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ARTICLE INFO ABSTRACT

Keywords: The stiffness of the Exechon hybrid manipulator is a crucial performance indicator as the
Kinematics manipulator is used as a 5-axis machine tool. Normally, the serial module of the Exechon is
Compliance not included in the kinematic and stiffness analysis. In terms of kinematics, the parallel and

Parallel robots
Coupled kinematics
Stiffness

serial modules are said to be decoupled, i.e. parallel module can be solved for position and the
serial module can be used to compensate the parasitic orientation of the parallel platform. This
is only possible when the serial module is a perfect spherical wrist. However, several models
of Exechon technology have an offset wrist rather than a spherical one. Such an offset makes
it impossible to obtain a kinematic decoupling.

In all publications available in the literature, the Exechon is considered to have a perfect
spherical wrist. Therefore, this paper presents the inverse kinematics and compliance model of
Exechon manipulators with offset wrists. The unknown coefficients in the compliance model
are determined by optimizing the model against experimental data. The resulting predictions
are then compared against more experimental results to validate the model.

1. Introduction

The use of parallel kinematic machines (PKM) or parallel manipulators [1,2] in industrial applications is relatively recent.
Although a plethora of applications for the Delta robot and the Stewart platform [3,4] can be found in industry, most of the PKMs
designs have not been exploited in production lines. An important reason for this is the relatively small workspace of conventional
PKMs as well as their poor dexterity. Aiming to tackle this, the Tricept robot was presented [5,6] as a hybrid robot that combines
a 3-DOF (degrees of freedom) parallel module with a 3-DOF serial module mounted in the parallel platform.

Simple in conception, the parallel module of the Tricept is basically a serial UP' chain which in turn is controlled by 3 actuated
6-DOF legs which do not add any constraints to the end-effector of the UP chain. Hence, the UP leg is fully unactuated making
the control and manufacturing of the robot more complex. Vowing to get rid of this unactuated leg, the Exechon manipulator (see
Fig. 1a) was designed as a new hybrid robot with an overconstrained 3-legged parallel module [7,8]. The Exechon has been already
used in several applications, particularly, the Exechon is used in manufacturing [9] as a 5-axis machine.

Due to its application in manufacturing, the stiffness of the Exechon is important in order to improve the quality of the machined
parts. Stiffness models for the parallel module of the Exechon are available in the literature [10-12] as they are for the Exechon-
like 3-SPR machine developed in Tianjin University [13]. In general, researchers only focus in the parallel module of this hybrid
machine due to its decoupled nature brought by the spherical wrist mounted as serial module. To the knowledge of the authors, all
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Fig. 1. (a) The Exechon XMini, (b) Offset in the wrist of the Exechon XMini.

the published papers that study the Exechon consider a perfectly spherical wrist. The spherical wrist allows the kinematic decoupling
of the modules, using the parallel one for positioning and the serial one for orientating. The decoupling property is exploited when
solving the kinematics of the Exechon [14-17] to obtain closed form solutions.

Nevertheless, among the fairly large number of Exechon models, there are some whose wrist is not spherical, but present an
offset between the two axes of the R joints in the serial module. Fig. 1b shows the 2-DOF serial module of the Exechon XMini,
Fig. 1a, a smaller model built of mainly carbon fiber. The two R joint axes of the wrist of the XMini will be called here Sg, and
Sg,. As shown in Fig. 1b, these axes do not intersect and an offset of 50 mm is present between them.

Although the complexity of obtaining a compliance model of the Exechon is indifferent to the type of wrist, the inverse
kinematics, required to obtain the stiffness in each configuration, is severely affect and no closed form solution is expected for
the problem, in a similar way to what happens with fully serial 6-DOF robots with offset wrists [18]. In its simplest form, without
offset between joint axes, neither at the base, nor at the wrist, the inverse kinematics is not only decoupled, but also has closed
form solution, see [14,16] where such a solution is presented.

In [17], we presented the position analyses of an Exechon robot featuring only the offsets at its base, but not at the wrist. The
perfectly spherical wrist of the manipulator considered in such a publication still allowed the decoupling of position and orientation,
however no closed form solution can be found. In this paper we first obtain the inverse kinematics of an Exechon manipulator, which
not only features an offset writs, but it also presents offsets between the axes of the joints connecting the legs to the base.

Now in this paper, the addition of an offset at the wrist not only will allow the analysis of models like the XMini, whose nominal
dimensions include such an offset, but it can also work as a completely generalized kinematic model in which such offsets can
be seen as manufacturing errors and, thus, we can compute the total error at the end-effector due to such imperfections. Table 1
summarizes these three cases of Exechon manipulator.

In this paper, after the inverse kinematics of this Exechon manipulator with offset wrist is solved, a semi-analytical compliance
model is obtained for the whole robot, considering both serial and parallel modules. See [19] for one of the few examples where
the serial part of a hybrid robot, the Tricept, is considered in the stiffness model as a spherical wrist. See also [20] for an example
of stiffness model of a hybrid (parallel-parallel) robot.

In general, if detailed information of the components that integrate the manipulator is known, an accurate compliance model
can be built. However, it is common that many structural details of the machine are not known, including not only the materials
the parts are made of, but also how the parts are mounted, the stiffness of the actuators after a complex transmission system is
included, etc. Hence, in this paper we employ a different framework that allows modeling the compliance with less information of
how the robot is built.

We first sketch a model based in the overall Jacobian matrix [13,19,21-25]. Other techniques for stiffness computation in parallel
manipulators can be found in [26-30]. We then propose a quadratic in terms of the legs length to model the local compliance of a
group of components modeled as a single element in the analysis. With this assumptions, the model can be written in terms of all the
unknown quantities. Then, using experimental data, the model is optimized applying direct multi-search (DMS) [31] method. After
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Table 1
Cases of offsets in the Exechon manipulator.

Wrist Spherical Spherical Offset
Base offsets X v v
Decoupling v v X
Closed form IK v X X
IK solved in [14,16] [17] None

the optimization, the unknown values in the model are determined and the model is able predict the compliance in any direction
and in any configuration.

