can be found in the
literature, 𝑑𝑆 is equal to 0, which allows a kinematic decoupling. However, as shown in Fig. 1, 𝑑𝑆 = 50mm in the Exechon XMini.

We define three coordinate systems, O, E and F. Coordinate system O, {𝑥O, 𝑦O, 𝑧O}, has origin at 𝑂 and is attached to the fixed
platform and is used as a global, fixed frame. 𝑥O and 𝑦O are coaxial with 𝐒11 and 𝑂𝐴2𝑎, respectively. Frame E, {𝑥E, 𝑦E, 𝑧E} is attached
to the moving platform and has origin at point 𝐸, the middle point of segment 𝐵1𝐵3. 𝑥E and 𝑦E are coaxial with 𝐸𝐵1 and 𝐸𝐵2,
respectively. Note that 𝐤̂E ∥ 𝐧̂𝛱 . Finally, coordinate system F has origin at 𝑂 and is parallel to frame E.

4. Inverse kinematics

The following information is known in the inverse kinematic problem (IKP): O𝐫𝑇 , i.e. the position of the tip of the tool, point 𝑇 ,
with respect to the fixed coordinate system, and O 𝐭̂ ∶= (𝑡1, 𝑡2, 𝑡3) ∈ S2, a unit vector that is parallel to the tool. The goal of the IKP
is to determine the screw coordinates of all joint axes in the robot with respect to the fixed coordinate system: O𝐒1𝑖, O𝐒3𝑖, O𝐒2𝑗 and
O𝐒𝑆𝑘, 𝑖 = 1,… , 4, 𝑗 = 1,… , 5, 𝑘 = 1, 2, 3.

For this analysis, it is important to define the way the following joint variables are measured:

• 𝑞11, from 𝐣O to 𝐧̂𝛱 about 𝐒11.
• 𝑞21, from 𝐤̂O to 𝐬̂22 about 𝐒21.
• 𝑞22, from 𝐢̂O to 𝐬̂23 × 𝐬̂22 about 𝐒22.
• 𝑞𝑆1, from 𝐢̂E to 𝐬̂𝑆2 about 𝐒𝑆1.
• 𝑞𝑆2, from 𝐤̂E to 𝐭̂ about 𝐒𝑆2.

We also define the following internal variables (see Fig. 3):

• 𝑙1. The (shortest) distance between point 𝑂 and the 𝑥E axis, 𝑙1 = 𝑑(𝑂, 𝐵1, 𝐵3) = 𝐫𝐸∕𝑂 ⋅ 𝐤̂E.
• 𝑙3. The length of the projection of 𝐫𝐸∕𝑂 on the 𝑥E axis, 𝑙3 = 𝐫𝐸∕𝑂 ⋅ 𝐢̂E.
• 𝑙2. The length of the projection of 𝐫𝐵2∕𝐴2𝑐

onto the 𝑦O𝑧O plane.
• 𝜃. The angle measured from 𝑥O to 𝑥E about 𝑦E.

Using these variables it can be seen that O
E𝐑 = O

F𝐑 = Rot(𝑞11, O 𝐢̂O)Rot(𝜃, O𝐣O). For the analysis we also use point 𝑆′, instead of 𝑇 .
The position of 𝑆′ is known from the input information of the IKP as (𝑥𝑆′ , 𝑦𝑆′ , 𝑧𝑆′ ) ∶= O𝐫𝑆′∕𝑂 = O𝐫𝑇 − 𝑑𝑇 O 𝐭̂.

The following constraints are considered in order to solve the IKP:
5
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E

1. 𝐒23⊥𝐢̂E. Using revolute joints 21 and 22 to orientate 𝐒23, it follows O 𝐬̂23 = Rot(𝑞21, O 𝐢̂O)Rot(𝑞22, O𝐤̂O)O𝐣O. It is also known that
O 𝐢̂E = O

E𝐑
O 𝐢̂O. This condition is thus expressed in terms of 𝜃, 𝑞11, 𝑞21 and 𝑞22 as:

O 𝐬̂23 ⋅ O 𝐢̂E = 0 (1)

2. The coordinates of 𝑆′ in frame F are easily obtained as (−𝑙3 + 𝑑𝑆 cos(𝑞𝑆1 − 𝜋∕2), ℎ𝑦 + 𝑑𝑆 sin(𝑞𝑆1 − 𝜋∕2), 𝑙1 + ℎ𝑧). Therefore, this
condition can be expressed in terms of 𝜃, 𝑞11, 𝑙1, 𝑙3 and 𝑞𝑆1 by:

F
O𝐑

O𝐫𝑆′∕𝑂 =
⎛

⎜

⎜

⎝

−𝑙3 + 𝑑𝑆 cos(𝑞𝑆1 − 𝜋∕2)
ℎ𝑦 + 𝑑𝑆 sin(𝑞𝑆1 − 𝜋∕2)

𝑙1 + ℎ𝑧

⎞

⎟

⎟

⎠

(2)

3. The 𝑦O coordinate of point 𝐵2 can be recognized as 𝑑𝐴2+(𝑙2+𝐸1) cos(𝑞21)−𝐸2 sin 𝑞21. It is also known that F𝐫𝐵2
= (−𝑙3, 𝑑𝐵2

, 𝑙1),
therefore, this condition can be expressed in terms of 𝑞11, 𝜃, 𝑞21, 𝑙3 and 𝑙2 by:

O
F𝐑

F𝐫𝐵2
⋅ O𝐣O = 𝑑𝐴2 + (𝑙2 + 𝐸1) cos 𝑞21 − 𝐸2 sin 𝑞21 (3)

4. The 𝑧O coordinate of point 𝐵2 can be recognized as (𝑙2 + 𝐸1) sin(𝑞21) + 𝐸2 cos 𝑞21. Therefore, this condition can be expressed
in terms of 𝛼, 𝜃, 𝑞21, 𝑙𝐸 and 𝑙2 by:

O
F𝐑

F𝐫𝐵2
⋅ O𝐤̂O = (𝑙2 + 𝐸1) sin 𝑞21 + 𝐸2 cos 𝑞21 (4)

5. Points 𝐸 and 𝐴2𝑏 lie on a plane that is perpendicular to the 𝑥E axis. It is known that F𝐫𝐸 = (−𝑙3, 0, 𝑙1), while point 𝐴2𝑏 lies on
the toroid:

O𝐫𝐴2𝑏
= 𝑑𝐴2

O𝐣O + Rot(𝑞21, O 𝐢̂O)
[

(0, 𝐸1, 𝐸2) − 𝐸3Rot(𝑞22, O𝐤̂O)O 𝐢̂O
]

Therefore, this condition can be expressed in terms of 𝑞11, 𝜃 and 𝑙3 by:

(FO𝐑
O𝐫𝐴2

− F𝐫𝐸 ) ⋅ F 𝐢̂F = 0 (5)

6. ℒ𝑇 intersects 𝐒𝑆1. It can be seen that ℒ𝑇 = ℒ (𝐭̂, 𝑆′) and 𝐒𝑆1 = ℒ (𝐤̂E, 𝑃𝑆1), where F𝐫𝑃𝑆1 ∶= (−𝑙3, ℎ𝑦, 0). Therefore, this condition
can be expressed in terms of 𝜃, 𝑞11 and 𝑙3 as:

(

O𝐫𝑆′ − O
F𝐑

F𝐫𝑃𝑆1
)

⋅
(

O 𝐭̂ × O𝐤̂E
)

= 0 (6)

Eqs. (1) to (6) represent a system of 8 scalar equations in 8 unknowns: 𝑞11, 𝑞21, 𝑞22, 𝑞𝑆1, 𝜃, 𝑙1, 𝑙2 and 𝑙3. We proceed now to
educe this system. The first component of vector Eq. (2) can be easily solved for 𝑙1 to obtain:

