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Abstract

The stiffness of the Exechon hybrid manipulator is a crucial performance indi-
cator as the manipulator is used as a 5-axis machine tool. Normally, the serial
module of the Exechon is not included in the kinematic and stiffness analysis.
In terms of kinematics, the parallel and serial modules are said to be decoupled,
i.e. parallel module can be solved for position and the serial module can be used
to compensate the parasitic orientation of the parallel platform. This is only
possible when the serial module is a perfect spherical wrist. However, several
models of Exechon technology have an offset wrist rather than a spherical one.
Such an offset makes it impossible to obtain a kinematic decoupling.

In all publications available in the literature, the Exechon is considered to
have a perfect spherical wrist. Therefore, this paper presents the inverse kine-
matics and compliance model of Exechon manipulators with offset wrists. The
unknown coefficients in the compliance model are determined by optimizing the
model against experimental data. The resulting predictions are then compared
against more experimental results to validate the model.

Keywords: Kinematics, Compliance, Parallel robots, Coupled kinematics,
Stiffness

1. Introduction

The use of parallel kinematic machines (PKM) or parallel manipulators [1, 2]
in industrial applications is relatively recent. Although a plethora of applications
for the Delta robot and the Stewart platform [3, 4] can be found in industry, most
of the PKMs designs have not been exploited in production lines. An important5

reason for this is the relatively small workspace of conventional PKMs as well
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as their poor dexterity. Aiming to tackle this, the Tricept robot was presented
[5, 6] as a hybrid robot that combines a 3-DOF (degrees of freedom) parallel
module with a 3-DOF serial module mounted in the parallel platform.

Simple in conception, the parallel module of the Tricept is basically a serial10

UP1 chain which in turn is controlled by 3 actuated 6-DOF legs which do not
add any constraints to the end-effector of the UP chain. Hence, the UP leg
is fully unactuated making the control and manufacturing of the robot more
complex. Vowing to get rid of this unactuated leg, the Exechon manipulator
(see figure 1a) was designed as a new hybrid robot with an overconstrained15

3-legged parallel module [7, 8]. The Exechon has been already used in several
applications, particularly, the Exechon is used in manufacturing [9] as a 5-axis
machine.

Due to its application in manufacturing, the stiffness of the Exechon is im-
portant in order to improve the quality of the machined parts. Stiffness models20

for the parallel module of the Exechon are available in the literature [10–12] as
they are for the Exechon-like 3-SPR machine developed in Tianjin University
[13]. In general, researchers only focus in the parallel module of this hybrid
machine due to its decoupled nature brought by the spherical wrist mounted
as serial module. To the knowledge of the authors, all the published papers25

that study the Exechon consider a perfectly spherical wrist. The spherical wrist
allows the kinematic decoupling of the modules, using the parallel one for posi-
tioning and the serial one for orientating. The decoupling property is exploited
when solving the kinematics of the Exechon [14–17] to obtain closed form solu-
tions.30

Nevertheless, among the fairly large number of Exechon models, there are
some whose wrist is not spherical, but present an offset between the two axes
of the R joints in the serial module. Figure 1b shows the 2-DOF serial module
of the Exechon XMini, figure 1a, a smaller model built of mainly carbon fiber.
The two R joint axes of the wrist of the XMini will be called here SS1 and SS2.35

As shown in figure 1b, these axes do not intersect and an offset of 50 mm is
present between them.

Although the complexity of obtaining a compliance model of the Exechon is
indifferent to the type of wrist, the inverse kinematics, required to obtain the
stiffness in each configuration, is severely affect and no closed form solution is40

expected for the problem, in a similar way to what happens with fully serial 6-
DOF robots with offset wrists [18]. In its simplest form, without offset between
joint axes, neither at the base, nor at the wrist, the inverse kinematics is not
only decoupled, but also has closed form solution, see [14, 16] where such a
solution is presented.45

In [17], we presented the position analyses of an Exechon robot featuring
only the offsets at its base, but not at the wrist. The perfectly spherical wrist of
the manipulator considered in such a publication still allowed the decoupling of

1In this article: U stands for universal joint, P for prismatic joint, R for revolute joint and
S for spherical joint.
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position and orientation, however no closed form solution can be found. In this
paper we first obtain the inverse kinematics of an Exechon manipulator, which50

not only features an offset writs, but it also presents offsets between the axes of
the joints connecting the legs to the base.

Figure 1: a) The Exechon XMini, b) Offset in the wrist of the Exechon XMini

Now in this paper, the addition of an offset at the wrist not only will allow
the analysis of models like the XMini, whose nominal dimensions include such
an offset, but it can also work as a completely generalized kinematic model55

in which such offsets can be seen as manufacturing errors and, thus, we can
compute the total error at the end-effector due to such imperfections. Table 1
summarizes these three cases of Exechon manipulator.

In this paper, after the inverse kinematics of this Exechon manipulator with
offset wrist is solved, a semi-analytical compliance model is obtained for the60

whole robot, considering both serial and parallel modules. See [19] for one of the
few examples where the serial part of a hybrid robot, the Tricept, is considered
in the stiffness model as a spherical wrist. See also [20] for an example of stiffness
model of a hybrid (parallel-parallel) robot.

In general, if detailed information of the components that integrate the ma-65

nipulator is known, an accurate compliance model can be built. However, it
is common that many structural details of the machine are not known, includ-
ing not only the materials the parts are made of, but also how the parts are
mounted, the stiffness of the actuators after a complex transmission system is
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Table 1: Cases of offsets in the Exechon manipulator

Wrist Spherical Spherical Offset
Base offsets 7 3 3
Decoupling 3 3 7
Closed form IK 3 7 7
IK solved in [14, 16] [17] none

included, etc. Hence, in this paper we employ a different framework that allows70

modeling the compliance with less information of how the robot is built.
We first sketch a model based in the overall Jacobian matrix [13, 19, 21–25].

