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ABSTRACT 

In this paper, a general optimum full band high order discrete-time differentiator 

design problem is formulated as a peak constrained least square optimization problem. 

That is, the objective of the optimization problem is to minimize the total weighted 

square error of the magnitude response subject to the peak constraint of the weighted 

error function. This problem formulation provides a great flexibility for the tradeoff 

between the ripple energy and the ripple magnitude of the discrete-time differentiator. 

The optimization problem is actually a semi-infinite programming problem. Our 

recently developed dual parametrization algorithm is applied for solving the problem. 

The main advantage of employing the dual parameterization algorithm for solving the 

problem is the guarantee of the convergence of the algorithm and the obtained 

solution being the global optimal solution that satisfies the corresponding continuous 

constraints. Moreover, the computational cost of the algorithm is lower than that of 

algorithms implementing the semi-definite programming approach. 

 

Index Terms⎯Discrete-time differentiators, semi-infinite programming, dual 

parameterization algorithm, peak constrained least square approach, 

eigen approach, Remez approach, semi-definite programming 

approach. 

 

I. INTRODUCTION 

Discrete-time differentiators have many important applications in physics and 

engineering [1]. In particular, they are used to obtain a set of data relating to the rate 

of change of some physical quantities, such as the estimation of heating rates from 

temperature data, net flow rates of fluid from measurements of volume level, and 

velocity from position data, etc. 
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Two common methods for the design of discrete-time differentiators are based 

on the eigen approach [2] and the Remez algorithm approach [3]. However, the eigen 

approach does not guarantee the obtained solution satisfying the required 

specifications. On the other hand, the Remez algorithm approach would result to a 

discrete-time differentiator with large ripple energy. To address this problem, the 

discrete-time differentiator design problem is formulated as a peak constraint least 

square optimization problem. That is, the total weighted square error of the magnitude 

response is minimized subject to the peak constraint of the weighted error function 

[4]-[6]. Although this problem formulation provides a great flexibility for the tradeoff 

between the ripple energy and the ripple magnitude of the discrete-time differentiator, 

this optimization problem is actually a semi-infinite programming problem. The 

common method for solving semi-infinite programming problems is via the 

semi-definite programming approach [4]. That is, the continuous constraints are 

discretized into finite number of discrete constraints. However, this approach does not 

guarantee that the continuous constraints are satisfied among the discretization points. 

Although the deviation between the continuous constraints and the discrete constraints 

can be reduced by increasing the number of discretization points, the exact number of 

discretization points required for the optimization problem is unknown and the 

increase in the number of discrete constraints will result to the increase of the 

computational complexity. Although new primal quadratic programming approach 

was proposed for solving the problem [5], the convergence of the algorithm is not 

guaranteed. In this paper, the dual parameterization algorithm is employed for solving 

the problem [6]. The semi-infinite programming problem is reduced to a sequence of 

approximating sub-problems followed by a nonlinear finite programming problem. 

Each of the approximating sub-problems can be readily solved by quadratic 

programming. The global solution of the finite nonlinear program can then be 
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obtained from the approximated solution. If the feasible set is nonempty, then an exact 

optimal solution is guaranteed. Also, the convergence of the algorithm is proved. 

Moreover, since the total number of the finite constraints in the approximating 

sub-problems is smaller than that of the corresponding semi-definite programming 

problems, the computational complexity is low. 

The outline of this paper is as follows. In Section II, the optimum discrete-time 

differentiator design problem is formulated as a semi-infinite programming problem. 

The dual parameterization algorithm is summarized in Section III. The computer 

numerical simulation results are presented in Section IV. Finally, a conclusion is 

drawn in Section V. 

 

II. PROBLEM FORMULATION 

Let ( )nh  be the impulse response of the discrete-time differentiator. For N  is 

odd, we assume 
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then the frequency response of the discrete-time differentiator can be expressed as 

( ) ( )ωω
ω

0
2

1

HjeH
Nj ⎟

⎠
⎞

⎜
⎝
⎛ −

−
= , (7) 

where 1−≡j . 
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2
ddBd ππ , where d  is the width of the transition band. 