The rest of the paper is organized as follows: We first introduce the notation used throughout the paper in Section 2. Section 3
presents the geometry of the Exechon manipulator with offset wrist. Section 4 solves the coupled inverse kinematics of the robot.
In Section 5, the system of constraints and that of actuations are obtained. The compliance equations are reminded in Section 6. In
Section 7, the compliances of the different elements of the manipulator are computed in terms of several unknowns. Section 8 shows
how these unknowns are obtained using an optimization process. In Section 9 these results are applied to a case study considering
the Exechon XMini. Finally, in Section 10, some conclusions are drawn.

2. Notation

The notation used through the paper is now introduced.

The symbol “:=" is used for definition of variables. Three-dimensional vectors are written in lowercase bold letters, such as
v € R3. S € R® = se(3) is used for screw coordinate vectors. In order to avoid the introduction of more symbols, we use S for both
the screw coordinates of an axis and the geometric element itself. Unit vectors are hatted, & € S. Dot product is represented by
central dot -, while matrix multiplication is denoted by juxtaposition, unless otherwise specified — see Section Section 7.

Coordinate systems are named with non-italic capital letters, while points are presented in italic capital letters. For example, in
Fig. 2 frame O has origin at point O. Let A and B be two coordinate systems with origins at A and B, respectively, and let P and
Q be two points. Then the notation from [32] is used to manage coordinate systems. Namely, “rp /o 1s the vector from point O to
point P in coordinate system A. While Arp :=Arp /4 is the position vector of point P in frame A. 2R € SO (3) is the rotation matrix
that relates the orientation of frame B to that of frame A, such that *r, = QRBrP + Arp. The canonical triad defining frame A but
expressed in frame B is denoted by {Bi,,8j,.Bk,}

d(P,Q) € R is the Euclidean distance between points P and Q. Rot(#,¥) € SO(3) is the rotation matrix representing a rotation
of § radians about an axis that passes through the origin and that is parallel to ¥. Adj(y) € R returns the adjoint representation
of Euclidean displacement y € SE(3). Null() represents the null space of a matrix, while ()! is its transpose. Finally, aug() and diag()
represent, respectively, the augmented matrix of an ordered set of column vectors, and the diagonal matrix with diagonal elements
equal to an ordered set of scalars.

Table 2 gives a quick reference to important symbols used in the thesis.

3. Geometry of the Exechon manipulator

Fig. 2 shows a representation of an Exechon hybrid robot. The robot integrates a 3-DOF parallel module and a 2-DOF serial
module. The parallel module consists of a moving platform and a fixed platform connected by three legs. Legs 1 and 3 are RRPR
serial chains, while leg 2 is an RRRPR kinematic chain. From Fig. 2, if i = 1,3, the following geometric constraints hold:

SISy llf 7
S;Lhy, Sl
851185, 85,1853
S5 Il So4s S241825

S,5 and S;, intersect perpendicularly
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Table 2

Quick reference to some specific symbols.

Symbol Definition

S Screw axis of the ij joint

t Unit vector parallel to the tool axis

fy; Unit vector perpendicular to plane 717, see Fig. 2

W W, Screw axes of wrench of constraint cij and wrench of
actuations ai

Jpas Ipes Ip Jacobian matrices of actuations, constraints and
overall for the parallel module, respectively

Jsar Iser Is Jacobian matrices of actuations, constraints and
overall for the serial module, respectively

Cp, Cyg Compliance matrices for the parallel and serial
module, respectively

C,, Cg Local compliance matrices for the parallel and serial
module, respectively

Cher Cop Linear and torsional compliance matrices of element e

Fig. 2. Geometry of an Exechon manipulator with offset wrist.

Points A;,, A,, and A3, are the vertices of an isosceles triangle with base 2d,; := d(4;,, A3,) and height d, := d(4,,.S)).
Points B, B, and Bj also form an isosceles triangle with base 2d; := d(B,, B;) and height dp, := d(B,, B, B,).

For i = 1,3, points A,,, A;,, and B, are coplanar, we call the plane that these point lie on 7, while plane A is the one containing
B,, B, and B;. The joint variables of the actuated joints of each leg are measured as follows: ¢;; := d(A;;, B;), i = 1,3, and
4y4 = d(Ayy, By).

The following offsets are considered between the joints connecting the legs to the base:

E; :=d(851.85), E =85 Tp /4, -
E3 1= d(Sy,S8y3) = d(Ag;, Ag.)s
E4 :=d(811,512), Es 1=d(S31,83,)
The serial module is mounted on the moving platform. This module is a serial 2R chain with its two axes Sg; and Sg, being
skew with a normal distance between them equal to dg. These two revolute joints are used to orientate the spindle axis, which is

parallel to {. Point T represents the tool tip. Point S’ is the intersection of Sg, and the common perpendicular between S, and Sg,.
Therefore, the spindle axis is defined as Z; := Z(i,5"). S’ is located a distance h, :=d(S, A) from plane A, while h, :=d(Sg, IT).
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Fig. 3. Lateral views of the Exechon robot showing internal variables.

Axis Sy, is perpendicular to A and the two axes constituting the serial module are perpendicular to each other. We define the tool
length as dy :=d(T, S’).

In the nominal dimensions of all commercial Exechon robots, E; =0, Vi = 1, ..., 5. In all the analyses that can be found in the
literature, dg is equal to 0, which allows a kinematic decoupling. However, as shown in Fig. 1, dg = 50mm in the Exechon XMini.

We define three coordinate systems, O, E and F. Coordinate system O, {xq, g, 2o}, has origin at O and is attached to the fixed
platform and is used as a global, fixed frame. xy and yq are coaxial with S;; and OA,,, respectively. Frame E, {xg, yg, z} is attached
to the moving platform and has origin at point E, the middle point of segment B, B;. x; and yg are coaxial with EB, and EB,,
respectively. Note that k; || ii;. Finally, coordinate system F has origin at O and is parallel to frame E.

4. Inverse kinematics

The following information is known in the inverse kinematic problem (IKP): ©ry, i.e. the position of the tip of the tool, point T,
with respect to the fixed coordinate system, and Ot := (¢,,1,,7;) € S?, a unit vector that is parallel to the tool. The goal of the IKP
is to determine the screw coordinates of all joint axes in the robot with respect to the fixed coordinate system: °S,;, ©Ss;, ©S,; and
OS¢ i=1,...,4,j=1,...,5 k=1,2,3.