𝑙1 = cos 𝜃(𝑧𝑆′ cos 𝑞11 − 𝑦𝑆′ sin 𝑞11) + 𝑥𝑆′ sin 𝜃 − ℎ𝑧 (7)

he third component of vector Eq. (2) can be solved for 𝑙3 to obtain:

𝑙3 = sin 𝜃(𝑧𝑆′ cos 𝑞11 − 𝑦𝑆′ sin 𝑞11) − 𝑥𝑆′ cos 𝜃 + 𝑑𝑆 sin 𝑞𝑆1 (8)

q. (4) can be solved for 𝑙2 to obtain:

𝑙2 =
cos 𝑞11(𝑙3 sin 𝜃 + 𝑙1 cos 𝜃) + 𝑑𝐵2 sin 𝑞11 − 𝐸2 cos 𝑞21

sin 𝑞21
− 𝐸1 (9)

The second component of Eq. (2) can be solved for 𝑞𝑆1 to obtain:

𝑞𝑆1 = 𝜋 ± arccos
( 𝑧𝑆′ sin 𝑞11 + 𝑦𝑆′ cos 𝑞11 − ℎ𝑦

𝑑𝑆

)

(10)

Substitution of these solutions in Eqs. (1), (3), (5) and (6) yields to two systems of 4 equations in the unknowns 𝑞11, 𝑞21, 𝑞22 and
𝜃. Two systems are obtained due to the double solution for 𝑞𝑆1 in Eq. (10). The equations have no closed-form solution and have
to be solved using numerical methods. Two solutions for the IKP are secured considering both systems of equations. The solutions
can be distinguished by the ‘‘elbow up’’ and ‘‘elbow down’’ configurations of the serial module, although the configuration of the
parallel differs too between solutions.

Once 𝑞11, 𝑞21, 𝑞22 and 𝜃 is obtained, backwards substitution allows to obtain the other four variables, 𝜃, 𝑙3, 𝑙1 and 𝑞𝑆1. Frames E
and F are now known as they only depend on 𝑞11 and 𝜃. The actuation variables and coordinates of all joint screws can be obtained
as expressions in terms of these five variables, and therefore, the IKP is solved.

Joint variables 𝑞𝑖𝑗 ∈ R, (𝑖, 𝑗) ∈ {(1, 3), (2, 4), (3, 3)} are given by 𝑞𝑖𝑗 ∶= |𝐫𝐵𝑖∕𝐴𝑖 |. To find the position of points 𝐵𝑖, we first locate 𝐸
w.r.t. frame O using O𝐫𝐸 = O

F𝐑
F𝐫𝐸 = O

F𝐑(−𝑙𝐸 , 0, ℎ𝐸 ). Then,
O𝐫𝐵1 = O𝐫𝐸 + O

E𝐑(𝑑𝐵1, 0, 0)
O𝐫𝐵2 = O𝐫𝐸 + O

E𝐑(0, 𝑑𝐵2, 0)
O O O
6

𝐫𝐵3 = 𝐫𝐸 + E𝐑(−𝑑𝐵1, 0, 0) (11)
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To find 𝑞𝑆2 ∈ T, we first consider the direction of 𝐒𝑆2, O 𝐬̂𝑆2 = O
E𝐑Rot(𝑞𝑆1,

E𝐤̂E)E 𝐢̂E. Then:

𝑞𝑆2 = arctan2
(

sgn
(

(O𝐤̂E × O 𝐬̂𝑆3) ⋅ O 𝐬̂𝑆2
)

|

|

|

O𝐤̂E × O 𝐬̂𝑆3
|

|

|

, O𝐤̂E ⋅ O 𝐬̂𝑆3
)

(12)

It is important to be aware that the system of equations presented here involves the location of four points 𝐸, 𝐵2, 𝐴2𝑏 and 𝑆′.
hile the first three are permanently coplanar, 𝑆′ normally lies outside the plane that contains them, i.e. 𝑦𝐸𝑧𝐸 . This makes the

ystem of equation solvable as all of its equations are independent to each other. However, if all four points become coplanar, then
he system of equations cannot be solved. Note that such a situation happens whenever 𝑞𝑆1 ∈ {0, 𝜋} ⇒ 𝐬̂𝑆2 ∥ 𝐢̂𝐸 . However, if this is
he case, then we are able to compute 𝐸 in O with the input information of the IKP as O𝐫𝐸 = O𝐫𝑆′ − (0, 𝑑𝑆 + ℎ𝑦, ℎ𝑧). Observe that
t is the coordinate 𝑥E of E𝐫𝐸∕𝑆′ which normally does not allows us to find 𝐸 with the input information, but in this case such a
oordinate vanishes and 𝐸 is in hand. Since this is a point that is fixed to the moving platform, knowing O𝐫𝐸 allows us to decouple
he robot and solve the IKP following the procedure presented in [17] if 𝐸𝑖 ≠ 0, or [14,16] if 𝐸𝑖 = 0, ∀𝑖 = 1, 2, 3.

Although, in general, when solving systems of non-linear equations using software it is necessary to provide either an initial
uess or bounds for the variables, the process can be automated by using as initial guess the solution for the IKP of the robot with
pherical wrist and no offsets, since the latter has a closed-form solution that is also unique within the joint limits. This initial guess
s not far away from the solution of our non-linear system of equations as the offsets (𝐸𝑖 and 𝑑𝑆 ) will always be small compared
o the dimensions of the robot. The solution for the IKP of the Exechon robot with spherical wrist and no offsets can be found
n [14,16].

.1. IKP for the Exechon robot with offset wrist and nominal dimensions

If 𝐸𝑖 = 0 for 𝑖 = 1,… , 5, but 𝑑𝑆 ≠ 0, the IKP still cannot be decoupled, but the solution can be reduced to a single polynomial
quation.

The substitution 𝐸𝑖 = 0, ∀𝑖 = 1,… , 5 considerably simplifies Eq. (5) since point 𝐴2𝑏 is now fixed, no longer lying on a toroid, so
𝐫𝐴2𝑏

= (0, 𝑑𝐴2, 0). Such a substitution does not affect Eqs. (2) and (6), which, together with our new simplified Eq. (5), represent a
ystem of equation of 5 equations in 5 unknowns: 𝜃, 𝑞11, 𝑙1, 𝑙3 and 𝑞𝑆1.

Eq. (5) and the third component of Eq. (2) are linear on 𝑙3 and 𝑙1, respectively, and can be solved for these variables.
The first and second components of Eq. (2) can be combined to eliminate 𝑞𝑆1, obtaining the following equation:

(𝑥𝑆′ cos 𝜃 + 𝑦𝑆′ sin 𝛼 sin 𝜃 − 𝑧𝑆′ cos 𝛼 sin 𝜃 + 𝑙3)2 + (𝑦𝑆′ cos 𝛼 + 𝑧𝑆′ sin 𝛼 − ℎ𝑦)2 = 𝑑2𝑆 (13)

The expressions for 𝑙3 and 𝑙1 obtained from Eq. (5) and the third component of Eq. (2), respectively, are then replaced in Eqs. (6)
nd (13). After this substitution, Eqs. (6) and (13) become a system of two equations in 𝑞11 and 𝜃. Eq. (6) can be solved for 𝜃 to
btain:

𝜃 = arctan
(𝑥𝑆′ 𝑡3 − 𝑧𝑆′ 𝑡1) sin 𝛼 + (𝑥𝑆′ 𝑡2 − 𝑦𝑆′ 𝑡1) cos 𝛼 + ℎ𝑦𝑡1

(𝑑𝐴2(𝑡3 sin 𝛼 + 𝑡2 cos 𝛼) − ℎ𝑦𝑡2) sin 𝛼 + ℎ𝑦𝑡3 cos 𝛼 − 𝑡3𝑦𝑆′ + 𝑡2𝑧𝑆′
(14)

Substituting Eq. (14) into Eq. (13), a single equation in 𝑞11 is obtained. By using the tangent half-angle substitution, such
xpression can be reduced to a polynomial of degree 16, this results coincides with the expected polynomial for manipulators
ith offset wrists [18].

