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Abstract

The stiffness of the Exechon hybrid manipulator is a crucial performance indi-
cator as the manipulator is used as a 5-axis machine tool. Normally, the serial
module of the Exechon is not included in the kinematic and stiffness analysis.
In terms of kinematics, the parallel and serial modules are said to be decoupled,
i.e. parallel module can be solved for position and the serial module can be used
to compensate the parasitic orientation of the parallel platform. This is only
possible when the serial module is a perfect spherical wrist. However, several
models of Exechon technology have an offset wrist rather than a spherical one.
Such an offset makes it impossible to obtain a kinematic decoupling.

In all publications available in the literature, the Exechon is considered to
have a perfect spherical wrist. Therefore, this paper presents the inverse kine-
matics and compliance model of Exechon manipulators with offset wrists. The
unknown coefficients in the compliance model are determined by optimizing the
model against experimental data. The resulting predictions are then compared
against more experimental results to validate the model.

Keywords: Kinematics, Compliance, Parallel robots, Coupled kinematics,
Stiffness

1. Introduction

The use of parallel kinematic machines (PKM) or parallel manipulators [I, 2]
in industrial applications is relatively recent. Although a plethora of applications
for the Delta robot and the Stewart platform [3, 4] can be found in industry, most
of the PKMs designs have not been exploited in production lines. An important
reason for this is the relatively small workspace of conventional PKMs as well
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as their poor dexterity. Aiming to tackle this, the Tricept robot was presented
[5, 6] as a hybrid robot that combines a 3-DOF (degrees of freedom) parallel
module with a 3-DOF serial module mounted in the parallel platform.

Simple in conception, the parallel module of the Tricept is basically a serial
UPE| chain which in turn is controlled by 3 actuated 6-DOF legs which do not
add any constraints to the end-effector of the UP chain. Hence, the UP leg
is fully unactuated making the control and manufacturing of the robot more
complex. Vowing to get rid of this unactuated leg, the Exechon manipulator
(see figure [Th) was designed as a new hybrid robot with an overconstrained
3-legged parallel module [7, [8]. The Exechon has been already used in several
applications, particularly, the Exechon is used in manufacturing [9] as a 5-axis
machine.

Due to its application in manufacturing, the stiffness of the Exechon is im-
portant in order to improve the quality of the machined parts. Stiffness models
for the parallel module of the Exechon are available in the literature [I0HI2Z] as
they are for the Exechon-like 3-SPR machine developed in Tianjin University
[13]. In general, researchers only focus in the parallel module of this hybrid
machine due to its decoupled nature brought by the spherical wrist mounted
as serial module. To the knowledge of the authors, all the published papers
that study the Exechon consider a perfectly spherical wrist. The spherical wrist
allows the kinematic decoupling of the modules, using the parallel one for posi-
tioning and the serial one for orientating. The decoupling property is exploited
when solving the kinematics of the Exechon [T4HI7] to obtain closed form solu-
tions.

Nevertheless, among the fairly large number of Exechon models, there are
some whose wrist is not spherical, but present an offset between the two axes
of the R joints in the serial module. Figure [Ip shows the 2-DOF serial module
of the Exechon XMini, figure [Th, a smaller model built of mainly carbon fiber.
The two R joint axes of the wrist of the XMini will be called here Sg; and Sgs.
As shown in figure [Ip, these axes do not intersect and an offset of 50 mm is
present between them.

Although the complexity of obtaining a compliance model of the Exechon is
indifferent to the type of wrist, the inverse kinematics, required to obtain the
stiffness in each configuration, is severely affect and no closed form solution is
expected for the problem, in a similar way to what happens with fully serial 6-
DOF robots with offset wrists [I8]. In its simplest form, without offset between
joint axes, neither at the base, nor at the wrist, the inverse kinematics is not
only decoupled, but also has closed form solution, see [14] [16] where such a
solution is presented.

In [I7], we presented the position analyses of an Exechon robot featuring
only the offsets at its base, but not at the wrist. The perfectly spherical wrist of
the manipulator considered in such a publication still allowed the decoupling of

n this article: U stands for universal joint, P for prismatic joint, R for revolute joint and
S for spherical joint.
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position and orientation, however no closed form solution can be found. In this
paper we first obtain the inverse kinematics of an Exechon manipulator, which
not only features an offset writs, but it also presents offsets between the axes of
the joints connecting the legs to the base.

common T
perpendicular

Figure 1: a) The Exechon XMini, b) Offset in the wrist of the Exechon XMini

Now in this paper, the addition of an offset at the wrist not only will allow
the analysis of models like the XMini, whose nominal dimensions include such
an offset, but it can also work as a completely generalized kinematic model
in which such offsets can be seen as manufacturing errors and, thus, we can
compute the total error at the end-effector due to such imperfections. Table
summarizes these three cases of Exechon manipulator.

In this paper, after the inverse kinematics of this Exechon manipulator with
offset wrist is solved, a semi-analytical compliance model is obtained for the
whole robot, considering both serial and parallel modules. See [19] for one of the
few examples where the serial part of a hybrid robot, the Tricept, is considered
in the stiffness model as a spherical wrist. See also [20] for an example of stiffness
model of a hybrid (parallel-parallel) robot.

In general, if detailed information of the components that integrate the ma-
nipulator is known, an accurate compliance model can be built. However, it
is common that many structural details of the machine are not known, includ-
ing not only the materials the parts are made of, but also how the parts are
mounted, the stiffness of the actuators after a complex transmission system is
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Table 1: Cases of offsets in the Exechon manipulator

Wrist Spherical Spherical Offset
Base offsets X v v
Decoupling v v X
Closed form IK v X X
IK solved in (14, 16] [17) none

included, etc. Hence, in this paper we employ a different framework that allows
modeling the compliance with less information of how the robot is built.

We first sketch a model based in the overall Jacobian matrix [13] 19, 2TH25].
Other techniques for stiffness computation in parallel manipulators can be found
in [26H30]. We then propose a quadratic in terms of the legs length to model
the local compliance of a group of components modeled as a single element in
the analysis. With this assumptions, the model can be written in terms of all
the unknown quantities. Then, using experimental data, the model is optimized
applying direct multi-search (DMS) [31] method. After the optimization, the
unknown values in the model are determined and the model is able predict the
compliance in any direction and in any configuration.