For this analysis, it is important to define the way the following joint variables are measured:

« gy, from jg to fiy; about S;.

« ¢y, from kg to $,, about S,,.

* g, from g to 83 X 8,, about S,,.
* gg, from iy to 8, about Sg;.

* qg, from kg to £ about Sg,.

We also define the following internal variables (see Fig. 3):

« I,. The (shortest) distance between point O and the xg axis, I, = d(O, B;, B;) = rj /0 kg
* I3. The length of the projection of ry /o on the xg axis, I3 =rg /o Ag.

* I,. The length of the projection of rp, 4, onto the yozq plane.

* 0. The angle measured from x, to xg about yg.

Using these variables it can be seen that 9R = R = Rot(qy. Oio)Rot (8, %j). For the analysis we also use point .S’, instead of T.
The position of .S” is known from the input information of the IKP as (xgr, ygr, zg) 1= Orgi/o = Orp — d Ot
The following constraints are considered in order to solve the IKP:
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1. S,; Lig. Using revolute joints 21 and 22 to orientate S5, it follows 98,3 = Rot(gy;, ®ig)Rot(gas, Okg)OJo. It is also known that
Ok = gROiO. This condition is thus expressed in terms of 0, q;,, ¢;; and ¢,, as:

08); - %lg =0 D)

2. The coordinates of S’ in frame F are easily obtained as (—/3 + dg cos(qg; — 7/2), h,+dg sin(qg; — 7/2), I; + h,). Therefore, this
condition can be expressed in terms of 6, q,;, /|, /5 and gg, by:

—l3+dgcos(qgs) —7/2)
oR%rg 0 =| h,+dgsin(gs —7/2) (2
Iy +h,

3. The yq coordinate of point B, can be recognized as d 4, + (I, + E;) cos(qy,) — E, sin g,. It is also known that FrB2 = (=l3,dg,. 1),
therefore, this condition can be expressed in terms of ¢, 6, ¢,;, /3 and [, by:

gRF"Bz %o = dy + Iy + E}) cos gy — E; singy 3

4. The z, coordinate of point B, can be recognized as (I, + E;)sin(g,;) + E, cos g,;. Therefore, this condition can be expressed
in terms of a, 60, ¢, [ and I, by:

PRrg, - ko = (I + Ey)singy; + E; cos gy 4

5. Points E and A,, lie on a plane that is perpendicular to the xg axis. It is known that Fry = (-15,0,1,), while point A4,, lies on
the toroid:

Or,,, = %0 +Rot(gy. %) [(0, E,. E;) — EsRot(4y, %kl
Therefore, this condition can be expressed in terms of ¢;;, 6 and /5 by:
ERry, —Frp)-Fig =0 (5)

6. Zr intersects Sg,. It can be seen that Z = Z(f, ") and Sg, = Z(kg, Pg,), where FrPn := (=I5, hy, 0). Therefore, this condition
can be expressed in terms of 6, ¢;; and /3 as:

<0r5, ~ Oy, ) : (Of x ORE) =0 ©)

Egs. (1) to (6) represent a system of 8 scalar equations in 8 unknowns: q,;, 451, 42, 4s1,> 9, I}, [, and I5. We proceed now to
reduce this system. The first component of vector Eq. (2) can be easily solved for /; to obtain:

Iy =cosB(zg cosqy; — ygr singyy) + xgr sinf — h, )
The third component of vector Eq. (2) can be solved for /5 to obtain:
I3 =sinB(zg cosqy) — ygr singy;) — xgr cosf + dg sinqgg 8)

Eq. (4) can be solved for /, to obtain:

I = cos qy (I3sinf + 1 cos @) + dp, sinqy| — E, cos gy

2 - 9)
sing,;
The second component of Eq. (2) can be solved for gg, to obtain:
Zgr Singy + ygr cosqy — h
as1 =7riarccos< S & dS ! y) (10)
s

Substitution of these solutions in Egs. (1), (3), (5) and (6) yields to two systems of 4 equations in the unknowns q,,, ¢,;, ¢, and
6. Two systems are obtained due to the double solution for gy, in Eq. (10). The equations have no closed-form solution and have
to be solved using numerical methods. Two solutions for the IKP are secured considering both systems of equations. The solutions
can be distinguished by the “elbow up” and “elbow down” configurations of the serial module, although the configuration of the
parallel differs too between solutions.

Once ¢y, 41, 92> and 6 is obtained, backwards substitution allows to obtain the other four variables, 0, /5, /, and ¢g,. Frames E
and F are now known as they only depend on ¢;; and 6. The actuation variables and coordinates of all joint screws can be obtained
as expressions in terms of these five variables, and therefore, the IKP is solved.

Joint variables ¢;; € R, (i, ) € {(1,3),(2,4),(3,3)} are given by g;; := It /4,1 TO find the position of points B;, we first locate E
w.r.t. frame O using °rg = 9RFr; = OR(~Ig,0, k). Then,

Org = rg + OR(dg,,0,0)
Org, = Org + OR(0, dg,, 0)

Orgs = Org + JR(=dg,,0,0) (11)
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To find g5, € T, we first consider the direction of S,, %85, = JRRot(gs,, Ekg)Fig. Then:
qs, = arctan2 (sgn ((Oi(E x 9843) - Oész) |Oi(E X O§S3) , Ok - O§S3> (12)

It is important to be aware that the system of equations presented here involves the location of four points E, B,, A,, and .S’.
While the first three are permanently coplanar, S’ normally lies outside the plane that contains them, i.e. ypzg. This makes the
system of equation solvable as all of its equations are independent to each other. However, if all four points become coplanar, then
the system of equations cannot be solved. Note that such a situation happens whenever gg, € {0,7} = Sg, || ig. However, if this is
the case, then we are able to compute E in O with the input information of the IKP as Orj = ©rg — (0,dg + hy, h,). Observe that
it is the coordinate xg of Fry /s which normally does not allows us to find E with the input information, but in this case such a
coordinate vanishes and E is in hand. Since this is a point that is fixed to the moving platform, knowing °r allows us to decouple
the robot and solve the IKP following the procedure presented in [17] if E; # 0, or [14,16] if E; =0, Vi = 1,2,3.