Other techniques for stiffness computation in parallel manipulators can be found
in [26–30]. We then propose a quadratic in terms of the legs length to model
the local compliance of a group of components modeled as a single element in75

the analysis. With this assumptions, the model can be written in terms of all
the unknown quantities. Then, using experimental data, the model is optimized
applying direct multi-search (DMS) [31] method. After the optimization, the
unknown values in the model are determined and the model is able predict the
compliance in any direction and in any configuration.80

The rest of the paper is organized as follows: We first introduce the notation
used throughout the paper in Section 2. Section 3 presents the geometry of the
Exechon manipulator with offset wrist. Section 4 solves the coupled inverse
kinematics of the robot. In Section 5, the system of constraints and that of
actuations are obtained. The compliance equations are reminded in Section 6.85

In Section 7, the compliances of the different elements of the manipulator are
computed in terms of several unknowns. Section 8 shows how these unknowns
are obtained using an optimization process. In Section 9 these results are applied
to a case study considering the Exechon XMini. Finally, in Section 10, some
conclusions are drawn.90

2. Notation

The notation used through the paper is now introduced.
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The symbol “:=” is used for definition of variables. Three-dimensional vec-
tors are written in lowercase bold letters, such as v ∈ R3. S ∈ R6 ∼= se(3) is
used for screw coordinate vectors. In order to avoid the introduction of more95

symbols, we use S for both the screw coordinates of an axis and the geometric
element itself. Unit vectors are hatted, û ∈ §2

Coordinate systems are named with non-italic capital letters, while points
are presented in italic capital letters. For example, in Fig. 2 frame O has origin
at point O. Let A and B be two coordinate systems with origins at A and B,100

respectively, and let P and Q be two points. Then the notation from [32] is
used to manage coordinate systems. Namely, ArP/Q is the vector from point Q
to point P in coordinate system A. While ArP := ArP/A is the position vector
of point P in frame A. A

BR ∈ SO (3) is the rotation matrix that relates the
orientation of frame B to that of frame A, such that ArP = A

BRBrP + ArB .105

The canonical triad defining frame A but expressed in frame B is denoted by
{B îA,

BĵA,
Bk̂A}

d(P,Q) ∈ R is the Euclidean distance between points P and Q. Rot(β, v̂) ∈
SO(3) is the rotation matrix representing a rotation of β radians about an
axis that passes through the origin and that is parallel to v̂. Adj(ψ) ∈ R4×4

110

returns the adjoint representation of Euclidean displacement ψ ∈ SE(3). Null()
represents the null space of a matrix, while ()t is its transpose. Finally, aug()
and diag() represent, respectively, the augmented matrix of an ordered set of
column vectors, and the diagonal matrix with diagonal elements equal to an
ordered set of scalars.115

Table 2 gives a quick reference to important symbols used in the thesis.

3. Geometry of the Exechon manipulator

Figure 2 shows a representation of an Exechon hybrid robot. The robot
integrates a 3-DOF parallel module and a 2-DOF serial module. The parallel
module consists of a moving platform and a fixed platform connected by three120

legs. Legs 1 and 3 are RRPR serial chains, while leg 2 is an RRRPR kinematic
chain. From figure 2, if i = 1, 3, the following geometric constraints hold:

Si2||Sl4||n̂Π
Si1⊥n̂Π , Si3⊥n̂Π

S21⊥S22, S22⊥S23

S23||S24, S24⊥S25

S25 and Si4 intersect perpendicularly

Points A1a, A2a and A3a are the vertices of an isosceles triangle with base
2dA1 := d(A1a, A3a) and height dA2 := d(A2a,S11). Points B1, B2 and B3

also form an isosceles triangle with base 2dB1 := d(B1, B3) and height dB2 :=125

d(B2, B1B2).
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Table 2: Quick reference to some specific symbols

Symbol Definition

Sij Screw axis of the ij joint

t̂ Unit vector parallel to the tool axis

n̂Π Unit vector perpendicular to plane Pi, see Fig. 2

Wcij , Wai Screw axes of wrench of constraint cij and wrench of actu-
ations ai

JPa, JPc, JP Jacobian matrices of actuations, constraints and overall for
the parallel module, respectively

JSa, JSc, JS Jacobian matrices of actuations, constraints and overall for
the serial module, respectively

CP , CS Compliance matrices for the parallel and serial module, re-
spectively

CP , CS Local compliance matrices for the parallel and serial mod-
ule, respectively

CΛ,e, CΘ,e Linear and torsional compliance matrices of element e

For i = 1, 3, points Aia, Aib, and Bi are coplanar, we call the plane that
these point lie on Π, while plane Λ is the one containing B1, B2 and B3.
The joint variables of the actuated joints of each leg are measured as follows:
qi3 := d(Aib, Bi), i = 1, 3, and q24 := d(A2b, B2).130

The following offsets are considered between the joints connecting the legs
to the base:

E1 := d(S21,S22), E2 := ŝ22 · rA2b/A2a
),

E3 := d(S22,S23) = d(A2b, A2c),

E4 := d(S11,S12), E5 := d(S31,S32)

The serial module is mounted on the moving platform. This module is a
serial 2R chain with its two axes SS1 and SS2 being skew with a normal distance
between them equal to dS . These two revolute joints are used to orientate the135

spindle axis, which is parallel to t̂. Point T represents the tool tip. Point S′ is
the intersection of SS2 and the common perpendicular between SS1 and SS2.
Therefore, the spindle axis is defined as LT := L (t̂, S′). S′ is located a distance
hz := d(S,Λ) from plane Λ, while hx := d(SS1, Π). Axis SS1 is perpendicular
to Λ and the two axes constituting the serial module are perpendicular to each140

other. We define the tool length as dT := d(T, S′).
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Figure 2: Geometry of an Exechon manipulator with offset wrist

In the nominal dimensions of all commercial Exechon robots, Ei = 0, ∀i =
1, . . . , 5. In all the analyses that can be found in the literature, dS is equal to 0,
which allows a kinematic decoupling. However, as shown in figure 1, dS = 50mm
in the Exechon XMini.145

We define three coordinate systems, O, E and F. Coordinate system O,
{xO, yO, zO}, has origin at O and is attached to the fixed platform and is used
as a global, fixed frame. xO and yO are coaxial with S11 and OA2a, respectively.
Frame E, {xE, yE, zE} is attached to the moving platform and has origin at point
E, the middle point of segment B1B3. xE and yE are coaxial with EB1 and150

EB2, respectively. Note that k̂E||n̂Π . Finally, coordinate system F has origin
at O and is parallel to frame E.
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Figure 3: Lateral views of the Exechon robot showing internal variables.

4. Inverse kinematics

The following information is known in the inverse kinematic problem (IKP):
OrT , i.e. the position of the tip of the tool, point T , with respect to the fixed155

coordinate system, and Ot̂ := (t1, t2, t3) ∈ S2, a unit vector that is parallel to
the tool. The goal of the IKP is to determine the screw coordinates of all joint
axes in the robot with respect to the fixed coordinate system: OS1i,

OS3i,
OS2j

and OSSk, i = 1, . . . , 4, j = 1, . . . , 5, k = 1, 2, 3.
For this analysis, it is important to define the way the following joint vari-160

ables are measured:

� q11, from ĵO to n̂Π about S11.

� q21, from k̂O to ŝ22 about S21.

� q22, from îO to ŝ23 × ŝ22 about S22.

� qS1, from îE to ŝS2 about SS1.165

� qS2, from k̂E to t̂ about SS2.

We also define the following internal variables (see figure 3):

� l1. The (shortest) distance between point O and the xE axis, l1 = d(O,

B1, B3) = rE/O · k̂E.
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� l3. The length of the projection of rE/O on the xE axis, l3 = rE/O · îE.170

� l2. The length of the projection of rB2/A2c
onto the yOzO plane.

� θ. The angle measured from xO to xE about yE.