The rest of the paper is organized as follows: We first introduce the notation
used throughout the paper in Section [2] Section [3| presents the geometry of the
Exechon manipulator with offset wrist. Section [ solves the coupled inverse
kinematics of the robot. In Section [5] the system of constraints and that of
actuations are obtained. The compliance equations are reminded in Section [6]
In Section [7] the compliances of the different elements of the manipulator are
computed in terms of several unknowns. Section [8] shows how these unknowns
are obtained using an optimization process. In Section[J]these results are applied
to a case study considering the Exechon XMini. Finally, in Section [I0} some
conclusions are drawn.

2. Notation

The notation used through the paper is now introduced.
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The symbol “:=” is used for definition of variables. Three-dimensional vec-
tors are written in lowercase bold letters, such as v € R3. S € R® 22 se(3) is
used for screw coordinate vectors. In order to avoid the introduction of more
symbols, we use S for both the screw coordinates of an axis and the geometric
element itself. Unit vectors are hatted, @ € §2

Coordinate systems are named with non-italic capital letters, while points
are presented in italic capital letters. For example, in Fig. |2 frame O has origin
at point O. Let A and B be two coordinate systems with origins at A and B,
respectively, and let P and @ be two points. Then the notation from [32] is
used to manage coordinate systems. Namely, *rp /@ is the vector from point @
to point P in coordinate system A. While Arp := Arp/ 4 is the position vector
of point P in frame A. 4R € SO (3) is the rotation matrix that relates the
orientation of frame B to that of frame A, such that “rp = QRBrP + Arp.
The canonical triad defining frame A but expressed in frame B is denoted by
{Pia, Pja, Pka}

d(P,Q) € R is the Euclidean distance between points P and Q. Rot(8,v) €
SO(3) is the rotation matrix representing a rotation of 8 radians about an
axis that passes through the origin and that is parallel to v. Adj(y) € R4
returns the adjoint representation of Euclidean displacement 3 € SE(3). Null()
represents the null space of a matrix, while ()* is its transpose. Finally, aug()
and diag() represent, respectively, the augmented matrix of an ordered set of
column vectors, and the diagonal matrix with diagonal elements equal to an
ordered set of scalars.

Table [2| gives a quick reference to important symbols used in the thesis.

3. Geometry of the Exechon manipulator

Figure [2] shows a representation of an Exechon hybrid robot. The robot
integrates a 3-DOF parallel module and a 2-DOF serial module. The parallel
module consists of a moving platform and a fixed platform connected by three
legs. Legs 1 and 3 are RRPR serial chains, while leg 2 is an RRRPR kinematic
chain. From figure 2] if i = 1,3, the following geometric constraints hold:

Si2|Sul|n

S;11ng, S;3lng
S211S22, S22 823
S23([S24, S24LS25

So5 and S;4 intersect perpendicularly

Points A,, Az, and As, are the vertices of an isosceles triangle with base
2d a1 := d(A1a, A3q) and height dao := d(As24,S11). Points By, By and Bs
also form an isosceles triangle with base 2dp; := d(Bj, B3) and height dps :=
d(Bs, B1B3).
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Table 2: Quick reference to some specific symbols

Symbol Definition

Sij Screw axis of the ij joint

t Unit vector parallel to the tool axis

ny Unit vector perpendicular to plane Pz, see Fig.

Wi, Wy, Screw axes of wrench of constraint cij and wrench of actu-
ations ai

Jpa, Ipe, Ip Jacobian matrices of actuations, constraints and overall for
the parallel module, respectively

Jsa, Jse, Js Jacobian matrices of actuations, constraints and overall for
the serial module, respectively

Cp, Cg Compliance matrices for the parallel and serial module, re-
spectively

Cp, Cg Local compliance matrices for the parallel and serial mod-
ule, respectively

Cie, Coe Linear and torsional compliance matrices of element e

For i = 1,3, points A;,, A, and B; are coplanar, we call the plane that
these point lie on II, while plane A is the one containing By, By and Bj.
The joint variables of the actuated joints of each leg are measured as follows:
qi3 ‘= d(Aib, Bl), 1= 1,3, and 24 ‘= d(AQb,BQ).

The following offsets are considered between the joints connecting the legs
to the base:

Ey :=d(S21,S22), F := 82 rAzb/A2a)’
E5 = d(SQQ, 823) = d(A2b7A2c)7
Ey :=d(S11,S12), E5 == d(S31,S32)

The serial module is mounted on the moving platform. This module is a
serial 2R chain with its two axes Sg1 and Sgo being skew with a normal distance
between them equal to dg. These two revolute joints are used to orientate the
spindle axis, which is parallel to t. Point T represents the tool tip. Point S’ is
the intersection of Sgo and the common perpendicular between Sg; and Sgo.
Therefore, the spindle axis is defined as %y := Z(t,5"). S’ is located a distance
h, := d(S, A) from plane A, while h, := d(Sg1,II). Axis Sg; is perpendicular
to A and the two axes constituting the serial module are perpendicular to each
other. We define the tool length as dr := d(T,5’).
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Figure 2: Geometry of an Exechon manipulator with offset wrist

In the nominal dimensions of all commercial Exechon robots, F; = 0, Vi =
1,...,5. In all the analyses that can be found in the literature, dg is equal to 0,
which allows a kinematic decoupling. However, as shown in figure[]} ds = 50mm
in the Exechon XMini.

We define three coordinate systems, O, E and F. Coordinate system O,
{z0,y0, 20}, has origin at O and is attached to the fixed platform and is used
as a global, fixed frame. xo and yo are coaxial with S;; and O Ay, respectively.
Frame E, {zg, yg, 25} is attached to the moving platform and has origin at point
FE, the middle point of segment By Bs. xg and yg are coaxial with £B; and
EBs, respectively. Note that RE||ﬁH Finally, coordinate system F has origin
at O and is parallel to frame E.
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Figure 3: Lateral views of the Exechon robot showing internal variables.

4. Inverse kinematics

The following information is known in the inverse kinematic problem (IKP):
rr, i.e. the position of the tip of the tool, point T, with respect to the fixed
coordinate system, and 0f .= (t1,t2,t3) € S?, a unit vector that is parallel to
the tool. The goal of the IKP is to determine the screw coordinates of all joint
axes in the robot with respect to the fixed coordinate system: ©S;, ©Sa;, Ong
and °Sgp,i=1,...,4,j=1,...,5,k=1,2,3.