Although, in general, when solving systems of non-linear equations using software it is necessary to provide either an initial
guess or bounds for the variables, the process can be automated by using as initial guess the solution for the IKP of the robot with
spherical wrist and no offsets, since the latter has a closed-form solution that is also unique within the joint limits. This initial guess
is not far away from the solution of our non-linear system of equations as the offsets (E; and dg) will always be small compared
to the dimensions of the robot. The solution for the IKP of the Exechon robot with spherical wrist and no offsets can be found
in [14,16].

4.1. IKP for the Exechon robot with offset wrist and nominal dimensions

If E;=0fori=1,...,5, but dg # 0, the IKP still cannot be decoupled, but the solution can be reduced to a single polynomial
equation.

The substitution E; =0, Vi = 1,..., 5 considerably simplifies Eq. (5) since point A,, is now fixed, no longer lying on a toroid, so
r4,, =(0,d4,,0). Such a substitution does not affect Egs. (2) and (6), which, together with our new simplified Eq. (5), represent a
system of equation of 5 equations in 5 unknowns: 6, ¢,;, /|, /3 and gg;.

Eq. (5) and the third component of Eq. (2) are linear on /5 and /,, respectively, and can be solved for these variables.
The first and second components of Eq. (2) can be combined to eliminate gy, obtaining the following equation:

o

(xgrcos@ + ygrsinasing — zg cosasinf + [ )2+(y yCOSa + Zgr sina — h )2=d2 13)
K K K 3 K N y S

The expressions for /; and /; obtained from Eq. (5) and the third component of Eq. (2), respectively, are then replaced in Egs. (6)
and (13). After this substitution, Eqs. (6) and (13) become a system of two equations in ¢;; and 6. Eq. (6) can be solved for 6 to
obtain:

(xgrt3 — zgrty) sina + (xgrty — ygrty) cosa + hyty
6 = arctan

14

(dgp(t3sina + 1y cosa) — hybp)sina + hytycosa —t3yg + 1z g a9

Substituting Eq. (14) into Eq. (13), a single equation in q; is obtained. By using the tangent half-angle substitution, such

expression can be reduced to a polynomial of degree 16, this results coincides with the expected polynomial for manipulators
with offset wrists [18].

5. Systems of constraints and actuations

In this section, the systems of constraints and actuations of the Exechon robot with offset wrist and offsets in the joints connecting
the legs to the fixed platform are determined. Since for the stiffness analysis the serial module and the parallel module are considered
as two elements connected serially, the systems of constraints and actuations of each module are obtained separately. The presence
of offsets E, and Es in legs 1 and 3 does not have any significant effect on the systems of constraints and actuations of the ideal
model. These can be found in the literature [12]. However, for the sake of self-containment, such systems are determined here as
well.

Let the coordinates of any (unit) screw be given by S := (§;r x § + 18) € se(3) @ R%, § € S?, r € R?, h € R. Then a twist is given
by V := wS = (@;v) and a wrench by W := (f;m). We invert the components of a screw using S := (r x § + h§; ).

If §; := span(s;;, ..-,S;,), then the system of constraints of leg i is given by 7, := {W,; : kl(W,;,S) = 0, VS € S}, where
kI(S,,S,) = (5))'S, is the Klein form in se(3). The constraint system of the moving platform is then given by the sum of the constraint
systems of each leg.

A basis for the constraints system of each leg is shown in Fig. 4. For legs i = 1,3 it follows %, := span(W,;;, W,;,), where W ;,
is a pure moment with direction perpendicular to §;; and S,,, while W, is a pure force that is parallel to $;, and intersects S;;:

(0; Ofo X 03,:) N

OWciZ = (OjE; OrAia X 0jE) ’ (15)

ow

cil

The offsets between joint axes in leg 2 do not the determination of °W,,,, the single wrench in the basis of %5, by simple
geometric means. As shown in [17], °W,,, can be found by computation of a basis for Null(J,(q))") = span(°W,,,), where
J, := aug(®S,, ..., 98S,5). Clearly, dim(Null((J,(q))")) = 1. This null space can be computed directly using the function nullspace
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Fig. 4. System of constraints and system of actuations.

of Maple®©. In general, W ,, is neither a pure force, nor a pure moment. However, in the case of E; = E, = E; = 0, the wrench
degenerates into a pure force °W,, = ( %ig; °r,, x %ig
The twist of the moving platform with respect to the fixed one, V,,, € se(3), is given by

4 5 4
Vap 1= D d1;S1; = ) oS0, = ) ds;Sy;
j=1 Jj=1 Jj=1

Without loss of generality, for leg 1, for example, it follows:

4 4 t
k1<241js1,, wdk>=0 > <Zq'ljslj> W =0k=1,2 (16)
j=1

j=1
Considering Eq. (16) for all legs, the expression Jp.Vy,, = 0 can be written, where Jp, € R0 is the Jacobian of constraints and
is given by:
~ = ~ ~ ~ t
Jpe 1= aug (We1, Wepn, W, Wez . Wsy )

Now consider the wrenches of actuation W, i = 1,2,3, for which kI(W,;,S,;) = 0 if joint ij is not actuated and kI(W,;,S;;) # 0
if joint ij is the actuated joint of leg i. Without loss of generality, for leg 1 it follows:

4
kl (Z 41551 Wal> = q13k1(S 13, W)

j=1
= Vi, War = d13K1813, W) a7)

Considering Eq. (17) for all legs, the expression Jp, Vi, = (413,424, 433) can be written, where Jp, € R3*6 is the Jacobian of
actuations and is given by:

JPa = aug( Wul , WaZ , Wa3 )t
KI(S13, Wy)  kI(Sy4, Wyp)  KI(S33, Wo3)
where,
0 < OrBi/Aib .0 0 ) .
Wa=\ o Ta, X Ta, | i=13 (18)
1905, /4,

For leg 2, there is again no direct geometric method to determine °W,,. However, let J; := aug(®S,;,9S,95,3,98,5), then we
note that °W,, € Null(J})"), but oW, ¢ Null(J}). It is clear that Null(J}) < Null((J})"). Therefore, a simple way to find OwW,, is to
obtain bases for both null spaces. Since dim(Null((JZ)‘)) = 2, one can pick any of the two vectors in its basis and verify that it is not