. Systems of constraints and actuations

In this section, the systems of constraints and actuations of the Exechon robot with offset wrist and offsets in the joints connecting
he legs to the fixed platform are determined. Since for the stiffness analysis the serial module and the parallel module are considered
s two elements connected serially, the systems of constraints and actuations of each module are obtained separately. The presence
f offsets 𝐸4 and 𝐸5 in legs 1 and 3 does not have any significant effect on the systems of constraints and actuations of the ideal
odel. These can be found in the literature [12]. However, for the sake of self-containment, such systems are determined here as
ell.

Let the coordinates of any (unit) screw be given by 𝐒 ∶= (𝐬̂; 𝐫 × 𝐬̂ + ℎ𝐬̂) ∈ se(3) ≅ R6, 𝐬̂ ∈ S2, 𝐫 ∈ R3, ℎ ∈ R. Then a twist is given
y 𝐕 ∶= 𝜔𝐒 = (𝝎; 𝐯) and a wrench by 𝐖 ∶= (𝐟 ;𝐦). We invert the components of a screw using 𝐒̃ ∶= (𝐫 × 𝐬̂ + ℎ𝐬̂; 𝐬̂).

If 𝒮𝑖 ∶= span(𝐬𝑖1,… , 𝐬𝑖𝑛), then the system of constraints of leg 𝑖 is given by 𝒲𝑐𝑖 ∶= {𝐖𝑐𝑖𝑗 ∶ kl(𝐖𝑐𝑖𝑗 ,𝐒) = 0, ∀𝐒 ∈ 𝒮𝑖}, where
l(𝐒1,𝐒2) = (𝐒̃1)t𝐒2 is the Klein form in se(3). The constraint system of the moving platform is then given by the sum of the constraint
ystems of each leg.

A basis for the constraints system of each leg is shown in Fig. 4. For legs 𝑖 = 1, 3 it follows 𝒲𝑐𝑖 ∶= span(𝐖𝑐𝑖1,𝐖𝑐𝑖2), where 𝐖𝑐𝑖1
s a pure moment with direction perpendicular to 𝐒̂𝑖1 and 𝐒̂𝑖2, while 𝐖𝑐𝑖2 is a pure force that is parallel to 𝐒̂𝑖4 and intersects 𝐒𝑖1:

O𝐖𝑐𝑖1 =
(

𝟎; O 𝐢̂O × O𝐣F
)

,

O𝐖𝑐𝑖2 =
(

O𝐣E; O𝐫𝐴𝑖𝑎 ×
O𝐣E

)

, (15)

The offsets between joint axes in leg 2 do not the determination of O𝐖𝑐21, the single wrench in the basis of 𝒲2, by simple
eometric means. As shown in [17], O𝐖𝑐21 can be found by computation of a basis for Null((𝐉2(𝐪))t ) = span(O𝐖̃𝑐21), where

O O t
7

2 ∶= aug( 𝐒21,… , 𝐒25). Clearly, dim(Null((𝐉2(𝐪)) )) = 1. This null space can be computed directly using the function nullspace
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Fig. 4. System of constraints and system of actuations.

of Maple©. In general, 𝐖𝑐21 is neither a pure force, nor a pure moment. However, in the case of 𝐸1 = 𝐸2 = 𝐸3 = 0, the wrench
degenerates into a pure force O𝐖𝑐2 =

(

O 𝐢̂E; O𝐫𝐴2𝑎
× O 𝐢̂E

)

The twist of the moving platform with respect to the fixed one, 𝐕mp ∈ 𝑠𝑒(3), is given by

𝐕mp ∶=
4
∑

𝑗=1
𝑞̇1𝑗𝐒1𝑗 =

5
∑

𝑗=1
𝑞̇2𝑗𝐒2𝑗 =

4
∑

𝑗=1
𝑞̇3𝑗𝐒3𝑗

Without loss of generality, for leg 1, for example, it follows:

kl

( 4
∑

𝑗=1
𝑞̇1𝑗𝐒1𝑗 , 𝐖𝑐1𝑘

)

= 0 ⇒

( 4
∑

𝑗=1
𝑞̇1𝑗𝐒1𝑗

)t

𝐖̃𝑐1𝑘 = 0, 𝑘 = 1, 2 (16)

Considering Eq. (16) for all legs, the expression 𝐉𝑃𝑐𝐕mp = 𝟎 can be written, where 𝐉𝑃𝑐 ∈ R5×6 is the Jacobian of constraints and
is given by:

𝐉𝑃𝑐 ∶= aug
(

𝐖̃𝑐11, 𝐖̃𝑐12, 𝐖̃𝑐2, 𝐖̃𝑐31, 𝐖̃𝑐32
)t

Now consider the wrenches of actuation 𝐖𝑎𝑖, 𝑖 = 1, 2, 3, for which kl(𝐖𝑎𝑖,𝐒𝑖𝑗 ) = 0 if joint 𝑖𝑗 is not actuated and kl(𝐖𝑎𝑖,𝐒𝑖𝑗 ) ≠ 0
if joint 𝑖𝑗 is the actuated joint of leg 𝑖. Without loss of generality, for leg 1 it follows:

kl

( 4
∑

𝑗=1
𝑞̇1𝑗𝐒1𝑗 , 𝐖𝑎1

)

= 𝑞̇13kl(𝐒13,𝐖𝑎1)

⇒ 𝐕t
mp𝐖̃𝑎1 = 𝑞̇13kl(𝐒13,𝐖𝑎1) (17)

Considering Eq. (17) for all legs, the expression 𝐉𝑃𝑎𝐕mp = (𝑞̇13, 𝑞̇24, 𝑞̇33) can be written, where 𝐉𝑃𝑎 ∈ R3×6 is the Jacobian of
actuations and is given by:

𝐉𝑃𝑎 ∶= aug
( 𝐖̃𝑎1
kl(𝐒13,𝐖𝑎1)

,
𝐖̃𝑎2

kl(𝐒24,𝐖𝑎2)
,

𝐖̃𝑎3
kl(𝐒33,𝐖𝑎3)

)t

where,

O𝐖𝑎𝑖 =

( O𝐫𝐵𝑖∕𝐴𝑖𝑏
|

O𝐫𝐵𝑖∕𝐴𝑖𝑏 |
; O𝐫𝐴𝑖𝑏 ×

O𝐫𝐵𝑖∕𝐴𝑖𝑏

)

, 𝑖 = 1, 3 (18)

For leg 2, there is again no direct geometric method to determine O𝐖𝑎2. However, let 𝐉∗2 ∶= aug(O𝐒21, O𝐒22, O𝐒23, O𝐒25), then we
note that O𝐖̃𝑎2 ∈ Null((𝐉∗2)

t ), but O𝐖̃𝑎2 ∉ Null(𝐉t2). It is clear that Null(𝐉t2) < Null((𝐉∗2)
t ). Therefore, a simple way to find O𝐖𝑎2 is to

∗ t
8

obtain bases for both null spaces. Since dim(Null((𝐉2) )) = 2, one can pick any of the two vectors in its basis and verify that it is not
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parallel to O𝐖̃𝑐2. If the wrenches are not parallel, then such a vector can be taken as O𝐖̃𝑎2. In the case of 𝐸1 = 𝐸2 = 𝐸3 = 0, O𝐖̃𝑎2
is reduced to a pure force along the actuator axis and can be computed making 𝑖 = 2 in Eq. (18).