For this analysis, it is important to define the way the following joint vari-
ables are measured:

(6]

® ¢1, from jo to ny7 about Sq1.

q21, from lA{o to égg about S21-

422, from io to §23 X §22 about SQQ.

gs1, from iE to Sg2 about Sgj.

qs2, from lA<E to t about Sgso.

We also define the following internal variables (see figure [3)):

e ;. The (shortest) distance between point O and the zg axis, Iy = d(O,
By, Bs) =rg/0 - kg.



170 e [3. The length of the projection of rg,o on the g axis, I3 =rg/o -ip.

e [5. The length of the projection of rp, /4, onto the yozo plane.

e 0. The angle measured from zo to zg about yg.

Using these variables it can be seen that $R = YR = Rot(q11, %ip)Rot (6, ©jo).

For the analysis we also use point S’, instead of T. The position of S’ is known

s from the input information of the IKP as (zg/, ys/, zs/) := OrS//O = Orp—drOt.
The following constraints are considered in order to solve the IKP:

1.

823J_iE. Qsing revolute jointsl 21 and 22 to orientate Sg;i, it follow§ Ogy3 =
Rot(g21, %io)Rot(ga2, °ko)Cjo. It is also known that Oig = ORCip. This
condition is thus expressed in terms of 0, q11, g21 and go2 as:

0893 - Cig =0 (1)

The coordinates of S in frame F are easily obtained as (—I3+dg cos(gs1 —
7/2), hy + dgsin(gs1 — 7/2), I + h.). Therefore, this condition can be
expressed in terms of 0, q11, l1, I3 and gg1 by:

—l3 + dg cos(gs1 — 7/2)
gROI‘Sl/O = hy + dS Sin(QSl — 7T/2) (2)
ll + hz

The yo coordinate of point Bs can be recognized as d 4o+ (la+E1) cos(ga1)—
Eysingo. Tt is also known that Frp, = (—l3,dp,,l1), therefore, this con-
dition can be expressed in terms of ¢11, 0, g21, I3 and I5 by:

ORFrp, - OJo = das + (Ia + E1) cos(ga1) — Eosinga (3)

The zo coordinate of point By can be recognized as (I3 + E1)sin(go1) +
FE5cosqsy. Therefore, this condition can be expressed in terms of «, 6,
@21, lg and Iy by:

gRFPB2 . Of(o = (lg + El) sin(qzl) + E2 COS @21 (4)

Points E and Agp, lie on a plane that is perpendicular to the zg axis. It is
known that Frp = (—I3,0,1;), while point As, lies on the toroid:

Or 45, = d42%0 + Rot(go1, ©io) [(0, By, Ey) — EsRot(ga2, Of{o)oio}
Therefore, this condition can be expressed in terms of ¢11, 6 and I3 by:
(O6Rra, = rp) - Fip =0 (5)

Zr intersects Sg1. It can be seen that & = Z(E,S’) and Sg1 =
#(kg, Ps1), where ¥rp,, := (—l3,h,,0). Therefore, this condition can
be expressed in terms of €, g1 and I3 as:

(s — ORFrpy,) - (Of x Oke) =0 (6)
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Eqgs. to @ represent a system of 8 scalar equations in 8 unknowns: ¢i1,
G215 922, 4s1, 0, 11, lo and l3. We proceed now to reduce this system. The first
component of vector Eq. can be easily solved for /; to obtain:

l1 = cosf(zg cosqi1 — ys singy1) + xg sinf — h, (7)
The third component of vector Eq. can be solved for I3 to obtain:
I3 =sinf(zg cosqi1 — ysr singr1) — xss cos + dg sin gs1 (8)
Eq. can be solved for ls to obtain:

cos qi1(l3sinf + 11 cos0) + dpa sin g1 — Fa cos ga1
l2 = - - El (9)
sin ga;

The second component of Eq. can be solved for gg; to obtain:

Zg/ singi1 + Ysr €S qi1 — hy) (10)

qs1 = T £ arccos <
ds

Substitution of these solutions in Eqs. , , and @ yields to two systems
of 4 equations in the unknowns g1, g21, g22 and . Two systems are obtained
due to the double solution for ¢g; in Eq. . The equations have no closed-
form solution and have to be solved using numerical methods. Two solutions
for the IKP are secured considering both systems of equations. The solutions
can be distinguished by the "elbow up”” and "elbow down”’ configurations of
the serial module, although the configuration of the parallel differs too between
solutions.

Once q11, ¢21, g22 and @ is obtained, backwards substitution allows to obtain
the other four variables, 6, I3, [y and ¢g1. Frames E and F are now known as
they only depend on ¢;; and 6. The actuation variables and coordinates of all
joint screws can be obtained as expressions in terms of these five variables, and
therefore, the IKP is solved.

Joint variables ¢;; € R, (i,7) € {(1,3),(2,4),(3,3)} are given by ¢;; =
Irg,/4,]- To find the position of points B;, we first locate E w.r.t. frame O
using Orp = J(?)RFrE = gR(flE,O, hg). Then,

OrBl - OrE +gR(dBl,0,0)
Orps = “rp+YR(0,dps,0)
Orps = °rp+ SR(—dp1,0,0) (11)

To find ggo € T, we first consider the direction of Sgo, ©8g0 = gRRot(q51,
El;E)EiE Then:

qs2 = arctanQ(sgn <(OIA{E X Oésg) . Oész) ‘OIA{E X Oégg’ s OkE . Oésg) (12)

It is important to be aware that the system of equations presented here
involves the location of four points E, B, Ag, and S’. While the first three are

10
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permanently coplanar, S’ normally lies outside the plane that contains them,
i.e. ypzp. This makes the system of equation solvable as all of its equations
are independent to each other. However, if all four points become coplanar,
then the system of equations cannot be solved. Note that such a situation
happens whenever ¢g1 € {0, 7} = éSQHiE. However, if this is the case, then we
are able to compute F in O with the input information of the IKP as Orp =
Orgss — (0,ds + hy,h.). Observe that it is the coordinate zg of ErE/S/ which
normally does not allows us to find £ with the input information, but in this
case such a coordinate vanishes and F is in hand. Since this is a point that is
fixed to the moving platform, knowing rp allows us to decouple the robot and
solve the IKP following the procedure presented in [17] if F; # 0, or [14], [16] if
E,=0,Vi=1,2,3.