8
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parallel to ©W,,. If the wrenches are not parallel, then such a vector can be taken as °W,,. In the case of E; = E, = E; =0, °W_,
is reduced to a pure force along the actuator axis and can be computed making i = 2 in Eq. (18).
A similar analysis can be done for the 2-DOF serial module to obtain the following Jacobians of constraints and actuations:

Jp, = aug (WCSI’WCSZ’WCS3’WCS4)1 ;

Jpa = aug (Wos, Wysa)' (19)
where,

W51 = (Oi(E§Ors/ XORE>’

oW, = (0§52§OFPS, XO§32)7

W3 = (Oi(E X %852; Orgr x (Okg X0552)> )

OW,s, = (0:%ke x %8s, )

0Wa51 = (O;ORE>a

W52 = (0;%s;) (20)

where O35, = Rot(qg;, Fkg)Fip. The overall Jacobian matrices [22] for the parallel and serial modules are given, respectively, by:

Ira [ s
O A Rt D E

6. Compliance equation for the hybrid manipulator case

Let T be a coordinate system that is parallel to frame O but has origin at T. We now refer the coordinates of every wrench in Jp,,
Jpa> Js. and Jg, to frame T by means of TW = Adj(idso). °rr)°W. Once all Jacobians are expressed in frame T, the compliance
matrix of the whole system can be expressed as the sum of the compliance matrix of the parallel module and the compliance matrix
of the serial module.

The proof of the stiffness equations for both the parallel and the serial cases is included in several publications with equivalent
results (see [12,13,19]). Only the resulting expressions will be included in this article.

Let TW,,, be the external wrench applied at T and let TAX := (46; Ar;) be the deformation at T. The applied wrench and the
corresponding deformation are then related by:

TAX = (CP + CS) Twext (21)

where Cp and Cy are the compliance matrices of the parallel and the serial module, respectively, and are given by:
— -1 — -1
Cpi= (1@ 10p) . Cs o= (Co71s) (22)

where the entries of Cp and Cg, are the compliances in the directions of actuations and constraints, such that, without loss of
generality, for the parallel module Aqp = Cpzp. Where Aqp := (A4, Adyrs Adgs Ader1s Ado1ny Aders Adesy> Adesn) is the vector of
displacements along the actuations and constraints directions, and 7p := (7,1, Tz, T43, Te11> Te12+ Teas Te31» Tep) are the forces/moments
applied in the directions of constraints and actuations. The following notation is used for the entries of Ep and ES: For example, the
diagonal element in the 4th row and 4th column represents the compliance in the direction of constraint g,;, due to the application
of a moment 7,; in the same direction and it is referred to as c¢!!. Outside the diagonal, the element in the 4th row and 5th column

cll”

is the compliance in the direction of g.;; due to the application of a force 7., and it is referred to as czlllz It can be seen that this
last example is a coupled compliance and, due to the linear nature of the deformations in the model, cccg = ccclll2

As shown in Eq. (6), the resulting compliance matrix of two elements connected serially is the sum of their respective
compliance matrices. This is why in this paper we work with compliance matrices instead of stiffness, which would involve the
calculation of inverses in Eq. (6), in order to obtain the obtained displacement. Hence, this is a common practice when dealing with

serially-connected modules, see [13,33].
7. Elements in EP and Es

In this section, the entries of Cp and Cg are discussed. We construct such matrices the following way:
C. — 4 al a2 a3 .cll c12 2 .c31 32
Cp = diag (cg). g, 3. €610 CE1z0 €62 €31 €3 )
C _ 1 aS1 .aS2 .cS1 .cS2 .¢S3 .cS4
Cs = diag (cjg;, 75y g1 Cosar Cosyo Cosa)
Since these entries depend on the specifications of each robot, the case of the Exechon XMini is treated here. In the nominal
dimensions of the XMini model, E; = 0, Vi = 1,...,5, however, the serial module is an offset wrist, as shown in Fig. 1, so that
dg =50 mm # 0. The following analysis can be applied to any model with these offsets characteristics.
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gimbal |

leg 1

Fig. 5. Components and coordinate systems in leg 1.

For this analysis, several coordinate systems with coincident origins are established and compliances are expressed in different
frames by means of a transformation of coordinate systems [13,19,34]. For example, if the linear compliance matrix of an element
is known in frame A and we would like to know the linear compliance along a vector @, which is known in frame B, then such a
compliance is given by c, 4 = (B -ER -Cy ~§R -B@, where C, is the linear compliance matrix in frame A. We will use A and @
to distinguish between linear and torsional compliances. Also note that only in this section, we will be using (-) to represent matrix
multiplication instead of dot product, this is due to the amount of subscripts and superscripts for which juxtaposition may lead to
confusion.

7.1. Legs 1 and 3

Since E, = E5 = 0, we define A; = A,, = A;;,, for i = 1,3. Then we establish a coordinate system i with origin at 4;, z; axis in the
direction of rp /4. and y; axis in the direction of §;, = J as shown in Fig. 5. Frame i is fixed to the slider. We also define coordinate
system G, which shares the same origin and y axis as i but, its xg axis is in the direction of x,. Frame G is fixed to the gimbal. An
abuse of notation will be committed here as we will call simply G this last frame for both legs, although in each leg frame G has a
different origin.

For this model, legs i = 1,3 are disassembled in two parts shown in Fig. 5, we call this elements “gimbal” and “limb i”. Element
limb i encompasses the rail, slider, bearings, screw lead and other components. Note that we use “leg” to refer to the entire kinematic
chain from base to moving platform, while “limb” denotes the element just defined.