A similar analysis can be done for the 2-DOF serial module to obtain the following Jacobians of constraints and actuations:

𝐉𝑃𝑐 ∶= aug
(

𝐖̃𝑐𝑆1, 𝐖̃𝑐𝑆2, 𝐖̃𝑐𝑆3, 𝐖̃𝑐𝑆4
)t ,

𝐉𝑃𝑎 ∶= aug
(

𝐖̃𝑎𝑆1, 𝐖̃𝑎𝑆2
)t (19)

where,
O𝐖𝑐𝑆1 =

(

O𝐤̂E; O𝐫𝑆′ × O𝐤̂E
)

,

O𝐖𝑐𝑆2 =
(

O 𝐬̂𝑆2; O𝐫𝑃𝑆1 ×
O 𝐬̂𝑆2

)

,

O𝐖𝑐𝑆3 =
(

O𝐤̂E × O 𝐬̂𝑆2; O𝐫𝑆′ × (O𝐤̂E × O 𝐬̂𝑆2)
)

,

O𝐖𝑐𝑆4 =
(

𝟎; O𝐤̂E × O 𝐬̂𝑆2
)

,

O𝐖𝑎𝑆1 =
(

𝟎; O𝐤̂E
)

,

O𝐖𝑎𝑆2 =
(

𝟎; O 𝐬̂𝑆2
)

(20)

where O 𝐬̂𝑆2 = Rot(𝑞𝑆1, E𝐤̂E)E 𝐢̂E. The overall Jacobian matrices [22] for the parallel and serial modules are given, respectively, by:

𝐉𝑃 ∶=
[

𝐉𝑃𝑎
𝐉𝑃𝑐

]

∈ R8×6, 𝐉𝑆 ∶=
[

𝐉𝑆𝑎
𝐉𝑆𝑐

]

∈ R6×6,

6. Compliance equation for the hybrid manipulator case

Let T be a coordinate system that is parallel to frame O but has origin at 𝑇 . We now refer the coordinates of every wrench in 𝐉𝑃𝑐 ,
𝐉𝑃𝑎, 𝐉𝑆𝑐 and 𝐉𝑆𝑎 to frame T by means of T𝐖 = Adj(id𝑆𝑂(3), O𝐫𝑇 )O𝐖. Once all Jacobians are expressed in frame T, the compliance
matrix of the whole system can be expressed as the sum of the compliance matrix of the parallel module and the compliance matrix
of the serial module.

The proof of the stiffness equations for both the parallel and the serial cases is included in several publications with equivalent
results (see [12,13,19]). Only the resulting expressions will be included in this article.

Let T𝐖ext be the external wrench applied at 𝑇 and let T𝛥𝐗 ∶= (𝛥𝜃;𝛥𝐫𝑇 ) be the deformation at 𝑇 . The applied wrench and the
corresponding deformation are then related by:

T𝛥𝐗 =
(

𝐂𝑃 + 𝐂𝑆
) T𝐖̃ext (21)

where 𝐂𝑃 and 𝐂𝑆 are the compliance matrices of the parallel and the serial module, respectively, and are given by:

𝐂𝑃 ∶=
(

𝐉t𝑃 (𝐂𝑃 )
−1𝐉𝑃

)−1
, 𝐂𝑆 ∶=

(

𝐉t𝑆 (𝐂𝑆 )
−1𝐉𝑆

)−1
, (22)

where the entries of 𝐂𝑃 and 𝐂𝑆 , are the compliances in the directions of actuations and constraints, such that, without loss of
enerality, for the parallel module 𝛥𝐪𝑃 = 𝐂𝑃 𝝉𝑃 . Where 𝛥𝐪𝑃 ∶= (𝛥𝑞𝑎1, 𝛥𝑞𝑎2, 𝛥𝑞𝑎3, 𝛥𝑞𝑐11, 𝛥𝑞𝑐12, 𝛥𝑞𝑐2, 𝛥𝑞𝑐31, 𝛥𝑞𝑐32) is the vector of

displacements along the actuations and constraints directions, and 𝝉𝑃 ∶= (𝜏𝑎1, 𝜏𝑎2, 𝜏𝑎3, 𝜏𝑐11, 𝜏𝑐12, 𝜏𝑐2, 𝜏𝑐31, 𝜏𝑐32) are the forces/moments
applied in the directions of constraints and actuations. The following notation is used for the entries of 𝐂𝑃 and 𝐂𝑆 : For example, the
diagonal element in the 4th row and 4th column represents the compliance in the direction of constraint 𝑞𝑐11 due to the application
of a moment 𝜏𝑐11 in the same direction and it is referred to as 𝑐𝑐11𝑐11 . Outside the diagonal, the element in the 4th row and 5th column
s the compliance in the direction of 𝑞𝑐11 due to the application of a force 𝜏𝑐12 and it is referred to as 𝑐𝑐12𝑐11 . It can be seen that this
ast example is a coupled compliance and, due to the linear nature of the deformations in the model, 𝑐𝑐11𝑐12 = 𝑐𝑐12𝑐11 .

As shown in Eq. (6), the resulting compliance matrix of two elements connected serially is the sum of their respective
ompliance matrices. This is why in this paper we work with compliance matrices instead of stiffness, which would involve the
alculation of inverses in Eq. (6), in order to obtain the obtained displacement. Hence, this is a common practice when dealing with
erially-connected modules, see [13,33].

. Elements in 𝐂𝑷 and 𝐂𝑺

In this section, the entries of 𝐂𝑃 and 𝐂𝑆 are discussed. We construct such matrices the following way:

𝐂𝑃 = diag
(

𝑐𝑎1𝑎1 , 𝑐
𝑎2
𝑎2 , 𝑐

𝑎3
𝑎3 , 𝑐

𝑐11
𝑐11 , 𝑐

𝑐12
𝑐12 , 𝑐

𝑐2
𝑐2 , 𝑐

𝑐31
𝑐31 , 𝑐

𝑐32
𝑐32

)

𝐂𝑆 = diag
(

𝑐𝑎𝑆1𝑎𝑆1 , 𝑐
𝑎𝑆2
𝑎𝑆2 , 𝑐

𝑐𝑆1
𝑐𝑆1 , 𝑐

𝑐𝑆2
𝑐𝑆2 , 𝑐

𝑐𝑆3
𝑐𝑆3 , 𝑐

𝑐𝑆4
𝑐𝑆4

)

Since these entries depend on the specifications of each robot, the case of the Exechon XMini is treated here. In the nominal
imensions of the XMini model, 𝐸𝑖 = 0, ∀𝑖 = 1,… , 5, however, the serial module is an offset wrist, as shown in Fig. 1, so that
= 50 mm ≠ 0. The following analysis can be applied to any model with these offsets characteristics.
9

𝑆
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Fig. 5. Components and coordinate systems in leg 1.

For this analysis, several coordinate systems with coincident origins are established and compliances are expressed in different
frames by means of a transformation of coordinate systems [13,19,34]. For example, if the linear compliance matrix of an element
is known in frame A and we would like to know the linear compliance along a vector 𝐮̂, which is known in frame B, then such a
compliance is given by 𝑐𝛬,𝐮̂ = (B𝐮̂)t ⋅ BA𝐑 ⋅ 𝐂𝛬 ⋅ AB𝐑 ⋅ B𝐮̂, where 𝐂𝛬 is the linear compliance matrix in frame A. We will use 𝛬 and 𝛩
to distinguish between linear and torsional compliances. Also note that only in this section, we will be using (⋅) to represent matrix
multiplication instead of dot product, this is due to the amount of subscripts and superscripts for which juxtaposition may lead to
confusion.