Although, in general, when solving systems of non-linear equations using
software it is necessary to provide either an initial guess or bounds for the
variables, the process can be automated by using as initial guess the solution
for the IKP of the robot with spherical wrist and no offsets, since the latter has
a closed-form solution that is also unique within the joint limits. This initial
guess is not far away from the solution of our non-linear system of equations as
the offsets (F; and dg) will always be small compared to the dimensions of the
robot. The solution for the IKP of the Exechon robot with spherical wrist and
no offsets can be found in [14] [16].

4.1. IKP for the Exechon robot with offset wrist and nominal dimensions

If £; =0fori=1,...,5 but dg # 0, the IKP still cannot be decoupled,
but the solution can be reduced to a single polynomial equation.

The substitution F; =0, Vi = 1,...,5 considerably simplifies Eq. since
point Agj, is now fixed, no longer lying on a toroid, so °ra,, = (0,da2,0). Such
a substitution doesn’t affect Eqs. and Eq. @, which, together with our new
simplified Eq. , represent a system of equation of 5 equations in 5 unknowns:
0, q11, U1, I3 and gg1.

Eq. and the third component of Eq. are linear on [3 and [, respec-
tively, and can be solved for these variables.

The first and second components of equation 2] can be combined to eliminate
qs1, obtaining the following equation:

(xg cos@+ys sin asin @ — zg: cos asin @+13)? + (ys/ cos a4 zg sinoz—hy)2 =d%
(13)

The expressions for I3 and [; obtained from Eq. and the third component

of Eq. , respectively, are then replaced in equations |§| and After this
substitution, Egs. @ and become a system of two equations in ¢;1 and 6.

11
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Eq. @ can be solved for 6 to obtain:
0 = arctan(((xs/tg — zgity) sina + (xgrty — ygrty) cosa + hytl)

/((dAg(tg sina + t cos ) — hyto) sino + hyts cosa — tays + t223/>)
(1

Substituting equation into equation a single equation in ¢i1 is ob-
tained. By using the tangent half-angle substitution, such expression can be
reduced to a polynomial of degree 16, this results coincides with the expected
polynomial for manipulators with offset wrists [I§].

4)

5. Systems of constraints and actuations

In this section, the systems of constraints and actuations of the Exechon
robot with offset wrist and offsets in the joints connecting the legs to the fixed
platform are determined. Since for the stiffness analysis the serial module and
the parallel module are considered as two elements connected serially, the sys-
tems of constraints and actuations of each module are obtained separately. The
presence of offsets F4 and Fs in legs 1 and 3 does not have any significant effect
on the systems of constraints and actuations of the ideal model. These can be
found in the literature [I2]. However, for the sake of self-containment, such
systems are determined here as well.

Let the coordinates of any (unit) screw be given by S := (§;r x § + h8) €
se(3) 2R% 8§ €S% r e R3 he€R. Then a twist is given by V := wS = (w; V)

and a wrench by W := (f;m). We invert the components of a screw using
S :=(r x §+ h§;8).
If 7 = span(s;1,...,Sin), then the system of constraints of leg i is given

by #ei = {Weij : Kl(W,;,8) =0, VS € %}, where kI(S1,S5) = S4S, is the
Klein form in se(3). The constraint system of the moving platform is then given
by the sum of the constraint systems of each leg.

A basis for the constraints system of each leg is shown in figure [d] For legs
i =1,3 it follows #,; := span(W;1, We;2), where W;; is a pure moment with
direction perpendicular to Sﬂ and Sig, while W ;5 is a pure force that is parallel
to Si4 and intersects S;i:

W1 = (0; Oio X OjF) )
Wep = (OjE; Ora,, x OjE) ; (15)
The offsets between joint axes in leg 2 do not the determination of OW o1,
the single wrench in the basis of #5, by simple geometric means. As shown

in [I7], “W2;1 can be found by computation of a basis for Null((J2(q))") =
span(®W a1), where Jo := aug(©Say, . .., ©Sas). Clearly, dim(Null((Jo(q))t)) =

12



Figure 4: System of constraints and system of actuations.

%0 1. This null space can be computed directly using the function nullspace of
Maple@. In general, W, is neither a pure force, nor a pure moment. How-
ever, in the case of £; = F5 = F3 = 0, the wrench degenerates into a pure force

OW o = (OiEQ Ora,, x Cig
The twist of the moving platform with respect to the fixed one, Vy,, € se(3),
is given by

1 5 1
Vip := Y 01,81, = Y _ 42,825 = » _ 3;S3;
=1 =1 =1

Without loss of generality, for leg 1, for example, it follows:

kl unslﬁ Wclk = 0, k= 1,2

Jj=1
t

4
= thjslj War=0,k=1,2 (16)
=1

Considering Eq. for all legs, the expression J p.V,p, = 0 can be written,
where Jp. € R®*6 is the Jacobian of constraints and is given by:

~ - t
Jpc = aug (Wc117 W12, Wea, Wesy, WCSQ)

13
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Now consider the wrenches of actuation W, ¢ = 1,2, 3, for which kI(W;, S;;)
= 0 if joint ¢j is not actuated and kl(Wg;, S;;) # 0 if joint ij is the actuated
joint of leg . Without loss of generality, for leg 1 it follows:

4
Z 415815, War | = ¢i3kl(S13, Wa1)

= Vi Wal = ¢13k1(S13, Wa1) (17)

Considering Eq. . ) for all legs, the expression JpoVmp = (¢13, §24, ¢33)
can be written, where Jp, € R3*% is the Jacobian of actuations and is given by:

- - - t
L Wal Wa2 Wa3
Jpq = aug KI( , , )

Si3, Wa1) kl(S24, Wa2) kl(Ss3, W3

where,

O

rp. )

OWM‘: ﬂ; OI'A.b XOI‘B./A.b ,i:1,3 (18)
‘oer/Aib i i/Aq

For leg 2, there is agam no dlrect geometrlc method to determine OWag
However, let J5 := aug(®Sa1, ©Sa2, ©Sa3, %Sas), then we note that OW,, €
Null((Jg)t), but OWag ¢ Null(Jy). It is clear that Null(J%) < Null((J3)").
Therefore, a simple way to find ©“Ws is to obtain bases for both null spaces.
Since dim(Null((J%)*)) = 2, one can pick any of the two vectors in its basis and
verify that it is not parallel to ©W,y. If the wrenches are not parallel then
such a vector can be taken as OWaz In the case of £ = E5 = E3 =0, Wag
is reduced to a pure force along the actuator axis and can be computed making
i =2 in Eq. (13).