Using these variables it can be seen that O
ER = O

F R = Rot(q11,
O îO)Rot(θ,OĵO).

For the analysis we also use point S′, instead of T . The position of S′ is known
from the input information of the IKP as (xS′ , yS′ , zS′) := OrS′/O = OrT−dTOt̂.175

The following constraints are considered in order to solve the IKP:

1. S23⊥îE. Using revolute joints 21 and 22 to orientate S23, it follows Oŝ23 =
Rot(q21,

O îO)Rot(q22,
Ok̂O)OĵO. It is also known that O îE = O

ERO îO. This
condition is thus expressed in terms of θ, q11, q21 and q22 as:

Oŝ23 · O îE = 0 (1)

2. The coordinates of S′ in frame F are easily obtained as (−l3 +dS cos(qS1−
π/2), hy + dS sin(qS1 − π/2), l1 + hz). Therefore, this condition can be
expressed in terms of θ, q11, l1, l3 and qS1 by:

F
OROrS′/O =

 −l3 + dS cos(qS1 − π/2)
hy + dS sin(qS1 − π/2)

l1 + hz

 (2)

3. The yO coordinate of pointB2 can be recognized as dA2+(l2+E1) cos(q21)−
E2 sin q21. It is also known that FrB2

= (−l3, dB2
, l1), therefore, this con-

dition can be expressed in terms of q11, θ, q21, l3 and l2 by:

O
F RFrB2

· OĵO = dA2 + (l2 + E1) cos(q21)− E2 sin q21 (3)

4. The zO coordinate of point B2 can be recognized as (l2 + E1) sin(q21) +
E2 cos q21. Therefore, this condition can be expressed in terms of α, θ,
q21, lE and l2 by:

O
F RFrB2

· Ok̂O = (l2 + E1) sin(q21) + E2 cos q21 (4)

5. Points E and A2b lie on a plane that is perpendicular to the xE axis. It is
known that FrE = (−l3, 0, l1), while point A2b lies on the toroid:

OrA2b
= dA2

OĵO + Rot(q21,
O îO)

[
(0, E1, E2)− E3Rot(q22,

Ok̂O)O îO

]
Therefore, this condition can be expressed in terms of q11, θ and l3 by:

(F
OROrA2 − FrE) · FiF = 0 (5)

6. LT intersects SS1. It can be seen that LT = L (t̂, S′) and SS1 =

L (k̂E, PS1), where FrPS1
:= (−l3, hy, 0). Therefore, this condition can

be expressed in terms of θ, q11 and l3 as:

(OrS′ − O
F RFrPS1

) · (Ot̂× Ok̂E) = 0 (6)
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Eqs. (1) to (6) represent a system of 8 scalar equations in 8 unknowns: q11,
q21, q22, qS1, θ, l1, l2 and l3. We proceed now to reduce this system. The first
component of vector Eq. (2) can be easily solved for l1 to obtain:

l1 = cos θ(zS′ cos q11 − yS′ sin q11) + xS′ sin θ − hz (7)

The third component of vector Eq. (2) can be solved for l3 to obtain:

l3 = sin θ(zS′ cos q11 − yS′ sin q11)− xS′ cos θ + dS sin qS1 (8)

Eq. (4) can be solved for l2 to obtain:

l2 =
cos q11(l3 sin θ + l1 cos θ) + dB2 sin q11 − E2 cos q21

sin q21
− E1 (9)

The second component of Eq. (2) can be solved for qS1 to obtain:

qS1 = π ± arccos

(
zS′ sin q11 + yS′ cos q11 − hy

dS

)
(10)

Substitution of these solutions in Eqs. (1), (3), (5) and (6) yields to two systems
of 4 equations in the unknowns q11, q21, q22 and θ. Two systems are obtained
due to the double solution for qS1 in Eq. (10). The equations have no closed-
form solution and have to be solved using numerical methods. Two solutions180

for the IKP are secured considering both systems of equations. The solutions
can be distinguished by the ”elbow up´´ and ”elbow down´´ configurations of
the serial module, although the configuration of the parallel differs too between
solutions.

Once q11, q21, q22 and θ is obtained, backwards substitution allows to obtain185

the other four variables, θ, l3, l1 and qS1. Frames E and F are now known as
they only depend on q11 and θ. The actuation variables and coordinates of all
joint screws can be obtained as expressions in terms of these five variables, and
therefore, the IKP is solved.

Joint variables qij ∈ R, (i, j) ∈ {(1, 3), (2, 4), (3, 3)} are given by qij :=190

|rBi/Ai
|. To find the position of points Bi, we first locate E w.r.t. frame O

using OrE = O
F RFrE = O

F R(−lE , 0, hE). Then,

OrB1 = OrE + O
ER(dB1, 0, 0)

OrB2 = OrE + O
ER(0, dB2, 0)

OrB3 = OrE + O
ER(−dB1, 0, 0) (11)

To find qS2 ∈ T, we first consider the direction of SS2, OŝS2 = O
ERRot(qS1,

Ek̂E)E îE. Then:

qS2 = arctan2
(
sgn

(
(Ok̂E × OŝS3) · OŝS2

) ∣∣∣Ok̂E × OŝS3

∣∣∣ , Ok̂E · OŝS3

)
(12)

It is important to be aware that the system of equations presented here
involves the location of four points E, B2, A2b and S′. While the first three are
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permanently coplanar, S′ normally lies outside the plane that contains them,195

i.e. yEzE . This makes the system of equation solvable as all of its equations
are independent to each other. However, if all four points become coplanar,
then the system of equations cannot be solved. Note that such a situation
happens whenever qS1 ∈ {0, π} ⇒ ŝS2||̂iE . However, if this is the case, then we
are able to compute E in O with the input information of the IKP as OrE =200

OrS′ − (0, dS + hy, hz). Observe that it is the coordinate xE of ErE/S′ which
normally does not allows us to find E with the input information, but in this
case such a coordinate vanishes and E is in hand. Since this is a point that is
fixed to the moving platform, knowing OrE allows us to decouple the robot and
solve the IKP following the procedure presented in [17] if Ei 6= 0, or [14, 16] if205

Ei = 0, ∀i = 1, 2, 3.
Although, in general, when solving systems of non-linear equations using

software it is necessary to provide either an initial guess or bounds for the
variables, the process can be automated by using as initial guess the solution
for the IKP of the robot with spherical wrist and no offsets, since the latter has210

a closed-form solution that is also unique within the joint limits. This initial
guess is not far away from the solution of our non-linear system of equations as
the offsets (Ei and dS) will always be small compared to the dimensions of the
robot. The solution for the IKP of the Exechon robot with spherical wrist and
no offsets can be found in [14, 16].215

4.1. IKP for the Exechon robot with offset wrist and nominal dimensions

If Ei = 0 for i = 1, . . . , 5, but dS 6= 0, the IKP still cannot be decoupled,
but the solution can be reduced to a single polynomial equation.