7.1. Legs 1 and 3

Since 𝐸4 = 𝐸5 = 0, we define 𝐴𝑖 = 𝐴𝑖𝑎 = 𝐴𝑖𝑏, for 𝑖 = 1, 3. Then we establish a coordinate system 𝑖 with origin at 𝐴𝑖, 𝑧𝑖 axis in the
direction of 𝐫𝐵𝑖∕𝐴𝑖 and 𝑦𝑖 axis in the direction of 𝐬̂𝑖2 = 𝐣E as shown in Fig. 5. Frame 𝑖 is fixed to the slider. We also define coordinate
system G, which shares the same origin and 𝑦 axis as 𝑖 but, its 𝑥G axis is in the direction of 𝑥O. Frame G is fixed to the gimbal. An
abuse of notation will be committed here as we will call simply G this last frame for both legs, although in each leg frame G has a
different origin.

For this model, legs 𝑖 = 1, 3 are disassembled in two parts shown in Fig. 5, we call this elements ‘‘gimbal’’ and ‘‘limb 𝑖’’. Element
limb 𝑖 encompasses the rail, slider, bearings, screw lead and other components. Note that we use ‘‘leg’’ to refer to the entire kinematic
chain from base to moving platform, while ‘‘limb’’ denotes the element just defined.

From the constraints and actuations system shown in Fig. 5, the compliance of the gimbal in all the directions of the wrenches
in these two systems can be obtained by simple projection of the fixed-value linear and torsional compliance matrices in frame G,
𝐂𝛬,gim and 𝐂𝛩,gim, respectively. Such matrices are determined using FEM. It follows that:

𝑐𝑎𝑖𝑎𝑖,gim = (𝑖𝐤̂𝑖)t ⋅ 𝑖G𝐑 ⋅ 𝐂𝛬,gim ⋅ G𝑖 𝐑 ⋅ 𝑖𝐤̂𝑖
𝑐𝑐𝑖1𝑐𝑖1,gim = (G𝐤̂G)t ⋅ 𝐈3×3 ⋅ 𝐂𝛩,gim ⋅ 𝐈3×3 ⋅ G𝐤̂G
𝑐𝑐𝑖2𝑐𝑖2,gim = (G𝐣G)t ⋅ 𝐈3×3 ⋅ 𝐂𝛬,gim ⋅ 𝐈3×3 ⋅ G𝐣G

The entries of the compliance matrices of element limb 𝑖 in frame 𝑖 are modeled considering a quadratic and a linear term in
the leg length, 𝑞𝑖3:

𝐂𝛬,lim𝑖 = diag

( 2
∑

𝑘𝛬,𝑥,𝑗𝑞
𝑗
𝑖3,

2
∑

𝑘𝛬,𝑦,𝑗𝑞
𝑗
𝑖3,

2
∑

𝑘𝛬,𝑧,𝑗𝑞
𝑗
𝑖3

)

10
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𝐂𝛩,lim𝑖 = diag

( 2
∑

𝑗=1
𝑘𝛩,𝑥,𝑗𝑞

𝑗
𝑖3,

2
∑

𝑗=1
𝑘𝛩,𝑦,𝑗𝑞

𝑗
𝑖3,

2
∑

𝑗=1
𝑘𝛩,𝑧,𝑗𝑞

𝑗
𝑖3

)

(23)

here 𝑘𝛬,𝑎,𝑗 , 𝑘𝛩,𝑎,𝑗 ∈ R, 𝑎 = 𝑥, 𝑦, 𝑧 and 𝑗 = 1, 2, are the coefficients of the polynomials. Note that these coefficients are not directly
elated to any geometrical or mechanical property of the element, they are rather a means to model such properties.

It follows that:

𝑐𝑎𝑖𝑎𝑖,lim𝑖 = (𝑖𝐤̂𝑖)t ⋅ 𝐈3×3 ⋅ 𝐂𝛬,lim𝑖 ⋅ 𝐈3×3 ⋅ 𝑖𝐤̂𝑖
𝑐𝑐𝑖1𝑐𝑖1,lim𝑖 = (G𝐤̂G)t ⋅ G𝑖 𝐑 ⋅ 𝐂𝛩,lim𝑖 ⋅ 𝑖G𝐑 ⋅ G𝐤̂G

𝑐𝑐𝑖2𝑐𝑖2,lim𝑖 = (𝑖𝐣𝑖)t ⋅ 𝐈3×3 ⋅ 𝐂𝛬,lim𝑖 ⋅ 𝐈3×3 ⋅ 𝑖𝐣𝑖 (24)

The compliance of each element and the compliance of the actuator, 𝑐act , contribute to the compliance of the entire leg, hence:

𝑐𝑎𝑖𝑎𝑖 = 𝑐𝑎𝑖𝑎𝑖,lim𝑖 + 𝑐
𝑎𝑖
𝑎𝑖,gim + 𝑐act

𝑐𝑐𝑖1𝑐𝑖1 = 𝑐𝑐𝑖1𝑐𝑖1,lim𝑖 + 𝑐
𝑐𝑖1
𝑐𝑖1,gim

𝑐𝑐𝑖2𝑐𝑖2 = 𝑐𝑐𝑖2𝑐𝑖2,lim𝑖 + 𝑐
𝑐𝑖2
𝑐𝑖2,gim

Coupled compliance 𝑐𝑐𝑖1𝑐𝑖2 = 𝑐𝑐𝑖2𝑐𝑖1 is ignored.
The components whose compliance is computed using FEM are individually modeled based on its geometry and materials. Then

known force or torque is applied at the joint or connection assuming the force is derived from other part.

.2. Legs 2

For this model, leg 2 is disassembled in the parts shown in Fig. 6: ‘‘gimbal 1’’, ‘‘gimbal 2’’, ‘‘axis 2’’ and an element ‘‘limb 2’’
ncompassing the rail, slider, bearings, screw lead and other components.

Since 𝐸1 = 𝐸2 = 𝐸3 = 0, we define 𝐴2 = 𝐴2𝑎 = 𝐴2𝑏 = 𝐴2𝑐 . Then we establish a coordinate system 2 with origin at 𝐴2, 𝑧2 axis in
he direction of 𝐫𝐵2∕𝐴2

and 𝑦2 axis in the direction of 𝐬̂25 = 𝐢̂E as shown in Fig. 6. Frame 2 is attached to the slider.
A coordinate system is fixed to each of the two gimbals of the spherical joint of leg 2. Frame G1 is attached to gimbal 1, and

2 to elements gimbal 2 and axis 2. These two frames have the same origin, point 𝐴2 and are defined by:

O
G1𝐑 ∶= Rot

(

𝑞21 −
𝜋
2
, O 𝐢̂O

)

G1
G2𝐑 ∶= Rot

(𝜋
2
− 𝑞22, G1𝐣G1

)

Note that, since 𝐸1 = 𝐸2 = 𝐸3 = 0, the bases for the systems of constraints and actuations are reduced to the two pure forces
shown in Fig. 6. Hence, only linear compliance matrices are required. The compliance of element gimbal 1 in all the directions of
the wrenches in these two systems can be obtained by simple projection of the fixed-value linear compliance matrix in frame G1,
𝐂𝛬,gim1. Similarly, for elements gimbal 2 and axis 2, the required compliances can be obtained by projecting the fixed-value linear
compliance matrix in frame G2, 𝐂𝛬,gim2 and 𝐂𝛬,ax2, respectively. These three matrices are determined using FEM. It follows that:

𝑐𝑎2𝑎2,gim1 = (O𝐰̂𝑎2)t ⋅ OG1𝐑 ⋅ 𝐂𝛬,gim1 ⋅
G1
O 𝐑 ⋅ O𝐰̂𝑎2

𝑐𝑐2𝑐2,gim1 = (O𝐰̂𝑐2)t ⋅ OG1𝐑 ⋅ 𝐂𝛬,gim1 ⋅
G1
O 𝐑 ⋅ O𝐰̂𝑐2

𝑐𝑎2𝑎2,gim2 = (G2 𝐢̂G2)t ⋅ 𝐈3×3 ⋅ 𝐂𝛬,gim2 ⋅
G2
O ⋅ 𝐈3×3 ⋅ G2 𝐢̂G2

𝑐𝑐2𝑐2,gim2 = (O𝐰̂𝑐2)t ⋅ OG2𝐑 ⋅ 𝐂𝛬,gim2 ⋅
G2
O 𝐑 ⋅ O𝐰̂𝑐2

𝑐𝑎2𝑎2,ax2 = (G2 𝐢̂G2)t ⋅ 𝐈3×3 ⋅ 𝐂𝛬,ax2 ⋅ G2O ⋅ 𝐈3×3 ⋅ G2 𝐢̂G2
𝑐𝑐2𝑐2,ax2 = (O𝐰̂𝑐2)t ⋅ OG2𝐑 ⋅ 𝐂𝛬,ax2 ⋅ G2O 𝐑 ⋅ O𝐰̂𝑎2

The same model from Eq. (23) is used for the compliance matrices of the leg element limb 2 in frame 2. Hence, 𝐂𝛬,lim2 and
𝛩,lim2 are obtained by substituting 𝑞𝑖3 by 𝑞24 in Eq. (23). It follows that:

𝑐𝑎2𝑎2,lim2 = (2𝐤̂2)t ⋅ 𝐈3×3 ⋅ 𝐂𝛬,leg2 ⋅ 𝐈3×3 ⋅ 2𝐤̂2

𝑐𝑐2𝑐2,lim2 = (2𝐣2)t ⋅ 𝐈3×3 ⋅ 𝐂𝛬,leg2 ⋅ 𝐈23×3 ⋅ 𝐣2 (25)

The compliance of each element and the compliance of the actuator, 𝑐act , contribute to the compliance of the entire leg, hence:

𝑐𝑎2𝑎2 = 𝑐𝑎2𝑎2,lim2 + 𝑐
𝑎2
𝑎2,gim1 + 𝑐

𝑎2
𝑎2,gim2 + 𝑐

𝑎2
𝑎2,ax2 + 𝑐act

𝑐𝑐2𝑐2 = 𝑐𝑐2𝑐2,lim2 + 𝑐
𝑐2
𝑐2,gim1 + 𝑐

𝑐2
𝑐2,gim2 + +𝑐𝑐2𝑐2,ax2
11
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Fig. 6. Components and coordinate systems in leg 2.

7.3. Serial module

For this model, only the main body of the serial module is considered as compliant since the link connecting actuator 𝑆2 and the
spindle is mainly the body of the motor of the tool. From Fig. 7, it can be seen that all the wrenches of constraints and actuations
have constant directions with respect to the main body of the serial model, link 𝑆1 − 𝑆2. Hence, all the compliances for the serial
part are constant and are assumed to be decoupled. The values of constraint compliances 𝑐𝑐𝑆𝑖𝑐𝑆𝑖 , 𝑖 = 1,… , 4, are obtained from FEA.
𝑐𝑎𝑆1𝑎𝑆1 and 𝑐𝑎𝑆2𝑎𝑆2 correspond to the compliance of actuators of the serial module and they include not only the compliance of the motors,
but also that of its transmission system.

8. Finding unknown coefficients from experimental data

The model presented in Section 7 is in terms of several constants that can be obtained from FEM in the case of elements whose
compliance can be obtained by projecting the fixed compliance matrix in a local frame. However, the compliance of leg elements
e1, e2 and e3, modeled in the form of Eq. (23), is in terms of the unknown polynomial coefficients 𝑘𝛬,𝑎,𝑗 , 𝑘𝛩,𝑎,𝑗 ∈ R, 𝑎 = 𝑥, 𝑦, 𝑧
and 𝑗 = 0, 1, 2. In addition, the compliance values of all the actuators, namely 𝑐act , 𝑐𝑎𝑆1𝑎𝑆1 and 𝑐𝑎𝑆2𝑎𝑆2 , are also unknown. However, an
inspection of the systems of constraint and actuation in Figs. 5 and 6 shows that the 𝑥 component of 𝐂𝛬,lim𝑖 and the 𝑦 component
of 𝐂𝛬,lim𝑖 are never required when projecting the matrices. Hence, 𝑘𝛬,𝑥,𝑗 and 𝑘𝛩,𝑦,𝑗 are not needed.

The unknown values can be obtained using experimental data to optimize the model so that the values of the unknowns yield
the smallest error between the measured and the predicted values of stiffness of the whole robot.

Consider 𝑁 experiments in which the robot is in configurations defined by O𝐫𝑇 ,𝑛 and O 𝐭̂𝑛, 𝑛 = 1,… , 𝑁 . In each experiment, a
force 𝐹 is applied at 𝑇 in the direction 𝐮̂ , and the displacement 𝛿 of 𝑇 in the same direction is measured.
12

𝑛 𝑛 𝛬,𝐮̂𝑛 ,exp𝑛



Mechanism and Machine Theory 167 (2022) 104558P.C. López-Custodio et al.
Fig. 7. Components in the serial module.

Since the inverse kinematics is known, given the configuration of the robot in each experiment, a predicted value of such
displacement can be computed in terms of 𝐯 after obtaining the displacement vector T𝛥𝐗 in frame T. Thus, the corresponding
prediction is given by 𝛿𝛬,𝐮̂𝑛 ,pred𝑛(

O𝐫𝑇 ,𝑛, O 𝐭̂𝑛)(𝐯) ∶= T𝛥𝐗(O𝐫𝑇 ,𝑛, O 𝐭̂𝑛)(𝐯) ⋅ (𝐎; 𝐮̂𝑛). It follows that for every experiment we wish to minimize
the error:

𝜖𝑛(𝐯) ∶=
(

𝛿𝛬,𝐮̂𝑛 ,pred𝑛(
O𝐫𝑇 ,𝑛, O 𝐭̂𝑛)(𝐯) − 𝛿𝛬,𝐮̂𝑛 ,exp𝑛

)2
, 𝑛 = 1,… , 𝑁 (26)

The problem thus becomes a multiobjective optimization (MOO) in which the observed trend can be imposed by adding
constraints into our problem. For example, consider experiments 1, 2 and 3 were carried out along direction 𝐮̂ and show a trend
such that 𝛿𝛬,𝐮̂1 ,exp1 < 𝛿𝛬,𝐮̂2 ,exp2 < 𝛿𝛬,𝐮̂3 ,exp3, then the minimization problem in hand would be stated as:

• Minimize:

𝜖𝑛(𝐯) ∶=
(

𝛿𝛬,𝐮̂𝑛 ,pred𝑛(
O𝐫𝑇 ,𝑛, O 𝐭̂𝑛)(𝐯) − 𝛿𝛬,𝐮̂𝑛 ,exp𝑛

)2
, 𝑛 = 1, 2, 3

• Subject to:

𝛿𝛬,𝐮̂,pred1(O𝐫𝑇 ,1, O 𝐭̂1)(𝐯) − 𝛿𝛬,𝐮̂,pred2(O𝐫𝑇 ,2, O 𝐭̂2)(𝐯) < 0

𝛿𝛬,𝐮̂,pred2(O𝐫𝑇 ,2, O 𝐭̂2)(𝐯) − 𝛿𝛬,𝐮̂,pred3(O𝐫𝑇 ,3, O 𝐭̂3)(𝐯) < 0

𝐯 ∈ 𝑉

where 𝑉 is the search space.

Since this is a MOO problem, we are searching for a Pareto frontier rather than a single optimum. The Pareto frontier is the set
of individuals (or solutions) in which it is not possible to find a single solution that has a better fitness than the solutions in the set
with respect to all the objective functions. Hence, such a change will worsen at least one objective.

Different algorithms can be used to find this Pareto frontier, including the skyline query method [35], the scalarization
algorithm [36], simulated annealing [37], genetic algorithms and direct multisearch (DMS) [31]. These last two are available in the
Global Optimization Toolbox from Matlab©. Both genetic algorithms and DMS are derivative-free algorithms, which is important
for the problem in hand since the objective functions are so complex that we will consider them as black boxes that take a candidate
𝐯 and return 𝜖𝑖.