A similar analysis can be done for the 2-DOF serial module to obtain the
following Jacobians of constraints and actuations:

Jpc = aug (W5517 Ws2, Wess, Wcs4)t )
Jpa = aug (V~Va517 WaSQ)t (19)
where,
oW1 = (O Org x kE)
OWesy = (%852;%rps, x %8s2)
W3 = (O x O8g2; %rgr x (Okg x 0352))
Wy = (070 X Ssz)
W,s1 = (0,0 E
“W.s2 = (0 0552) (20)
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where ©8gy = Rot(qshElA(E)EiE. The owverall Jacobian matrices [22] for the
parallel and serial modules are given, respectively, by:

Jp = Tpa S RgXG, Jg = Jsa S R6X6,
JPC JSC

6. Compliance equation for the hybrid manipulator case

Let T be a coordinate system that is parallel to frame O but has origin at 7.
We now refer the coordinates of every wrench in Jp., Jp,, Js. and Jg, to frame
T by means of TW = Adj (idsos), Or7)°W. Once all Jacobians are expressed
in frame T, the compliance matrix of the whole system can be expressed as the
sum of the compliance matrix of the parallel module and the compliance matrix
of the serial module.

The proof of the stiffness equations for both the parallel and the serial cases
is included in several publications with equivalent results (see [12] 13} [19]). Only
the resulting expressions will be included in this article.

Let TW,; be the external wrench applied at T and let TAX := (Af; Ary)
be the deformation at T'. The applied wrench and the corresponding deforma-
tion are then related by:

TAX = (Cp + Cg) "Wy (21)

where Cp and Cg are the compliance matrices of the parallel and the serial
module, respectively, and are given by:

-1

Cp = (J5(Cp)"'3p) ", Cs:= (J4(Cs)'Is) ", (22)

where the entries of Cp and Cg, are the compliances in the directions of ac-
tuations and constraints, such that, without loss of generality, for the parallel
module Aqp = CpTp. Where Aqp := (Aqa1, Ada2, Aga3, Ager1, Ager2, Ageo,
Ages1, Aqesa) is the vector of displacements along the actuations and constraints
directions, and Tp := (Ta1, Ta2, Ta3, Tell, Tel2, Te2, Te31, Tez2) are the forces/moments
applied in the directions of constraints and actuations. The following notation
is used for the entries of Cp and Cg: For example, the diagonal element in the
4th row and 4th column represents the compliance in the direction of constraint
qe11 due to the application of a moment 7.1; in the same direction and it is
referred to as c¢Si}. Outside the diagonal, the element in the 4th row and 5th
column is the compliance in the direction of g.11 due to the application of a
force 7,12 and it is referred to as cSi2. It can be seen that this last example is
a coupled compliance and, due to the linear nature of the deformations in the
model, ¢1} = c¢i2.

As shown in Eq. @, the resulting compliance matrix of two elements con-
nected serially is the sum of their respective compliance matrices. This is why in

this paper we work with compliance matrices instead of stiffness, which would
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involve the calculation of inverses in Eq @7 in order to obtain the obtained
displacement. Hence, this is a common practice when dealing with serially-
connected modules, see [13] B33].

7. Elements in Cp and Cg

In this section, the entries of Cp and Cg are discussed. We construct such
matrices the following way:

C _ : al a2 a3 cll cl2 2 31 32
Cp = diag (Cala Ca25Ca35>Cc115 Ce125 Ce2y Ce31s Ccsz)
rel _ : aS1l _aS2 _¢S1 ¢S2 .¢S3 ¢S4
Cs = diag (CaSh Ca525 €815 €82y CeS3s CcS4)

Since these entries depend on the specifications of each robot, the case of the
Exechon XMini is treated here. In the nominal dimensions of the XMini model,
E;=0,Vi=1,...,5, however, the serial module is an offset wrist, as shwon in
figure [1} so that dg = 50mm # 0. The following analysis can be applied to any
model with these offsets characteristics.

For this analysis, several coordinate systems with coincident origins are es-
tablished and compliances are expressed in different frames by means of a trans-
formation of coordinate systems [13| [19] [34]. For example, if the linear com-
pliance matrix of an element is known in frame A and we would like to know
the linear compliance along a vector u, which is known in frame B, then such a
compliance is given by cs 4 = (Bd)' - BR - C,4 - 4R - B, where Cj is the linear
compliance matrix in frame A. We will use A and © to distinguish between
linear and torsional compliances. Also note that only in this section, we will be
using () to represent matrix multiplication instead of dot product, this is due
to the amount of subscripts and superscripts for which juxtaposition may lead
to confusion.

7.1. Legs 1 and 8

Since Fy = E5 = 0, we define A; = A;, = Ay, for i = 1,3. Then we establish
a coordinate system ¢ with origin at A;, z; axis in the direction of rp, /4, and
y; axis in the direction of §;5 = jE as shown in figure |5 Frame ¢ is fixed to the
slider. We also define coordinate system G, which shares the same origin and
y axis as @ but, its xg axis is in the direction of xp. Frame G is fixed to the
gimbal. An abuse of notation will be committed here as we will call simply G
this last frame for both legs, although in each leg frame G has a different origin.

For this model, legs ¢ = 1,3 are disassembled in two parts shown in figure
we call this elements “gimbal” and “limb ¢”. Element limb ¢ encompasses
the rail, slider, bearings, screw lead and other components. Note that we use
“leg” to refer to the entire kinematic chain from base to moving platform, while
“limb” denotes the element just defined.

From the constraints and actuations system shown in figure [ the compli-
ance of the gimbal in all the directions of the wrenches in these two systems can
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Figure 5: Components and coordinate systems in leg 1.

us  be obtained by simple projection of the fixed-value linear and torsional compli-
ance matrices in frame G, Cy gim and Ceg gim, respectively. Such matrices are
determined using FEM. It follows that:

ai
Cai,gim

cil
Ccil,girn
ci2

Ccz'2,gim

(k) - 5R - Cagim - R -k,

(Ska) - Tsxs - Cogim - Isx3 - “kq

~

(“Ja)t - I3x3 - Coagim - Isxs - Sa

The entries of the compliance matrices of element limb ¢ in frame ¢ are
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modeled considering a quadratic and a linear term in the leg length, ¢;3:
Catimi = diag [ Y kawiqls, > kay dls Y k- it
j=1 j=1 j=1

2 2 2
Conimi = diag | Y ko i@l Y ko il Y kol (23)
j=1 j=1 j=1

where kA 4,5, k0,0, € R, a =z,y,z and j = 1,2, are the coeflicients of the poly-
nomials. Note that these coefficients are not directly related to any geometrical
or mechanical property of the element, they are rather a means to model such
properties.