The substitution Ei = 0, ∀i = 1, . . . , 5 considerably simplifies Eq. (5) since
point A2b is now fixed, no longer lying on a toroid, so OrA2b

= (0, dA2, 0). Such220

a substitution doesn’t affect Eqs. (2) and Eq. (6), which, together with our new
simplified Eq. (5), represent a system of equation of 5 equations in 5 unknowns:
θ, q11, l1, l3 and qS1.

Eq. (5) and the third component of Eq. (2) are linear on l3 and l1, respec-
tively, and can be solved for these variables.225

The first and second components of equation 2 can be combined to eliminate
qS1, obtaining the following equation:

(xS′ cos θ+yS′ sinα sin θ−zS′ cosα sin θ+ l3)2 +(yS′ cosα+zS′ sinα−hy)2 = d2
S

(13)
The expressions for l3 and l1 obtained from Eq. (5) and the third component

of Eq. (2), respectively, are then replaced in equations 6 and 13. After this
substitution, Eqs. (6) and (13) become a system of two equations in q11 and θ.

11



Eq. (6) can be solved for θ to obtain:

θ = arctan

((
(xS′t3 − zS′t1) sinα+ (xS′t2 − yS′t1) cosα+ hyt1

)
/(

(dA2(t3 sinα+ t2 cosα)− hyt2) sinα+ hyt3 cosα− t3yS′ + t2zS′

))
(14)

Substituting equation 14 into equation 13, a single equation in q11 is ob-230

tained. By using the tangent half-angle substitution, such expression can be
reduced to a polynomial of degree 16, this results coincides with the expected
polynomial for manipulators with offset wrists [18].

5. Systems of constraints and actuations

In this section, the systems of constraints and actuations of the Exechon235

robot with offset wrist and offsets in the joints connecting the legs to the fixed
platform are determined. Since for the stiffness analysis the serial module and
the parallel module are considered as two elements connected serially, the sys-
tems of constraints and actuations of each module are obtained separately. The
presence of offsets E4 and E5 in legs 1 and 3 does not have any significant effect240

on the systems of constraints and actuations of the ideal model. These can be
found in the literature [12]. However, for the sake of self-containment, such
systems are determined here as well.

Let the coordinates of any (unit) screw be given by S := (ŝ; r × ŝ + hŝ) ∈
se(3) ∼= R6, ŝ ∈ S2, r ∈ R3, h ∈ R. Then a twist is given by V := ωS = (ω; v)245

and a wrench by W := (f ; m). We invert the components of a screw using
S̃ := (r× ŝ + hŝ; ŝ).

If Si := span(si1, . . . , sin), then the system of constraints of leg i is given
by Wci := {Wcij : kl(Wcij ,S) = 0, ∀S ∈ Si}, where kl(S1,S2) = S̃t

1S2 is the
Klein form in se(3). The constraint system of the moving platform is then given250

by the sum of the constraint systems of each leg.
A basis for the constraints system of each leg is shown in figure 4. For legs

i = 1, 3 it follows Wci := span(Wci1,Wci2), where Wci1 is a pure moment with

direction perpendicular to Ŝi1 and Ŝi2, while Wci2 is a pure force that is parallel
to Ŝi4 and intersects Si1:255

OWci1 =
(
0; O îO × OĵF

)
,

OWci2 =
(

OĵE; OrAia
× OĵE

)
, (15)

The offsets between joint axes in leg 2 do not the determination of OWc21,
the single wrench in the basis of W2, by simple geometric means. As shown
in [17], OWc21 can be found by computation of a basis for Null((J2(q))t) =
span(OW̃c21), where J2 := aug(OS21, . . . ,

OS25). Clearly, dim(Null((J2(q))t)) =

12



Figure 4: System of constraints and system of actuations.

1. This null space can be computed directly using the function nullspace of260

Maple©. In general, Wc21 is neither a pure force, nor a pure moment. How-
ever, in the case of E1 = E2 = E3 = 0, the wrench degenerates into a pure force
OWc2 =

(
O îE; OrA2a × O îE

)
The twist of the moving platform with respect to the fixed one, Vmp ∈ se(3),

is given by

Vmp :=

4∑
j=1

q̇1jS1j =

5∑
j=1

q̇2jS2j =

4∑
j=1

q̇3jS3j

Without loss of generality, for leg 1, for example, it follows:

kl

 4∑
j=1

q̇1jS1j , Wc1k

 = 0, k = 1, 2

⇒

 4∑
j=1

q̇1jS1j

t

W̃c1k = 0, k = 1, 2 (16)

Considering Eq. (16) for all legs, the expression JPcVmp = 0 can be written,
where JPc ∈ R5×6 is the Jacobian of constraints and is given by:

JPc := aug
(
W̃c11,W̃c12,W̃c2,W̃c31,W̃c32

)t

13



Now consider the wrenches of actuation Wai, i = 1, 2, 3, for which kl(Wai,Sij)265

= 0 if joint ij is not actuated and kl(Wai,Sij) 6= 0 if joint ij is the actuated
joint of leg i. Without loss of generality, for leg 1 it follows:

kl

 4∑
j=1

q̇1jS1j , Wa1

 = q̇13kl(S13,Wa1)

⇒ Vt
mpW̃a1 = q̇13kl(S13,Wa1) (17)

Considering Eq. (17) for all legs, the expression JPaVmp = (q̇13, q̇24, q̇33)
can be written, where JPa ∈ R3×6 is the Jacobian of actuations and is given by:

JPa := aug

(
W̃a1

kl(S13,Wa1)
,

W̃a2

kl(S24,Wa2)
,

W̃a3

kl(S33,Wa3)

)t

where,

OWai =

(
OrBi/Aib

|OrBi/Aib
|
; OrAib

× OrBi/Aib

)
, i = 1, 3 (18)

For leg 2, there is again no direct geometric method to determine OWa2.
However, let J∗2 := aug(OS21,

OS22,
OS23,

OS25), then we note that OW̃a2 ∈
Null((J∗2)t), but OW̃a2 /∈ Null(Jt

2). It is clear that Null(Jt
2) < Null((J∗2)t).270

Therefore, a simple way to find OWa2 is to obtain bases for both null spaces.
Since dim(Null((J∗2)t)) = 2, one can pick any of the two vectors in its basis and
verify that it is not parallel to OW̃c2. If the wrenches are not parallel, then
such a vector can be taken as OW̃a2. In the case of E1 = E2 = E3 = 0, OW̃a2

is reduced to a pure force along the actuator axis and can be computed making275

i = 2 in Eq. (18).
A similar analysis can be done for the 2-DOF serial module to obtain the

following Jacobians of constraints and actuations:

JPc := aug
(
W̃cS1,W̃cS2,W̃cS3,W̃cS4

)t

,

JPa := aug
(
W̃aS1,W̃aS2

)t

(19)

where,

OWcS1 =
(

Ok̂E; OrS′ × Ok̂E

)
,

OWcS2 =
(

OŝS2; OrPS1
× OŝS2

)
,

OWcS3 =
(

Ok̂E × OŝS2; OrS′ × (Ok̂E × OŝS2)
)
,

OWcS4 =
(
0; Ok̂E × OŝS2

)
,

OWaS1 =
(
0; Ok̂E

)
,

OWaS2 =
(
0; OŝS2

)
(20)

14



where OŝS2 = Rot(qS1,
Ek̂E)E îE. The overall Jacobian matrices [22] for the

parallel and serial modules are given, respectively, by:

JP :=

[
JPa
JPc

]
∈ R8×6, JS :=

[
JSa
JSc

]
∈ R6×6,

6. Compliance equation for the hybrid manipulator case280

Let T be a coordinate system that is parallel to frame O but has origin at T .
We now refer the coordinates of every wrench in JPc, JPa, JSc and JSa to frame
T by means of TW = Adj(idSO(3),

OrT )OW. Once all Jacobians are expressed
in frame T, the compliance matrix of the whole system can be expressed as the
sum of the compliance matrix of the parallel module and the compliance matrix285

of the serial module.
The proof of the stiffness equations for both the parallel and the serial cases

is included in several publications with equivalent results (see [12, 13, 19]). Only
the resulting expressions will be included in this article.

Let TWext be the external wrench applied at T and let T∆X := (∆θ;∆rT )
be the deformation at T . The applied wrench and the corresponding deforma-
tion are then related by:

T∆X = (CP + CS) TW̃ext (21)

290

where CP and CS are the compliance matrices of the parallel and the serial
module, respectively, and are given by:

CP :=
(
Jt
P (CP )−1JP

)−1
, CS :=

(
Jt
S(CS)−1JS

)−1
, (22)

where the entries of CP and CS , are the compliances in the directions of ac-
tuations and constraints, such that, without loss of generality, for the parallel
module ∆qP = CP τP . Where ∆qP := (∆qa1, ∆qa2, ∆qa3, ∆qc11, ∆qc12, ∆qc2,
∆qc31, ∆qc32) is the vector of displacements along the actuations and constraints
directions, and τP := (τa1, τa2, τa3, τc11, τc12, τc2, τc31, τc32) are the forces/moments295

applied in the directions of constraints and actuations. The following notation
is used for the entries of CP and CS : For example, the diagonal element in the
4th row and 4th column represents the compliance in the direction of constraint
qc11 due to the application of a moment τc11 in the same direction and it is
referred to as cc11

c11. Outside the diagonal, the element in the 4th row and 5th300

column is the compliance in the direction of qc11 due to the application of a
force τc12 and it is referred to as cc12

c11. It can be seen that this last example is
a coupled compliance and, due to the linear nature of the deformations in the
model, cc11

c12 = cc12
c11.

As shown in Eq. (6), the resulting compliance matrix of two elements con-305

nected serially is the sum of their respective compliance matrices. This is why in
this paper we work with compliance matrices instead of stiffness, which would
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involve the calculation of inverses in Eq (6), in order to obtain the obtained
displacement. Hence, this is a common practice when dealing with serially-
connected modules, see [13, 33].310

7. Elements in CP and CS

In this section, the entries of CP and CS are discussed. We construct such
matrices the following way:

CP = diag
(
ca1
a1, c

a2
a2, c

a3
a3, c

c11
c11, c

c12
c12, c

c2
c2, c

c31
c31, c

c32
c32

)
CS = diag

(
caS1
aS1, c

aS2
aS2, c

cS1
cS1, c

cS2
cS2, c

cS3
cS3, c

cS4
cS4

)
Since these entries depend on the specifications of each robot, the case of the

Exechon XMini is treated here. In the nominal dimensions of the XMini model,315

Ei = 0, ∀i = 1, . . . , 5, however, the serial module is an offset wrist, as shwon in
figure 1, so that dS = 50mm 6= 0. The following analysis can be applied to any
model with these offsets characteristics.

For this analysis, several coordinate systems with coincident origins are es-
tablished and compliances are expressed in different frames by means of a trans-320

formation of coordinate systems [13, 19, 34]. For example, if the linear com-
pliance matrix of an element is known in frame A and we would like to know
the linear compliance along a vector û, which is known in frame B, then such a
compliance is given by cΛ,û = (Bû)t · BAR ·CΛ · ABR · Bû, where CΛ is the linear
compliance matrix in frame A. We will use Λ and Θ to distinguish between325

linear and torsional compliances. Also note that only in this section, we will be
using (·) to represent matrix multiplication instead of dot product, this is due
to the amount of subscripts and superscripts for which juxtaposition may lead
to confusion.

7.1. Legs 1 and 3330

Since E4 = E5 = 0, we define Ai = Aia = Aib, for i = 1, 3. Then we establish
a coordinate system i with origin at Ai, zi axis in the direction of rBi/Ai

and

yi axis in the direction of ŝi2 = ĵE as shown in figure 5. Frame i is fixed to the
slider. We also define coordinate system G, which shares the same origin and
y axis as i but, its xG axis is in the direction of xO. Frame G is fixed to the335

gimbal. An abuse of notation will be committed here as we will call simply G
this last frame for both legs, although in each leg frame G has a different origin.

For this model, legs i = 1, 3 are disassembled in two parts shown in figure
5, we call this elements “gimbal” and “limb i”. Element limb i encompasses
the rail, slider, bearings, screw lead and other components. Note that we use340

“leg” to refer to the entire kinematic chain from base to moving platform, while
“limb” denotes the element just defined.

From the constraints and actuations system shown in figure 5, the compli-
ance of the gimbal in all the directions of the wrenches in these two systems can
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Figure 5: Components and coordinate systems in leg 1.

be obtained by simple projection of the fixed-value linear and torsional compli-345

ance matrices in frame G, CΛ,gim and CΘ,gim, respectively. Such matrices are
determined using FEM. It follows that:

caiai,gim = (ik̂i)
t · iGR ·CΛ,gim · Gi R · ik̂i

cci1ci1,gim = (Gk̂G)t · I3×3 ·CΘ,gim · I3×3 · Gk̂G

cci2ci2,gim = (GĵG)t · I3×3 ·CΛ,gim · I3×3 · GĵG

The entries of the compliance matrices of element limb i in frame i are
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modeled considering a quadratic and a linear term in the leg length, qi3:

CΛ,limi = diag

 2∑
j=1

kΛ,x,jq
j
i3,

2∑
j=1

kΛ,y,jq
j
i3,

2∑
j=1

kΛ,z,jq
j
i3


CΘ,limi = diag

 2∑
j=1

kΘ,x,jq
j
i3,

2∑
j=1

kΘ,y,jq
j
i3,

2∑
j=1

kΘ,z,jq
j
i3

 (23)

where kΛ,a,j , kΘ,a,j ∈ R, a = x, y, z and j = 1, 2, are the coefficients of the poly-350

nomials. Note that these coefficients are not directly related to any geometrical
or mechanical property of the element, they are rather a means to model such
properties.