In this paper we use the paretosearch function in the Global Optimization Toolbox from Matlab© which executes the DMS
algorithm to find the Pareto frontier. DMS is a pattern search algorithm, which means it uses a search/poll method extending the poll
in the directions where constraints-satisfactory non-dominated solutions were found. The algorithm stops when the hypervolume
delimited by the frontier changed less than a tolerance. For a detailed explanation and proof of convergence see Custódio et al. [31]
and the algorithm Matlab page.

Fig. 8 shows the flow diagram of the steps followed to determine optimal values of the unknown variables 𝐯opt

9. Case study

Experiments were carried out on the Exechon XMini with offset wrist shown in Fig. 9a. Table 3 shows the dimensions of the
manipulator. The experiments setup is shown in Fig. 9b

The stiffness is calculated by dividing the known magnitude of a force being applied at the tool tip over its corresponding
displacement. A known force is applied by rotating a screw while using a force sensor to measure the real-time force value. The
applied force is derived and recorded from the acquisition system of the piezoelectric sensor. For measuring the displacement,
13
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Fig. 8. Method followed to determine 𝐯opt .

Fig. 9. (a) The Exechon XMini used for the experiments and its fixed coordinate system O. (b) Experiments setup: 1. Eddy current sensor, 2. Fixture of loading
system, 3. Tool tip, 4. Force sensor, 5. Loading system (force along 𝑦O).

Table 3
Dimensions of the Exechon XMini in mm.
Name Value Name Value Name Value

ℎ𝑦 33 ℎ𝑧 520 𝑑𝑆 50
𝑑𝐴1 250 𝑑𝐴2 400 𝑑𝐵1 133
𝑑𝐵2 166 𝑑𝑇 210

high-accuracy eddy current sensing system is employed. The eddy current sensor head was fixed right behind or closely beside the
target area to measure the displacement under a known force. We employed high accurate eddy current sensor and calibrated them
within an accuracy of 2 μm. That means, these sensor could measure the deformation at micro level. The data is then captured and
processed.
14
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Table 4
Experiments used for the optimization process (𝐹𝑛 = −100 N and
O 𝐭̂𝑛 = O𝐮̂𝑛 = O𝐤̂, 𝑛 = 1,… , 4)
𝑛 O𝐫𝑇 ,𝑛 (mm) 𝛿𝛬,𝐮̂𝑛 ,exp𝑛 (mm)

1 (0, 260, 1355) −0.8350047575e−2
2 (−138, 260, 1355) −0.9881549403e−2
3 (−340, 260, 1355) −0.1171779778e−1
4 (−408, 260, 1355) −0.1413836810e−1

FEM was applied to the elements gimbal, gimbal1, gimbal2 and axisg2. The following compliance constants were obtained in
he directions of their corresponding fixed frame (all quantities in mm/N):

𝐂Θ,gim = diag(×,×, 4.170527354 × 10−15)

𝐂Λ,gim = diag(9.52 × 10−7, 1.6 × 10−5, 2 × 10−6)

𝐂Λ,gim1 = diag(6.95 × 10−6, 7.098 × 10−6, 1.47 × 10−6)

𝐂Λ,gim2 = diag(3.324 × 10−7, 1.839 × 10−9, 7.852 × 10−7)

𝐂Λ,axisg2 = diag(2.887 × 10−6, 7.434 × 10−7, 1.426 × 10−7)

For the main body of the serial module the following values were obtained using FEM:

𝑐𝑐𝑆1𝑐𝑆1 = 4.269 × 10−8 mm∕N

𝑐𝑐𝑆2𝑐𝑆2 = 0.94 × 10−4 mm∕N

𝑐𝑐𝑆3𝑐𝑆3 = 5 × 10−7 mm∕N

𝑐𝑐𝑆4𝑐𝑆4 = 2.109281437 × 10−15 Nmm

However, due to the complexity of the mounting of the main body and the way it is connected to legs 1 and 3, the compliance
f the large gimbal (element gim) was included in the optimization process as a variable. This also ensures that the effect of the
ompliance of the bearings supporting legs 1 and 3 through the large gimbal is considered in the result. Similarly, the compliance of
he main body in the serial module was included in the optimization process, due to its interaction with the spindle, its mounting,
nd the different components included in the serial module.

Hence, 𝐯 consists of variables 𝑘𝛬,𝑦,1, 𝑘𝛬,𝑦,2, 𝑘𝛬,𝑧,1, 𝑘𝛬,𝑧,2, 𝑘𝛩,𝑥,1, 𝑘𝛩,𝑥,2, 𝑘𝛩,𝑧,1, 𝑘𝛩,𝑧,2, 𝑐act , 𝑐𝑎𝑆1𝑎𝑆1 , 𝑐𝑎𝑆2𝑎𝑆2 , 𝑐𝑐𝑆1𝑐𝑆1 , 𝑐𝑐𝑆2𝑐𝑆2 , 𝑐𝑐𝑆3𝑐𝑆3 , 𝑐𝑐𝑆4𝑐𝑆4 , 𝑐𝛬,𝑥,gim,
𝑐𝛬,𝑦,gim, 𝑐𝛬,𝑧,gim, and 𝑐𝛩,𝑧,gim, where diag(𝑐𝛬,𝑥,gim, 𝑐𝛬,𝑦,gim, 𝑐𝛬,𝑧,gim) = 𝐂𝛬,gim.

Firstly, four experiments are carried out and are used in the MOO. The results of these experiments are shown in Table 4. The
results show the corresponding linear displacement along 𝐮̂, due to a force of magnitude 𝐹 and direction 𝐭̂

In order to ease the computational cost of the optimization, the process is carried out in different stages. First, the FEM results of
the gimbal and the main body of the serial module are used in order to not consider them as optimization variables. Only experiments
1, 2 and 4 are considered to enhance the time of conversion and to use the remaining experiment as a validation case. Hence, the
first stage consists of:

• Variables:

𝐯 ∶=
(

𝑘𝛬,𝑦,1, 𝑘𝛬,𝑦,2, 𝑘𝛬,𝑧,1, 𝑘𝛬,𝑧,2, 𝑘𝛩,𝑥,1, 𝑘𝛩,𝑥,2, 𝑘𝛩,𝑧,1, 𝑘𝛩,𝑧,2, 𝑐act , 𝑐
𝑎𝑆1
𝑎𝑆1 , 𝑐

𝑎𝑆2
𝑎𝑆2

)

• Minimize:

𝜖1(𝐕), 𝜖3(𝐕), 𝜖4(𝐕)

• Subject to:

|𝛿𝛬,𝐮̂1 ,pred1| − |𝛿𝛬,𝐮̂3 ,pred3| < 0

|𝛿𝛬,𝐮̂3 ,pred3| − |𝛿𝛬,𝐮̂4 ,pred4| < 0

0 < 𝑣𝑗 < 1 × 10−4

where 𝑣𝑗 are all the components of 𝐯. Subsequently, the obtained values for the optimization variables are replaced and now the
remaining variables of the original problem become the only optimization variables. Hence, the second stage is given by:

• Variables:

𝐯 ∶=
(

𝑐𝑐𝑆1𝑐𝑆1 , 𝑐
𝑐𝑆2
𝑐𝑆2 , 𝑐

𝑐𝑆3
𝑐𝑆3 , 𝑐

𝑐𝑆4
𝑐𝑆4 , 𝑐𝛬,𝑥,gim, 𝑐𝛬,𝑦,gim, 𝑐𝛬,𝑧,gim, 𝑐𝛩,𝑧,gim

)

• Minimize:

𝜖1(𝐕), 𝜖3(𝐕), 𝜖4(𝐕)
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a
t

• Subject to:

|𝛿𝛬,𝐮̂1 ,pred1| − |𝛿𝛬,𝐮̂3 ,pred3| < 0

|𝛿𝛬,𝐮̂3 ,pred3| − |𝛿𝛬,𝐮̂4 ,pred4| < 0

0 < 𝑣𝑗 < 1 × 10−4

Finally, the variables modeling the leg element are optimized again, now considering experiment 2 instead of 3. This allows
djusting the results to a better fit to all four points. As such, experiment 4 will be used for validation. However, stage 1 suggested
hat all 𝑘𝛬,𝑦,2, 𝑘𝛬,𝑧,2, 𝑘𝛩,𝑥,2 and 𝑘𝛩,𝑧,2 should be zero. Therefore, we do not consider these variables in the third optimization, which

is stated as follows:

• Variables:

𝐯 ∶=
(

𝑘𝛬,𝑦,1, 𝑘𝛬,𝑧,1, 𝑘𝛩,𝑥,1, 𝑘𝛩,𝑧,1, 𝑐act
)

• Minimize:

𝜖1(𝐕), 𝜖2(𝐕), 𝜖4(𝐕)

• Subject to:

|𝛿𝛬,𝐮̂1 ,pred1| − |𝛿𝛬,𝐮̂2 ,pred2| < 0

|𝛿𝛬,𝐮̂2 ,pred2| − |𝛿𝛬,𝐮̂4 ,pred4| < 0

0 < 𝑣𝑗 < 1 × 10−4

The resulting optimized values of the whole process are the following:

𝑘𝛬,𝑦,1 = 9.375 × 10−6N−1 𝑘𝛬,𝑦,2 = 0
𝑘𝛬,𝑧,1 = 6.77626 × 10−21N−1 𝑘𝛬,𝑧,2 = 0
𝑘𝛩,𝑥,1 = 5 × 10−6N−1 𝑘𝛩,𝑥,2 = 0
𝑘𝛩,𝑧,1 = 5 × 10−6N−1 𝑘𝛩,𝑧,2 = 0
𝑐act = 4.8688 × 10−5 mm∕N
𝑐𝑎𝑆1𝑎𝑆1 = 1 × 10−4 rad∕Nmm
𝑐𝑎𝑆2𝑎𝑆2 = 1.3552 × 10−20 rad∕Nmm
𝑐𝑐𝑆1𝑐𝑆1 = 3.3854 × 10−5 mm∕N
𝑐𝑐𝑆2𝑐𝑆2 = 6.7762 × 10−21 mm∕N
𝑐𝑐𝑆3𝑐𝑆3 = 5.2083 × 10−6 mm∕N
𝑐𝑐𝑆4𝑐𝑆4 = 6.09375 × 10−5 rad∕Nmm
𝑐𝛬,𝑥,gim = 1 × 10−10 mm∕N
𝑐𝛬,𝑦,gim = 7 × 10−7 mm∕N
𝑐𝛬,𝑧,gim = 1 × 10−9 mm∕N
𝑐𝛩,𝑧,gim = 5 × 10−7 rad∕Nmm

Additional six experiments were carried out in order to validate the optimized compliance model. The definition and results
of these experiments are shown in Table 5. Table 5 also shows the deformation values predicted by our optimized model and the
corresponding error against the experimental values. Each optimization was carried out on a commercial laptop with 16 Gb in RAM
and a processor speed of 2.90 GHz, the most longest running time detected in an optimization was 1:58 min. From Table 5, it can
be seen that results in the 𝑧O-direction are satisfactory, with a maximum error of 10.354%. The maximum error in the 𝑥O-direction
is 19.998%. The largest error were found in the 𝑦O-direction with a maximum of 39.206%. Fig. 10 shows the map for linear stiffness
in the 𝑧O along working planes parallel to the 𝑥O𝑧O plane with different values of the coordinate 𝑦O.

A word on gravity: Following the method presented in [13], it is not too difficult to include the effect of gravity in the model
presented in this paper. However, since we are trying to fit our model to the results of experiments on the actual machine, the
effect of gravity is not required at least at the stage of optimizing the unknown constants of the model. The total deflection of the
manipulator at its end-effector contains two components: a deflection due to gravity and a deflection due to the external force applied
at the end-effector. The deflection due to gravity (acting along the 𝑦O-direction in our experiments) is permanent and independent
of the external load. Say the controller is ordered to position the tip of the end-effector at O𝐫𝑇 . Due to gravity, the robot will present
a deflection before starting the experiment, and the real position of the tip will be O𝐫𝑇 ,grav. Once the external force is applied the
position of the tool will change to O𝐫𝑇 ,F. However, in our experiments, it is only feasible to measure the difference between O𝐫𝑇 ,F
and O𝐫𝑇 ,grav, since it is not possible to measure O𝐫𝑇 ,grav with the precision required for any analysis. Since the displacement measured
in the experiments is that produced by the external force alone, the gravity effect should not be considered in order to learn the
unknown parameters. Nevertheless, our IKP should be solved for O𝐫𝑇 ,grav, which we do not. Therefore, we give a 1-mm compensation
due to gravity, namely, we solve the IKP for O𝐫 − (0, 1, 0)
16
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Table 5
Experiments carried out on the Exechon XMini and comparison to predicted values. For all 𝑛 = 1,… , 10, the displacement
corresponds to 𝐹𝑛 = −100 N and O 𝐭̂𝑛 = O𝐤̂.
𝑛 O𝐫𝑇 ,𝑛 (mm) 𝐮̂𝑛 𝛿𝛬,𝐮̂𝑛 ,exp𝑛 (mm) 𝛿𝛬,𝐮̂𝑛 ,pred𝑛 (mm) Error (%)

1 (0,260,1355) (0,0,1) −0.008350048 −0.008836983611 5.831536068
2 (−138,260,1355) (0,0,1) −0.009881549 −0.008858429 10.353846730
3 (−340,260,1355) (0,0,1) −0.011717798 −0.011669665 0.410765409
4 (−408,260,1355) (0,0,1) −0.014138368 −0.014477298 2.397235293
5 (−68,260,1355) (0,0,1) −0.0081281849 −0.008617324 6.017820104
6 (−276,260,1355) (0,0,1) −0.010702398 −0.010174949 4.928314859
7 (85,260,1450) (1,0,0) −0.090090090 −0.092380377 2.542218887
8 (323,260,1450) (1,0,0) −0.086206897 −0.103380147 19.920970321
9 (0,225,1450) (0,1,0) −0.082644628 −0.115046523 39.206293228
10 (408,226,1450) (0,1,0) −0.105263158 −0.124294783 18.080043731

Fig. 10. Maps of linear stiffness in the 𝑍O-direction along the working plane 𝑋O𝑍O.

10. Conclusions

This paper presented the inverse kinematics and a compliance model for Exechon manipulators with offset wrists. The inverse
kinematics was solved also considering offsets between the axes of the joints connecting the limbs to the base. The IKP was reduced
to two systems of 4 non-linear equations in 4 unknowns. It was shown that when the offsets at the base are equal to zero, a single
univariable polynomial can be obtained. In practice, however, we prefer to use the two systems of 4 non-linear equations even if
the offsets at the base do not exist. The reason being that by solving numerically these two systems, two solutions are secured. This
allows more control in the selection of solutions when automating the process.

The compliance model was obtained by proposing a general model for the local compliance of elements that encompass multiple
mechanical components of the robot. The local compliance values of these elements were modeled as a 2-degree polynomial in
the leg length. The unknowns of the model were then optimized using experimental data. Subsequently, more experiments were
carried out to validate the model. The resulting model was able to predict the compliance along the 𝑧O-direction with a maximum
error of around 10%. In the 𝑥O-direction the worst error was measured as 19%. However, the prediction in the 𝑦O-direction gave a
maximum error of 39.2%.
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