It follows that:

) oot .
Cattimi = ('Ki)" - I3x3 - Cajimi - Isxs - ki
i1 G\t G i GL
ngl,limi = ("kag)" 7R Coimi - R "k
o s v R
Cg2,limi = ("Ji)" Isxs - Catimi - Isxz - 'Ji (24)

The compliance of each element and the compliance of the actuator, cact,
contribute to the compliance of the entire leg, hence:

at o at ai

Cai = Cai,limi + Cai,gim *+ Cact
cil o cil cil

Ceil = Ceillimi T Ceil,gim

ci2 _ ci2 ci2

Ceiz = Ce2limi T Cei2,gim

Coupled compliance ¢} = %2 is ignored.

The components whose compliance is computed using FEM are individually
modelled based on its geometry and materials. Then a known force or torque
is applied at the joint or connection assuming the forice is derived from other
part.

7.2. Legs 2

For this model, leg 2 is disassembled in the parts shown in figure[6} “gimbal
17, “gimbal 27, “axis 2” and an element “limb 2” encompassing the rail, slider,
bearings, screw lead and other components.

Since E1 = E2 = E3 = 07 we define A2 = Aga = Agb = AQC. Then we
establish a coordinate system 2 with origin at As, zo axis in the direction of
rp,/4, and yz axis in the direction of So5 = iE as shown in figure |6} Frame 2 is
attached to the slider.

A coordinate system is fixed to each of the two gimbals of the spherical joint
of leg 2. Frame G1 is attached to gimbal 1, and G2 to elements gimbal 2 and
axis 2. These two frames have the same origin, point Ay and are defined by:

18
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Figure 6: Components and coordinate systems in leg 2.

™ 0%
81R = Rot <q21 — 57010)
7T 2
R = Rot (5 - C]22>G1JG1>

Note that, since E1 = F5 = FE3 = 0, the bases for the systems of constraints
and actuations are reduced to the two pure forces shown in figure[6] Hence, only
linear compliance matrices are required. The compliance of element gimbal 1 in
all the directions of the wrenches in these two systems can be obtained by simple
projection of the fixed-value linear compliance matrix in frame G1, Cy gim1-
Similarly, for elements gimbal 2 and axis 2, the required compliances can be
obtained by projecting the fixed-value linear compliance matrix in frame G2,
Cgim2 and Cy axo, respectively. These three matrices are determined using
FEM. It follows that:
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ng,giml = (Wa2)' &R Cuagimi - §'R- OWao
cg%,giml = (OWC2>t 81R : CA,giml : glR . OWCQ
ng,gimz = (G2IG2) I3 - CA,gim2 : 82 3 BT i(}2
cg%,gim2 = (“We) 82R - Cagim2 82R OW e
cgg,aXQ = (G21G2)t I3><3 . CA,axQ . 82 : I3><3 .G i(3}2
cgg,a)& - (OWCQ) G2R : CA,axQ : 82R ! OW(LQ

The same model from Eq. is used for the compliance matrices of the
leg element limb 2 in frame 2. Hence, C4 jim2 and Ceg lim2 are obtained by
substituting ¢;3 by g24 in Eq. . It follows that:

a2 20\t 27
Caztime = (k2)" I3x3 - Caleg2 Izxs - “ko

Hime = (%2)" Tsxs - Chalegz - Isxs” - Jo (25)
The compliance of each element and the compliance of the actuator, cact,
contribute to the compliance of the entire leg, hence:

a2 o a2 a2 a2 a2

Caa = ca2,lin12 + CaQ,giml + Ca2,gim2 + Ca2,ax2 + Cact
c2 _ c2 c2 c2 c2

C2 = Calim2 T Ce2,gim1 T Ce2,gim2 T 1TCc2 ax2

7.8. Serial module

For this model, only the main body of the serial module is considered as
compliant since the link connecting actuator S2 and the spindle is mainly the
body of the motor of the tool. From figure[7] it can be seen that all the wreches
of constraints and actuations have constant directions with respect to the main
body of the serial model, link S1—.52. Hence, all the compliances for the serial
part are constant and are assumed to be decoupled. The values of constraint
compliances c¢3t, i = 1,...,4, are obtained from FEA. 23} and %33 correspond
to the compliance of actuators of the serial module and they include not only

the compliance of the motors, but also that of its transmission system.

8. Finding unknown coefficients from experimental data

The model presented in Section [7]is in terms of several constants that can
be obtained from FEM in the case of elements whose compliance can be ob-
tained by projecting the fixed compliance matrix in a local frame. However, the
compliance of leg elements el, e2 and e3, modeled in the form of Eq. , is
in terms of the unknown polynomial coeflicients k4.4 j,k0.0,; € R, a = x,y,2
and j = 0,1,2. In addition, the compliance values of all the actuators, namely

Cact, €221 and c232, are also unknown. However, an inspection of the systems
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Figure 7: Components in the serial module.

of constraint and actuation in figures [5] and [6] shows that the x component of
C,lim; and the y component of C 4 1im; are never required when projecting the
matrices. Hence, k4 . ; and kg 4 ; are not needed.

The unknown values can be obtained using experimental data to optimize
the model so that the values of the unknowns yield the smallest error between
the measured and the predicted values of stiffness of the whole robot.

Consider N experiments in which the robot is in configurations defined by
rr, and Ot,,n=1,...,N. In each experiment, a force F}, is applied at T in
the direction 1, and the displacement d4 4, expn of 7" in the same direction is
measured.

Since the inverse kinematics is known, given the configuration of the robot
in each experiment, a predicted value of such displacement can be computed in
terms of v after obtaining the displacement vector TAX in frame T. Thus, the
corresponding prediction is given by 4 4, predn (OrT,n, Of:n)(v) = TAX(OI‘T,”,
0t,)(v) - (0;11,). It follows that for every experiment we wish to minimize the
error:

(6]

N 2
6n(v) = (6A,ﬁn,predn(OrT,n7 Otn)(v) - 6A,ﬁn,expn> , = 17 ceey N (26)

The problem thus becomes a multiobjective optimization (MOO) in which
the observed trend can be imposed by adding constraints into our problem.
For example, consider experiments 1, 2 and 3 were carried out along direction
1 and show a trend such that 04 4;.exp1 < 0A,65,exp2 < OA,05,exp3, then the
minimization problem in hand would be stated as:

e Minimize:

~ 2
En(v> = (5A,ﬁ,L,predn(orT,n; Otn)(v> - 6A,ﬁn,expn) , = 17 2a 3
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e Subject to:

Saapred (P71, 1) (V) — 4.8, preaz(Prra, Ot2)(V) < 0

Saapredz(Orr, Ot2) (V) — 4.0, preaz(Crrs, Ot3) (V) < 0
veV

where V is the search space.