It follows that:

caiai,limi = (ik̂i)
t · I3×3 ·CΛ,limi · I3×3 · ik̂i

cci1ci1,limi = (Gk̂G)t · Gi R ·CΘ,limi · iGR · Gk̂G

cci2ci2,limi = (iĵi)
t · I3×3 ·CΛ,limi · I3×3 · iĵi (24)

The compliance of each element and the compliance of the actuator, cact,355

contribute to the compliance of the entire leg, hence:

caiai = caiai,limi + caiai,gim + cact

cci1ci1 = cci1ci1,limi + cci1ci1,gim

cci2ci2 = cci2ci2,limi + cci2ci2,gim

Coupled compliance cci1ci2 = cci2ci1 is ignored.
The components whose compliance is computed using FEM are individually

modelled based on its geometry and materials. Then a known force or torque
is applied at the joint or connection assuming the forice is derived from other360

part.

7.2. Legs 2

For this model, leg 2 is disassembled in the parts shown in figure 6: “gimbal
1”, “gimbal 2”, “axis 2” and an element “limb 2” encompassing the rail, slider,
bearings, screw lead and other components.365

Since E1 = E2 = E3 = 0, we define A2 = A2a = A2b = A2c. Then we
establish a coordinate system 2 with origin at A2, z2 axis in the direction of
rB2/A2

and y2 axis in the direction of ŝ25 = îE as shown in figure 6. Frame 2 is
attached to the slider.

A coordinate system is fixed to each of the two gimbals of the spherical joint370

of leg 2. Frame G1 is attached to gimbal 1, and G2 to elements gimbal 2 and
axis 2. These two frames have the same origin, point A2 and are defined by:
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Figure 6: Components and coordinate systems in leg 2.

O
G1R := Rot

(
q21 −

π

2
,O îO

)
G1
G2R := Rot

(π
2
− q22,

G1ĵG1

)
Note that, since E1 = E2 = E3 = 0, the bases for the systems of constraints

and actuations are reduced to the two pure forces shown in figure 6. Hence, only
linear compliance matrices are required. The compliance of element gimbal 1 in375

all the directions of the wrenches in these two systems can be obtained by simple
projection of the fixed-value linear compliance matrix in frame G1, CΛ,gim1.
Similarly, for elements gimbal 2 and axis 2, the required compliances can be
obtained by projecting the fixed-value linear compliance matrix in frame G2,
CΛ,gim2 and CΛ,ax2, respectively. These three matrices are determined using380

FEM. It follows that:
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ca2
a2,gim1 = (Oŵa2)t · OG1R ·CΛ,gim1 · G1

O R · Oŵa2

cc2c2,gim1 = (Oŵc2)t · OG1R ·CΛ,gim1 · G1
O R · Oŵc2

ca2
a2,gim2 = (G2 îG2)t · I3×3 ·CΛ,gim2 · G2

O · I3×3 · G2 îG2

cc2c2,gim2 = (Oŵc2)t · OG2R ·CΛ,gim2 · G2
O R · Oŵc2

ca2
a2,ax2 = (G2 îG2)t · I3×3 ·CΛ,ax2 · G2

O · I3×3 · G2 îG2

cc2c2,ax2 = (Oŵc2)t · OG2R ·CΛ,ax2 · G2
O R · Oŵa2

The same model from Eq. (23) is used for the compliance matrices of the
leg element limb 2 in frame 2. Hence, CΛ,lim2 and CΘ,lim2 are obtained by
substituting qi3 by q24 in Eq. (23). It follows that:

ca2
a2,lim2 = (2k̂2)t · I3×3 ·CΛ,leg2 · I3×3 · 2k̂2

cc2c2,lim2 = (2ĵ2)t · I3×3 ·CΛ,leg2 · I3×3
2 · ĵ2 (25)

The compliance of each element and the compliance of the actuator, cact,385

contribute to the compliance of the entire leg, hence:

ca2
a2 = ca2

a2,lim2 + ca2
a2,gim1 + ca2

a2,gim2 + ca2
a2,ax2 + cact

cc2c2 = cc2c2,lim2 + cc2c2,gim1 + cc2c2,gim2 + +cc2c2,ax2

7.3. Serial module

For this model, only the main body of the serial module is considered as
compliant since the link connecting actuator S2 and the spindle is mainly the
body of the motor of the tool. From figure 7, it can be seen that all the wreches390

of constraints and actuations have constant directions with respect to the main
body of the serial model, link S1−S2. Hence, all the compliances for the serial
part are constant and are assumed to be decoupled. The values of constraint
compliances ccSicSi, i = 1, . . . , 4, are obtained from FEA. caS1

aS1 and caS2
aS2 correspond

to the compliance of actuators of the serial module and they include not only395

the compliance of the motors, but also that of its transmission system.

8. Finding unknown coefficients from experimental data

The model presented in Section 7 is in terms of several constants that can
be obtained from FEM in the case of elements whose compliance can be ob-
tained by projecting the fixed compliance matrix in a local frame. However, the400

compliance of leg elements e1, e2 and e3, modeled in the form of Eq. (23), is
in terms of the unknown polynomial coefficients kΛ,a,j , kΘ,a,j ∈ R, a = x, y, z
and j = 0, 1, 2. In addition, the compliance values of all the actuators, namely
cact, c

aS1
aS1 and caS2

aS2, are also unknown. However, an inspection of the systems
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Figure 7: Components in the serial module.

of constraint and actuation in figures 5 and 6 shows that the x component of405

CΛ,limi and the y component of CΛ,limi are never required when projecting the
matrices. Hence, kΛ,x,j and kΘ,y,j are not needed.

The unknown values can be obtained using experimental data to optimize
the model so that the values of the unknowns yield the smallest error between
the measured and the predicted values of stiffness of the whole robot.410

Consider N experiments in which the robot is in configurations defined by
OrT,n and Ot̂n, n = 1, . . . , N . In each experiment, a force Fn is applied at T in
the direction ûn, and the displacement δΛ,ûn,expn of T in the same direction is
measured.