From the constraints and actuations system shown in Fig. 5, the compliance of the gimbal in all the directions of the wrenches
in these two systems can be obtained by simple projection of the fixed-value linear and torsional compliance matrices in frame G,
C gim and Cg g, respectively. Such matrices are determined using FEM. It follows that:

ai iR, . .GR.ij.
catghn = (kp) GR (:A»§ﬂ1 i Rk

cil _ (Gi. \t Gj,
Ceilgim — (Ckg) - Iays - C@,gim ) ENCRIN ¢
ci2 _ (G% A\t G3
Ceiz.gim = (Cig) Iaxs 'CA,gim ) ENCR I¢'

The entries of the compliance matrices of element limb i in frame i are modeled considering a quadratic and a linear term in
the leg length, ¢;5:

2 2 2
Cptimi = diag (z kA,x,qugs Z k/\,y,qug’ Z kA,z,jq,{3>

j=1 Jj=1 Jj=1

10
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2 2 2
C@ limi — dlag <Z k@ xlq,g’ Z k@ y}q,y Z k@Z] ) (23)

Jj=1 Jj=1

where k, ,;, kg,; €R, a =x,y,z and j = 1,2, are the coefficients of the polynomials. Note that these coefficients are not directly
related to any geometrical or mechanical property of the element, they are rather a means to model such properties.
It follows that:

ai _ i Nt it
Coitimi = (KD - Iaya - Cppimi - s 'k

1 G G i GY
ciiim = Ckg)' PR Cojim - R - kg
§,’§hm, = (30" Ly - Coiimi - Lz - i (24)

The compliance of each element and the compliance of the actuator, c,., contribute to the compliance of the entire leg, hence:

ai _ ai

Cai = Cailimi ai glm + Cact
cil _ ctl cil

Ci1 = ul limi Ccil,gim

2 = ey i

ci2 ci2,limi ci2,gim

Coupled compliance ¢/} = 05:12 is ignored.
The components whose compliance is computed using FEM are individually modeled based on its geometry and materials. Then

a known force or torque is applied at the joint or connection assuming the force is derived from other part.

7.2. Legs 2

For this model, leg 2 is disassembled in the parts shown in Fig. 6: “gimbal 17, “gimbal 2”, “axis 2” and an element “limb 2”
encompassing the rail, slider, bearings, screw lead and other components.

Since E| = E, = E; =0, we define A, = A,, = A,, = A,,.. Then we establish a coordinate system 2 with origin at 4,, z, axis in
the direction of rp, 4, and y, axis in the direction of §,5 = i as shown in Fig. 6. Frame 2 is attached to the slider.

A coordinate system is fixed to each of the two gimbals of the spherical joint of leg 2. Frame G1 is attached to gimbal 1, and
G2 to elements gimbal 2 and axis 2. These two frames have the same origin, point A, and are defined by:

Rot( — —,01 )
421~ 55 lo
Rot (— — s G1j, )
5 I Jai
Note that, since E; = E, = E; = 0, the bases for the systems of constraints and actuations are reduced to the two pure forces
shown in Fig. 6. Hence, only linear compliance matrices are required. The compliance of element gimbal 1 in all the directions of
the wrenches in these two systems can be obtained by simple projection of the fixed-value linear compliance matrix in frame G1,

C 4 gim1- Similarly, for elements gimbal 2 and axis 2, the required compliances can be obtained by projecting the fixed-value linear
compliance matrix in frame G2, C, 4y and C, .., respectively. These three matrices are determined using FEM. It follows that:

OR -
R

Glp -
aR:

nggiml OW) QR Cpgimi - ' R- W
Z%glml - (OW Z)t : OlR : CA,giml . SIR . Owﬂ
CZ%,gimZ (i)' Lys - Chgim2 - 82 s - g,
Cz;gimz = (Owcz)t . 82R . CA,gimz . SZR . OVAVcZ
e = Pig) Lia - Chan o A
cHao = OWe) 1 GRCp0 - RNy

The same model from Eq. (23) is used for the compliance matrices of the leg element limb 2 in frame 2. Hence, C,,, and
Co.im2 are obtained by substituting g;3 by ¢y, in Eq. (23). It follows that:

2 23 2%
e ime = Ck)' Iag - Cyregr - Iz - kg
cum = Ci)' L - Caegr " By 1o (25)

The compliance of each element and the compliance of the actuator, c,., contribute to the compliance of the entire leg, hence:

a2 __ a2

a2 = a2 lim2 + ca2 ,giml + Ca2 ,gim2 + Ca2 ax2 + Cact
c2 _
€ = c2 lim2 Ccz giml T Ccz gim2 T +CL2 ax2

11
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Fig. 6. Components and coordinate systems in leg 2.

7.3. Serial module

For this model, only the main body of the serial module is considered as compliant since the link connecting actuator S2 and the
spindle is mainly the body of the motor of the tool. From Fig. 7, it can be seen that all the wrenches of constraints and actuations
have constant directions with respect to the main body of the serial model, link S1 — .S2. Hence, all the compliances for the serial
part are constant and are assumed to be decoupled. The values of constraint compliances ¢S, i = 1,...,4, are obtained from FEA.

cSi?
aS1

oo, and c“g; correspond to the compliance of actuators of the serial module and they include not only the compliance of the motors,

but also that of its transmission system.
8. Finding unknown coefficients from experimental data

The model presented in Section 7 is in terms of several constants that can be obtained from FEM in the case of elements whose
compliance can be obtained by projecting the fixed compliance matrix in a local frame. However, the compliance of leg elements
el, e2 and e3, modeled in the form of Eq. (23), is in terms of the unknown polynomial coefficients k rajkoa; ER, a=xy2
and j = 0,1,2. In addition, the compliance values of all the actuators, namely c,, c;’g: and cfl’sf;, are also unknown. However, an
inspection of the systems of constraint and actuation in Figs. 5 and 6 shows that the x component of C, j;,; and the y component
of C, jiy,; are never required when projecting the matrices. Hence, k, , ; and kg , ; are not needed.

The unknown values can be obtained using experimental data to optimize the model so that the values of the unknowns yield
the smallest error between the measured and the predicted values of stiffness of the whole robot.

Consider N experiments in which the robot is in configurations defined by °r;, and ©t,, n = 1,..., N. In each experiment, a
force F, is applied at T in the direction i, and the displacement § Aty expn of T in the same direction is measured.

12
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main body

Fig. 7. Components in the serial module.