Since this is a MOO problem, we are searching for a Pareto frontier rather
than a single optimum. The Pareto frontier is the set of individuals (or solutions)
in which it is not possible to find a single solution that has a better fitness than
the solutions in the set with respect to all the objective functions. Hence, such
a change will worsen at least one objective.

Different algorithms can be used to find this Pareto frontier, including the
skyline query method [35], the scalarization algorithm [36], simulated annealing
[37], genetic algorithms and direct multisearch (DMS) [31]. These last two are
available in the Global Optimization Toolbox from Matlab(C). Both genetic
algorithms and DMS are derivative-free algorithms, which is important for the
problem in hand since the objetive functions are so complex that we will consider
them as black boxes that take a candidate v and return ¢;.

In this paper we use the paretosearch function in the Global Optimization
Toolbox from Matlab(C) which executes the DMS algorithm to find the Pareto
frontier. DMS is a pattern search algorithm, which means it uses a search/poll
method extending the poll in the directions where constraints-satisfactory non-
dominated solutions were found. The algorithm stops when the hypervolume
delimited by the frontier changed less than a tolerance. For a detailed explana-
tion and proof of convergence see Custddio et.al. [31] and the algorithm Matlab
page.

Figure [§ shows the flow diagram of the steps followed to determine optimal
values of the unknown variables vop

9. Case study

Experiments were carried out on the Exechon XMini with offset wrist shown
in figure[Oh. Table[3]shows the dimensions of the manipulator. The experiments
setup is shown in figure [Op

The stiffness is calculated by dividing the known magnitude of a force being
applied at the tool tip over its corresponding displacement. The load is applied
by rotating a screw while using a piezoelectric sensor to measure the load value.
The applied force is derived and recorded from the acquisition system of the
piezoelectric sensor. For measuring the displacement, high-accuracy eddy cur-
rent sensing system is employed. The eddy current sensor head was fixed right
behind or closely beside the target area to measure the displacement under a
known force. We employed high accurate eddy current sensor and calibrated
them within an accuracy of 2um. That means, these sensor could measure the
deformation at micro level. The data is then captured and processed.
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Figure 8: Method followed to determine vopt.

Table 3: Dimensions of the Exechon XMini in mm

name | value

name | value

name | value
hy 33

d a1 250
dpa 166

h 520
daa 400
dr 210

ds 50
dp1 133

23

FEM was applied to the elements gimbal, gimball, gimbal2 and axisg2.
The following compliance constants were obtained in the directions of their
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Figure 9: a) The Exechon XMini used for the experiments and its fixed coordinate system O.
b) Experiments setup: 1. Eddy current sensor, 2. Fixture of loading system, 3. Tool tip, 4.
Piezoelectric sensor, 5. Loading system (force along yo)

corresponding fixed frame (all quantities in mm/N):

Cogim = diag(x,x,4.170527354 x 1071%)

Chrgim = diag(9.52x1077,1.6 x 107°,2 x 1079)
Chrgimi = diag(6.95x 107°,7.098 x 107%,1.47 x 107°)
Chrgim2 = diag(3.324 x 1077,1.839 x 107?,7.852 x 1077)

Chaxisgz = diag(2.887 x 107%,7.434 x 1077,1.426 x 1077)

For the main body of the serial module the following values were obtained
using FEM:

2l = 4.269 x 10 %mm/N

%2 = 0.94 x 10" *mm/N

% = 5x 107 "mm/N

%4 = 2.109281437 x 10~ °Nmm

However, due to the complexity of the mounting of the main body and the
way it is connected to legs 1 and 3, the compliance of the large gimbal (element
gim) was included in the optimization process as a variable. This also ensures
that the effect of the compliance of the bearings supporting legs 1 and 3 through
the large gimbal is considered in the result. Similarly, the compliance of the the
main body in the serial module was included in the optimization process, due
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to its interaction with the spindle, its mounting, and the different components
included in the serial module.

Hence, v consists of variables ka1, ka,y.2, ka,2,1, k42,2, koz1, ko,z,2,
k@,z,lv k@,z,?; Cact ng%’ CZ§%7 ngiv nggv ngg, ngi’ CA,z,gim, CAy,gim, CA,z,gim,
and CO,z,gim; where diag(cA,z,gimv CA,y,gim; CA,z,gim) = CA,gim~

Firstly, four experiments are carried out and are used in the MOO. The
results of these experiments are shown in table [d The results show the cor-
responding linear displacement along @, due to a force of magnitude F' and
direction t

Table 4: Experiments used for the optimization process (F,, = —100N and Ot, =%u, = Of{,
n=1,...,4)

n Orr,, (mm) OA i1, expn (Mm)

1| (0,260,1355) -0.8350047575e-2

2 | (—138,260,1355) -0.9881549403e-2

3 | (—340,260,1355) -0.1171779778e-1

4 | (—408,260,1355) -0.1413836810e-1

In order to ease the computational cost of the optimization, the process is
carried out in different stages. First, the FEM results of the gimbal and the main
body of the serial module are used in order to not consider them as optimization
variables. Only experiments 1, 2 and 4 are considered to enhance the time of
conversion and to use the remaining experiment as a validation case. Hence,
the first stage consists of:

e Variables:

. S1 S2
A\ (k/l,y,lu k/l,y,27 k/l,z,la k/l,z,27 k@,x,la k@,aj,27 k@,z,lu k9,2,27 Cact 63517 CZSQ)

e Minimize:

€1 (V)a €3 (V)7 €4 (V)
e Subject to:
04,51, prea1| = [04,05,preas| <0

04, 65,preds| = [04,a,,preda| <0
0<wv;<lx107*

where v; are all the components of v. Subsequently, the obtained values for
the optimization variables are replaced and now the remaining variables of the
original problem become the only optimization variables. Hence, the second
stage is given by:

e Variables:

Vv

cS1 ¢S2 cS3 cS4
(CCSI7 CcS25 €831 Ce84y €Az, gimy CAy,gims CA,z,gim; C@,z,gim)
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e Minimize:
€1(V),e3(V), ea(V)

e Subject to:

104,41, pred1] — |04, 45, preas] <0
04,5, preds| — 04,44, preds| <0
0<wvj<1x107*

Finally, the variables modeling the leg element are optimized again, now
considering experiment 2 instead of 3. This allows adjusting the results to a
better fit to all four points. As such, experiment 4 will be used for validation.
However, stage 1 suggested that all k4.2, k4,22, ko.4,2 and ke .2 should be
zero. Therefore, we do not consider these variables in the third optimization,
which is stated as follows:

e Variables:
v i= (k/l,y,la k/l,z,h k@,x,la k@,z,h Cact)

e Minimize:

€1(V),e2(V),ea(V)
e Subject to:

04,8, pred1] = [04,45 predz2| < 0
|5A,ﬁ2,prcd2| - |5A,ﬁ4,prcd4| <0
0<v;<1x107*

The resulting optimized values of the whole process are the following:

kg1 =9.375 x 10-6N—1 kg2 =0
ka .1 =6.77626 x 1072IN—! kaz2=0
k‘@,%l =5x1076N"! k@7w,2 =0
k@,z,l =5x 107N k@7272 =0

Cact = 4.8688 x 107> mm /N
%31 =1 x 10~ *rad/Nmm
%332 = 1.3552 x 10~ 2Oraol/Nmm
cS3l = 3.3854 x 10~°mm/N
€632 = 6.7762 x 10~'mm/N
cS2s = 5.2083 x 10~ 6mm/N
o34 = 6.09375 x 10~°rad/Nmm

CAg,gim = 1 x 107 Omm/N

CAygim =7 X 107" mm/N

€Az gim = 1 x 107mm/N

€o.2.gim = 5 x 107 "rad/Nmm
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Additional six experiments were carried out in order to validate the opti-
mized compliance model. The definition and results of these experiments are
shown in Table [5] Table [5] also shows the deformation values predicted by our
optimized model and the corresponding error against the experimental values.
Each optimization was carried out on a commercial laptop with 16Gb in RAM
and a processor speed of of 2.90GHz, the most longest running time detected
in an optimization was 1:58 minutes. From table 5] it can be seen that results
in the zo-direction are satisfactory, with a maximum error of 10.354%. The
maximum error in the zg-direction is 19.998%. The largest error were found
in the yo-direction with a maximum of 39.206%. Figure [10| shows the map for
linear stiffness in the zp along working planes parallel to the xozo plane with
different values of the coordinate yo.

Table 5: Experiments carried out on the Exechon XMini and comparison to predicted values.
For all n = 1,..., 10, the displacement corresponds to F,, = —100N and °t, = °k

n “rrn (mm) a, S,y expn (M) 04 4, prean (mm)  Error (%)

1 (0,260,1355) (0,0,1) -0.008350048 -0.008836983611 5.831536068
2 (-138,260,1355)  (0,0,1) -0.009881549 -0.008858429 10.353846730
3 (-340,260,1355)  (0,0,1) -0.011717798 -0.011669665 0.410765409
4 (-408,260,1355)  (0,0,1) -0.014138368 -0.014477298 2.397235293
5 (-68,260,1355) (0,0,1) -0.0081281849 -0.008617324 6.017820104
6 (-276,260,1355)  (0,0,1) -0.010702398 -0.010174949 4.928314859
7 (85,260,1450) (1,0,0)  -0.090090090 -0.092380377 2.542218887
8 (323,260,1450) (1,0,0) -0.086206897 -0.103380147 19.920970321
9 (0,225,1450) (0,1,0) -0.082644628 -0.115046523 39.206293228
10 | (408,226,1450) (0,1,0) -0.105263158 -0.124294783 18.080043731

A word on gravity: Following the method presented in [I3], it is not too
difficult to include the effect of gravity in the model presented in this paper.
However, since we are trying to fit our model to the results of experiments on
the actual machine, the effect of gravity is not required at least at the stage
of optimizing the unknown constants of the model. The total deflection of the
manipulator at its end-effector contains two components: a deflection due to
gravity and a deflection due to the external force applied at the end-effector.
The deflection due to gravity (acting along the yo-direction in our experiments)
is permanent and independent of the external load. Say the controller is ordered
to position the tip of the end-effector at Ory. Due to gravity, the robot will
present a deflection before starting the experiment, and the real position of
the tip will be Orr gray. Once the external force is applied the position of
the tool will change to OrT,F. However, in our experiments, it is only feasible
to measure the difference between OrTWF and OrT,graV, since it is not possible
to measure OrT,graV with the precision required for any analysis. Since the
displacement measured in the experiments is that produced by the external force
alone, the gravity effect should not be considered in order to learn the unknown
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parameters. Nevertheless, our IKP should be solved for OrTﬁgraW which we do
not. Therefore, we give a 1-mm compensation due to gravity, namely, we solve
the IKP for ®rr — (0,1,0)

linear stiffness in Z direction

14000

12000

=

——— iSRS
N

10000 iR

KIZ [N/mm]

8000

6000

N N
ST S
SRR
SSLL LTSN
SRR TR
SRS AN IR Y
ST LTI IINTNNS

Figure 10: Maps of linear stiffness in the Zg-direction along the working plane X Zo.

10. Conclusions

This paper presented the inverse kinematics and a compliance model for
Exechon manipulators with offset wrists. The inverse kinematics was solved
also considering offsets between the axes of the joints connecting the limbs to
the base. The IKP was reduced to two systems of 4 non-linear equations in 4
unknowns. It was shown that when the offsets at the base are equal to zero, a
single univariable polynomial can be obtained. In practice, however, we prefer
to use the two systems of 4 non-linear equations even if the offsets at the base
do not exist. The reason being that by solving numerically these two systems,
two solutions are secured. This allows more control in the selection of solutions
when automating the process.

The compliance model was obtained by proposing a general model for the
local compliance of elements that encompass multiple mechanical components
of the robot. The local compliance values of these elements were modeled as
a 2-degree polynomial in the leg length. The unknowns of the model were
then optimized using experimental data. Subsequently, more experiments were
carried out to validate the model. The resulting model was able to predict the
compliance along the zo-direction with a maximum error of around 10%. In the
xo-direction the worst error was measured as 19%. However, the prediction in
the yo-direction gave a maximum error of 39.2%.
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