Since the inverse kinematics is known, given the configuration of the robot415

in each experiment, a predicted value of such displacement can be computed in
terms of v after obtaining the displacement vector T∆X in frame T. Thus, the
corresponding prediction is given by δΛ,ûn,predn(OrT,n,

Ot̂n)(v) := T∆X(OrT,n,
Ot̂n)(v) · (O; ûn). It follows that for every experiment we wish to minimize the
error:420

εn(v) :=
(
δΛ,ûn,predn(OrT,n,

Ot̂n)(v)− δΛ,ûn,expn

)2
, n = 1, . . . , N (26)

The problem thus becomes a multiobjective optimization (MOO) in which
the observed trend can be imposed by adding constraints into our problem.
For example, consider experiments 1, 2 and 3 were carried out along direction
û and show a trend such that δΛ,û1,exp1 < δΛ,û2,exp2 < δΛ,û3,exp3, then the
minimization problem in hand would be stated as:425

� Minimize:

εn(v) :=
(
δΛ,ûn,predn(OrT,n,

Ot̂n)(v)− δΛ,ûn,expn

)2
, n = 1, 2, 3
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� Subject to:

δΛ,û,pred1(OrT,1,
Ot̂1)(v)− δΛ,û,pred2(OrT,2,

Ot̂2)(v) < 0

δΛ,û,pred2(OrT,2,
Ot̂2)(v)− δΛ,û,pred3(OrT,3,

Ot̂3)(v) < 0

v ∈ V

where V is the search space.

Since this is a MOO problem, we are searching for a Pareto frontier rather
than a single optimum. The Pareto frontier is the set of individuals (or solutions)
in which it is not possible to find a single solution that has a better fitness than430

the solutions in the set with respect to all the objective functions. Hence, such
a change will worsen at least one objective.

Different algorithms can be used to find this Pareto frontier, including the
skyline query method [35], the scalarization algorithm [36], simulated annealing
[37], genetic algorithms and direct multisearch (DMS) [31]. These last two are435

available in the Global Optimization Toolbox from Matlab©. Both genetic
algorithms and DMS are derivative-free algorithms, which is important for the
problem in hand since the objetive functions are so complex that we will consider
them as black boxes that take a candidate v and return εi.

In this paper we use the paretosearch function in the Global Optimization440

Toolbox from Matlab© which executes the DMS algorithm to find the Pareto
frontier. DMS is a pattern search algorithm, which means it uses a search/poll
method extending the poll in the directions where constraints-satisfactory non-
dominated solutions were found. The algorithm stops when the hypervolume
delimited by the frontier changed less than a tolerance. For a detailed explana-445

tion and proof of convergence see Custódio et.al. [31] and the algorithm Matlab
page.

Figure 8 shows the flow diagram of the steps followed to determine optimal
values of the unknown variables vopt

9. Case study450

Experiments were carried out on the Exechon XMini with offset wrist shown
in figure 9a. Table 3 shows the dimensions of the manipulator. The experiments
setup is shown in figure 9b

The stiffness is calculated by dividing the known magnitude of a force being
applied at the tool tip over its corresponding displacement. The load is applied455

by rotating a screw while using a piezoelectric sensor to measure the load value.
The applied force is derived and recorded from the acquisition system of the
piezoelectric sensor. For measuring the displacement, high-accuracy eddy cur-
rent sensing system is employed. The eddy current sensor head was fixed right
behind or closely beside the target area to measure the displacement under a460

known force. We employed high accurate eddy current sensor and calibrated
them within an accuracy of 2µm. That means, these sensor could measure the
deformation at micro level. The data is then captured and processed.
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Figure 8: Method followed to determine vopt.

Table 3: Dimensions of the Exechon XMini in mm

name value name value name value
hy 33 hz 520 dS 50
dA1 250 dA2 400 dB1 133
dB2 166 dT 210

FEM was applied to the elements gimbal, gimbal1, gimbal2 and axisg2.
The following compliance constants were obtained in the directions of their465
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Figure 9: a) The Exechon XMini used for the experiments and its fixed coordinate system O.
b) Experiments setup: 1. Eddy current sensor, 2. Fixture of loading system, 3. Tool tip, 4.
Piezoelectric sensor, 5. Loading system (force along yO)

corresponding fixed frame (all quantities in mm/N):

CΘ,gim = diag(×,×, 4.170527354× 10−15)

CΛ,gim = diag(9.52× 10−7, 1.6× 10−5, 2× 10−6)

CΛ,gim1 = diag(6.95× 10−6, 7.098× 10−6, 1.47× 10−6)

CΛ,gim2 = diag(3.324× 10−7, 1.839× 10−9, 7.852× 10−7)

CΛ,axisg2 = diag(2.887× 10−6, 7.434× 10−7, 1.426× 10−7)

For the main body of the serial module the following values were obtained
using FEM:

ccS1
cS1 = 4.269× 10−8mm/N

ccS2
cS2 = 0.94× 10−4mm/N

ccS3
cS3 = 5× 10−7mm/N

ccS4
cS4 = 2.109281437× 10−15Nmm

However, due to the complexity of the mounting of the main body and the
way it is connected to legs 1 and 3, the compliance of the large gimbal (element470

gim) was included in the optimization process as a variable. This also ensures
that the effect of the compliance of the bearings supporting legs 1 and 3 through
the large gimbal is considered in the result. Similarly, the compliance of the the
main body in the serial module was included in the optimization process, due
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to its interaction with the spindle, its mounting, and the different components475

included in the serial module.
Hence, v consists of variables kΛ,y,1, kΛ,y,2, kΛ,z,1, kΛ,z,2, kΘ,x,1, kΘ,x,2,

kΘ,z,1, kΘ,z,2, cact, c
aS1
aS1, caS2

aS2, ccS1
cS1, ccS2

cS2, ccS3
cS3, ccS4

cS4, cΛ,x,gim, cΛ,y,gim, cΛ,z,gim,
and cΘ,z,gim, where diag(cΛ,x,gim, cΛ,y,gim, cΛ,z,gim) = CΛ,gim.

Firstly, four experiments are carried out and are used in the MOO. The480

results of these experiments are shown in table 4. The results show the cor-
responding linear displacement along û, due to a force of magnitude F and
direction t̂

Table 4: Experiments used for the optimization process (Fn = −100N and Ot̂n = Oûn = Ok̂,
n = 1, . . . , 4)

n OrT,n (mm) δΛ,ûn,expn (mm)
1 (0, 260, 1355) -0.8350047575e-2
2 (−138, 260, 1355) -0.9881549403e-2
3 (−340, 260, 1355) -0.1171779778e-1
4 (−408, 260, 1355) -0.1413836810e-1

In order to ease the computational cost of the optimization, the process is
carried out in different stages. First, the FEM results of the gimbal and the main485

body of the serial module are used in order to not consider them as optimization
variables. Only experiments 1, 2 and 4 are considered to enhance the time of
conversion and to use the remaining experiment as a validation case. Hence,
the first stage consists of:

� Variables:

v :=
(
kΛ,y,1, kΛ,y,2, kΛ,z,1, kΛ,z,2, kΘ,x,1, kΘ,x,2, kΘ,z,1, kΘ,z,2, cact, c

aS1
aS1, c

aS2
aS2

)
� Minimize:

ε1(V), ε3(V), ε4(V)

� Subject to:490

|δΛ,û1,pred1| − |δΛ,û3,pred3| < 0

|δΛ,û3,pred3| − |δΛ,û4,pred4| < 0

0 < vj < 1× 10−4

where vj are all the components of v. Subsequently, the obtained values for
the optimization variables are replaced and now the remaining variables of the
original problem become the only optimization variables. Hence, the second
stage is given by:

� Variables:

v :=
(
ccS1
cS1, c

cS2
cS2, c

cS3
cS3, c

cS4
cS4, cΛ,x,gim, cΛ,y,gim, cΛ,z,gim, cΘ,z,gim

)
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� Minimize:
ε1(V), ε3(V), ε4(V)

� Subject to:495

|δΛ,û1,pred1| − |δΛ,û3,pred3| < 0

|δΛ,û3,pred3| − |δΛ,û4,pred4| < 0

0 < vj < 1× 10−4

Finally, the variables modeling the leg element are optimized again, now
considering experiment 2 instead of 3. This allows adjusting the results to a
better fit to all four points. As such, experiment 4 will be used for validation.
However, stage 1 suggested that all kΛ,y,2, kΛ,z,2, kΘ,x,2 and kΘ,z,2 should be
zero. Therefore, we do not consider these variables in the third optimization,500

which is stated as follows:

� Variables:
v :=

(
kΛ,y,1, kΛ,z,1, kΘ,x,1, kΘ,z,1, cact

)
� Minimize:

ε1(V), ε2(V), ε4(V)

� Subject to:

|δΛ,û1,pred1| − |δΛ,û2,pred2| < 0

|δΛ,û2,pred2| − |δΛ,û4,pred4| < 0

0 < vj < 1× 10−4

The resulting optimized values of the whole process are the following:

kΛ,y,1 = 9.375× 10−6N−1 kΛ,y,2 = 0
kΛ,z,1 = 6.77626× 10−21N−1 kΛ,z,2 = 0
kΘ,x,1 = 5× 10−6N−1 kΘ,x,2 = 0
kΘ,z,1 = 5× 10−6N−1 kΘ,z,2 = 0
cact = 4.8688× 10−5mm/N
caS1
aS1 = 1× 10−4rad/Nmm
caS2
aS2 = 1.3552× 10−20rad/Nmm
ccS1
cS1 = 3.3854× 10−5mm/N
ccS2
cS2 = 6.7762× 10−21mm/N
ccS3
cS3 = 5.2083× 10−6mm/N
ccS4
cS4 = 6.09375× 10−5rad/Nmm
cΛ,x,gim = 1× 10−10mm/N
cΛ,y,gim = 7× 10−7mm/N
cΛ,z,gim = 1× 10−9mm/N
cΘ,z,gim = 5× 10−7rad/Nmm
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Additional six experiments were carried out in order to validate the opti-
mized compliance model. The definition and results of these experiments are
shown in Table 5. Table 5 also shows the deformation values predicted by our505

optimized model and the corresponding error against the experimental values.
Each optimization was carried out on a commercial laptop with 16Gb in RAM
and a processor speed of of 2.90GHz, the most longest running time detected
in an optimization was 1:58 minutes. From table 5, it can be seen that results
in the zO-direction are satisfactory, with a maximum error of 10.354%. The510

maximum error in the xO-direction is 19.998%. The largest error were found
in the yO-direction with a maximum of 39.206%. Figure 10 shows the map for
linear stiffness in the zO along working planes parallel to the xOzO plane with
different values of the coordinate yO.

Table 5: Experiments carried out on the Exechon XMini and comparison to predicted values.
For all n = 1, . . . , 10, the displacement corresponds to Fn = −100N and Ot̂n = Ok̂

n OrT,n (mm) ûn δΛ,ûn,expn (mm) δΛ,ûn,predn (mm) Error (%)

1 (0,260,1355) (0,0,1) -0.008350048 -0.008836983611 5.831536068

2 (-138,260,1355) (0,0,1) -0.009881549 -0.008858429 10.353846730

3 (-340,260,1355) (0,0,1) -0.011717798 -0.011669665 0.410765409

4 (-408,260,1355) (0,0,1) -0.014138368 -0.014477298 2.397235293

5 (-68,260,1355) (0,0,1) -0.0081281849 -0.008617324 6.017820104

6 (-276,260,1355) (0,0,1) -0.010702398 -0.010174949 4.928314859

7 (85,260,1450) (1,0,0) -0.090090090 -0.092380377 2.542218887

8 (323,260,1450) (1,0,0) -0.086206897 -0.103380147 19.920970321

9 (0,225,1450) (0,1,0) -0.082644628 -0.115046523 39.206293228

10 (408,226,1450) (0,1,0) -0.105263158 -0.124294783 18.080043731

A word on gravity: Following the method presented in [13], it is not too515

difficult to include the effect of gravity in the model presented in this paper.
However, since we are trying to fit our model to the results of experiments on
the actual machine, the effect of gravity is not required at least at the stage
of optimizing the unknown constants of the model. The total deflection of the
manipulator at its end-effector contains two components: a deflection due to520

gravity and a deflection due to the external force applied at the end-effector.
The deflection due to gravity (acting along the yO-direction in our experiments)
is permanent and independent of the external load. Say the controller is ordered
to position the tip of the end-effector at OrT . Due to gravity, the robot will
present a deflection before starting the experiment, and the real position of525

the tip will be OrT,grav. Once the external force is applied the position of
the tool will change to OrT,F. However, in our experiments, it is only feasible
to measure the difference between OrT,F and OrT,grav, since it is not possible
to measure OrT,grav with the precision required for any analysis. Since the
displacement measured in the experiments is that produced by the external force530

alone, the gravity effect should not be considered in order to learn the unknown
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parameters. Nevertheless, our IKP should be solved for OrT,grav, which we do
not. Therefore, we give a 1-mm compensation due to gravity, namely, we solve
the IKP for OrT − (0, 1, 0)

Figure 10: Maps of linear stiffness in the ZO-direction along the working plane XOZO.

10. Conclusions535

This paper presented the inverse kinematics and a compliance model for
Exechon manipulators with offset wrists. The inverse kinematics was solved
also considering offsets between the axes of the joints connecting the limbs to
the base. The IKP was reduced to two systems of 4 non-linear equations in 4
unknowns. It was shown that when the offsets at the base are equal to zero, a540

single univariable polynomial can be obtained. In practice, however, we prefer
to use the two systems of 4 non-linear equations even if the offsets at the base
do not exist. The reason being that by solving numerically these two systems,
two solutions are secured. This allows more control in the selection of solutions
when automating the process.545

The compliance model was obtained by proposing a general model for the
local compliance of elements that encompass multiple mechanical components
of the robot. The local compliance values of these elements were modeled as
a 2-degree polynomial in the leg length. The unknowns of the model were
then optimized using experimental data. Subsequently, more experiments were550

carried out to validate the model. The resulting model was able to predict the
compliance along the zO-direction with a maximum error of around 10%. In the
xO-direction the worst error was measured as 19%. However, the prediction in
the yO-direction gave a maximum error of 39.2%.
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