Since the inverse kinematics is known, given the configuration of the robot in each experiment, a predicted value of such
displacement can be computed in terms of v after obtaining the displacement vector T4X in frame T. Thus, the corresponding
prediction is given by é A’ﬁn’pmdn(orT’n, Ot,)(¥) := TAXOrp,, 0%,)(v)- (0; 1,). It follows that for every experiment we wish to minimize
the error:

. 2
€,(V) 1= (6A,ﬁ,,,predn(orT,n! Otn)(v) - 6A,ﬁ,,.expn) sn=1..,N (26)

The problem thus becomes a multiobjective optimization (MOO) in which the observed trend can be imposed by adding
constraints into our problem. For example, consider experiments 1, 2 and 3 were carried out along direction @ and show a trend
such that 6,4, exp1 < S 40,.exp2 < O4,5.0xp3> then the minimization problem in hand would be stated as:

* Minimize:
o) 03 2
€,(v) 1= (6A,ﬁ,,,predn( T ns t,)(v) — 5A,ﬁ,,,expn) ,n=123
* Subject to:

5A,ﬁ,pred1(orr,1»0f1)(") - 5A,ﬁ,pred2(OrT,2’ %t)(v) <0
5A,ﬁ,pred2(OrT,2’ o)) - 5A,ﬁ,pred3(0rr,3» %t)(v) <0

vev
where V is the search space.

Since this is a MOO problem, we are searching for a Pareto frontier rather than a single optimum. The Pareto frontier is the set
of individuals (or solutions) in which it is not possible to find a single solution that has a better fitness than the solutions in the set
with respect to all the objective functions. Hence, such a change will worsen at least one objective.

Different algorithms can be used to find this Pareto frontier, including the skyline query method [35], the scalarization
algorithm [36], simulated annealing [37], genetic algorithms and direct multisearch (DMS) [31]. These last two are available in the
Global Optimization Toolbox from Matlab©. Both genetic algorithms and DMS are derivative-free algorithms, which is important
for the problem in hand since the objective functions are so complex that we will consider them as black boxes that take a candidate
v and return ;.

In this paper we use the paretosearch function in the Global Optimization Toolbox from Matlab© which executes the DMS
algorithm to find the Pareto frontier. DMS is a pattern search algorithm, which means it uses a search/poll method extending the poll
in the directions where constraints-satisfactory non-dominated solutions were found. The algorithm stops when the hypervolume
delimited by the frontier changed less than a tolerance. For a detailed explanation and proof of convergence see Custddio et al. [31]
and the algorithm Matlab page.

Fig. 8 shows the flow diagram of the steps followed to determine optimal values of the unknown variables v,

9. Case study

Experiments were carried out on the Exechon XMini with offset wrist shown in Fig. 9a. Table 3 shows the dimensions of the
manipulator. The experiments setup is shown in Fig. 9b

The stiffness is calculated by dividing the known magnitude of a force being applied at the tool tip over its corresponding
displacement. A known force is applied by rotating a screw while using a force sensor to measure the real-time force value. The
applied force is derived and recorded from the acquisition system of the piezoelectric sensor. For measuring the displacement,

13
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Orrn, Oty (n=1,....N)
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el J0y,expn
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selection Vopt

Fig. 8. Method followed to determine v,,.

Fig. 9. (a) The Exechon XMini used for the experiments and its fixed coordinate system O. (b) Experiments setup: 1. Eddy current sensor, 2. Fixture of loading
system, 3. Tool tip, 4. Force sensor, 5. Loading system (force along yg).

Table 3

Dimensions of the Exechon XMini in mm.
Name Value Name Value Name Value
h, 33 h, 520 dg 50
dy, 250 dy, 400 dg, 133
dg, 166 dy 210

high-accuracy eddy current sensing system is employed. The eddy current sensor head was fixed right behind or closely beside the
target area to measure the displacement under a known force. We employed high accurate eddy current sensor and calibrated them
within an accuracy of 2 pm. That means, these sensor could measure the deformation at micro level. The data is then captured and

processed.

14
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Table 4
Experiments used for the optimization process (F, = —100 N and
0t, =%, =%, n=1,...,4)

n Ory,, (mm) S 44, expn (TNIM)

1 (0,260, 1355) —0.8350047575e—2

2 (—138,260, 1355) —0.9881549403e—2

3 (=340, 260, 1355) —0.1171779778e—-1

4 (—408, 260, 1355) —0.1413836810e-1

FEM was applied to the elements gimbal, gimball, gimbal2 and axisg2. The following compliance constants were obtained in
the directions of their corresponding fixed frame (all quantities in mm/N):

Cogim = diag(x, x,4.170527354 x 1071%)
Chgim = diag(9.52x 1077, 1.6 x 10,2 x 107°)
Cpgimi = diag(6.95 x 107°,7.098 x 107, 1.47 x 107°)
Cpgim2 = diag(3.324x 1077,1.839 x 10™,7.852 x 1077)
Chanisr = diag(2.887 x 1076,7.434 x 1077, 1.426 x 107)
For the main body of the serial module the following values were obtained using FEM:
¢3! = 4.269 % 107 mm/N

52 _ -4
coey = 0.94x 107" mm/N

S3 -7
csy = 5% 107" mm/N

54 = 2.109281437 x 1075 Nmm

However, due to the complexity of the mounting of the main body and the way it is connected to legs 1 and 3, the compliance
of the large gimbal (element gim) was included in the optimization process as a variable. This also ensures that the effect of the
compliance of the bearings supporting legs 1 and 3 through the large gimbal is considered in the result. Similarly, the compliance of
the main body in the serial module was included in the optimization process, due to its interaction with the spindle, its mounting,
and the different components included in the serial module.

Hence, v consists of variables k.1, k2, kaz 1> kazos koxi> kox2s Kozis Koz Cacts €515 Caas Conl, o3, €53, €O8, Cp s gims
cA,y,gim’ c/Lz,gim’ and c@,z,gim, where diag(CA,x,gim’ CA,y,gim’ CA,z,gim) = CA,gim'

Firstly, four experiments are carried out and are used in the MOO. The results of these experiments are shown in Table 4. The
results show the corresponding linear displacement along @, due to a force of magnitude F and direction t

In order to ease the computational cost of the optimization, the process is carried out in different stages. First, the FEM results of
the gimbal and the main body of the serial module are used in order to not consider them as optimization variables. Only experiments
1, 2 and 4 are considered to enhance the time of conversion and to use the remaining experiment as a validation case. Hence, the
first stage consists of:

» Variables:

- aS1 _aS2
V= (kaprkaya kazakazo ko koxa ke zi ke zo G Chgt Casa )

» Minimize:
€1(V), 3(V), 4(V)
* Subject to:
[6 4., predt] = 104,85 preas] <O

|5/\,ﬁ3,pred3| - |5/\,ﬁ4,pred4| <0
0<v;<1x107*

where v; are all the components of v. Subsequently, the obtained values for the optimization variables are replaced and now the

remaining variables of the original problem become the only optimization variables. Hence, the second stage is given by:

» Variables:

¢Sl eS2 ¢S3 ¢S4
cS1°€c52°€c53° Ces4> CAx.gim> €Ay, gim» €A z.gim> ce,z,gim)

vi=(c
* Minimize:
€1(V), €3(V), e4(V)
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* Subject to:

|5A,ﬁ1,pred1| - |5A,ﬁ3,pred3| <0
IaA,ﬁ3,pred3| - |5A,ﬁ4,pred4| <0
0<v;<1x107*

Finally, the variables modeling the leg element are optimized again, now considering experiment 2 instead of 3. This allows
adjusting the results to a better fit to all four points. As such, experiment 4 will be used for validation. However, stage 1 suggested
that all k, 5, k4 .2, kg, and kg ., should be zero. Therefore, we do not consider these variables in the third optimization, which
is stated as follows:

+ Variables:

vi= (kpyikazi ko ke Cact)
* Minimize:

€1(V), 63(V), €4(V)
* Subject to:

164, predi | = 1044, preaz] <O
16 4,8, predz] = 1044, preaal <O
0<v;<1x107™*

The resulting optimized values of the whole process are the following:

kpy1=9375x107N"! kpyo=0
kp.y =6.77626x 1072!N"! kozp=0
kg =5%107N"! koyo=0
ko1 =5x107N"! koo, =0

Coet = 4.8688 x 107> mm/N
¢! = 1 x 107 rad/Nmm

CZ%;Z =1.3552 % 10720 rad/Nmm
¢4 =3.3854x 1075 mm/N
oy =6.7762 x 10! mm/N
93 =5.2083 x 10° mm/N
¢y = 6.09375x 107° rad/Nmm

=1x 1071 mm/N
Cpygim = 1 X 10”7 mm/N
Cpzgim = 1 X 107° mm/N

= 5% 1077 rad/Nmm

CA,x,gim

c@,z.gim

Additional six experiments were carried out in order to validate the optimized compliance model. The definition and results
of these experiments are shown in Table 5. Table 5 also shows the deformation values predicted by our optimized model and the
corresponding error against the experimental values. Each optimization was carried out on a commercial laptop with 16 Gb in RAM
and a processor speed of 2.90 GHz, the most longest running time detected in an optimization was 1:58 min. From Table 5, it can
be seen that results in the z,-direction are satisfactory, with a maximum error of 10.354%. The maximum error in the x-direction
is 19.998%. The largest error were found in the yg-direction with a maximum of 39.206%. Fig. 10 shows the map for linear stiffness
in the z along working planes parallel to the x5z, plane with different values of the coordinate y.

A word on gravity: Following the method presented in [13], it is not too difficult to include the effect of gravity in the model
presented in this paper. However, since we are trying to fit our model to the results of experiments on the actual machine, the
effect of gravity is not required at least at the stage of optimizing the unknown constants of the model. The total deflection of the
manipulator at its end-effector contains two components: a deflection due to gravity and a deflection due to the external force applied
at the end-effector. The deflection due to gravity (acting along the yy-direction in our experiments) is permanent and independent
of the external load. Say the controller is ordered to position the tip of the end-effector at ©ry. Due to gravity, the robot will present
a deflection before starting the experiment, and the real position of the tip will be OrT,gm,. Once the external force is applied the
position of the tool will change to °r; . However, in our experiments, it is only feasible to measure the difference between Or; g
and OrTygm, since it is not possible to measure Ol‘T,gmv with the precision required for any analysis. Since the displacement measured
in the experiments is that produced by the external force alone, the gravity effect should not be considered in order to learn the
unknown parameters. Nevertheless, our IKP should be solved for OrT’gmv, which we do not. Therefore, we give a 1-mm compensation
due to gravity, namely, we solve the IKP for °r; — (0, 1,0)
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Table 5

Experiments carried out on the Exechon XMini and comparison to predicted values. For all n = 1,..., 10, the displacement

corresponds to F, = —100 N and °f, = k.
n Or;,, (mm) a, 844, expn (M) 644, prean (M) Error (%)
1 (0,260,1355) (0,0,1) —0.008350048 —0.008836983611 5.831536068
2 (-138,260,1355) (0,0,1) —0.009881549 —0.008858429 10.353846730
3 (—340,260,1355) (0,0,1) —0.011717798 —0.011669665 0.410765409
4 (—408,260,1355) (0,0,1) —0.014138368 —0.014477298 2.397235293
5 (—68,260,1355) (0,0,1) —0.0081281849 —-0.008617324 6.017820104
6 (-276,260,1355) (0,0,1) —-0.010702398 —0.010174949 4.928314859
7 (85,260,1450) (1,0,0) —0.090090090 —0.092380377 2.542218887
8 (323,260,1450) (1,0,0) —0.086206897 —0.103380147 19.920970321
9 (0,225,1450) (0,1,0) —0.082644628 —0.115046523 39.206293228
10 (408,226,1450) (0,1,0) —0.105263158 —0.124294783 18.080043731

linear stiffness in Z direction
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Fig. 10. Maps of linear stiffness in the Z,-direction along the working plane X,Z,.

10. Conclusions

This paper presented the inverse kinematics and a compliance model for Exechon manipulators with offset wrists. The inverse
kinematics was solved also considering offsets between the axes of the joints connecting the limbs to the base. The IKP was reduced
to two systems of 4 non-linear equations in 4 unknowns. It was shown that when the offsets at the base are equal to zero, a single
univariable polynomial can be obtained. In practice, however, we prefer to use the two systems of 4 non-linear equations even if
the offsets at the base do not exist. The reason being that by solving numerically these two systems, two solutions are secured. This
allows more control in the selection of solutions when automating the process.

The compliance model was obtained by proposing a general model for the local compliance of elements that encompass multiple
mechanical components of the robot. The local compliance values of these elements were modeled as a 2-degree polynomial in
the leg length. The unknowns of the model were then optimized using experimental data. Subsequently, more experiments were
carried out to validate the model. The resulting model was able to predict the compliance along the z-direction with a maximum
error of around 10%. In the xq-direction the worst error was measured as 19%. However, the prediction in the yy-direction gave a
maximum error of 39.2%.
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