Then the total weighted square error of the magnitude response of the discrete-time 

differentiator can be represented as 

( ) pdDHWJ TT

Bd

++=−≡ ∫ xbxQxx
2
1)()()( 2

0 ωωωω , (8) 

where )(ωD  is the desired magnitude response, )(ωW  is the weighted function 

with 0)( >ωW  for dB∈ω , 

( ) ( ) ωωωω dW
dB

T∫= )()(2 ηηQ , (9) 

( ) ωωωω dDW
dB
∫−= )()(2 ηb , (10) 

and 

( )( )∫=
dB

dDWp ωωω 2)( . (11) 

It can be checked easily that matrix Q  is positive definite. To specify the constraints, 
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let δ  be the peak constraint of the weighted error function. Then, the constraint can 

be expressed as: 

δωωω ≤− )()()( 0 DHW , for dB∈ω , (12) 

which implies that 

)()( ωω cxA ≤ , for dB∈ω , (13) 

where 

( ) ( )[ ]TW ωωωω ηηA −= ,)()( , for dB∈ω , (14) 

and 

( ) ( ) ( )[ ]TWDWD )(,)( ωωδδωωω −+=c , for dB∈ω . (15) 

Clearly, ( )ωA  and ( )ωc  are continuously differentiable with respect to 

dB∈ω . Consequently, the optimum discrete-time differentiator design problem can 

be formulated as the following semi-infinite programming problem: 

Problem (P) 

x
min    ( ) pJ TT ++= xbxQxx

2
1 ,     (16a) 

subject to  0cxAxg ≤−= )()(),( ωωω , for dB∈ω .  (16b) 

 

III. DUAL PARAMETERIZATION ALGORITHM 

The above problem can be solved using the dual parameterization algorithm [6]. 

We first consider the Dorn’s dual of problem (P) as 

Problem (D) 

( )Λx,
min    ),( ΛxL ,        (17a) 

subject to  0ΛAbxQ =++ ∗ ,      (17b) 

   0Λ ≥ ,        (17c) 
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where 
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dB

T dL ΛcxQxΛx )(
2
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A  is the operator from N ′ℜ  to ( )N
dBC ′ℜ,  defined by )(ωA  according to 

( ) xAxA )()( ωω =  for dB∈ω , where ∗A  is the dual operator of A , N ′  is the 

length of the vector x  and ( )N
dBC ′ℜ,  is the Banach space of all continuous real 

functions on dB . 

Assume the Slater’s qualification holds, that is, there exists N ′ℜ∈0x  satisfying 

( ) 0xg <ω,0  dB∈∀ω . Since 

(i)  J  and ( )ω,xg  are convex in x , dB∈∀ω , 

(ii)  J  is differentiable on N ′ℜ , 

(iii) ),( ωxg  is continuous in ω , N ′ℜ∈∀x , and continuously differentiable in 

x  on d
N B×ℜ ′ , 

the strong duality theorem holds. That is, if the minimum of the primal problem (P) is 

achieved by some N ′∗ ℜ∈x , then there exists a solution ∗Λ  of the dual problem (D), 

such that 

),(min)( ∗∗ = Λxx
x

LJ ,      (19a) 

subject to  ( ) 0ΛcxA =−∫ ∗∗

dB

d)()( ωω ,     (19b) 

   0Λ ≥∗ .         (19c) 

Since ( )ω,xg  is continuously Fréchet differentiable, the Karush-Kuhn-Tucker 

(KKT) conditions for problem (P) are also satisfied. That is, the minimum of problem 

(P) can be achieved at N ′∗ ℜ∈x  if and only if ∗x  is feasible and there exists a ∗Λ  

such that 
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0ΛAbxQ =++ ∗∗∗ ,      (20a) 

( ) 0ΛcxA =−∫ ∗∗

dB

d )()()( ωωω ,     (20b) 

0Λ ≥∗ .        (20c) 

In general, the multiplier ∗Λ  satisfying the KKT conditions is not unique. 

However, as we assume that the Slater constraint qualification is satisfied, and the 

optimal solution of the primal problem (P) is achieved at N ′∗ ℜ∈x . So the set of 

multipliers satisfying the KKT conditions of problem (P) will necessarily include a 

measure with finite support at no more than N ′  points unless it is empty. This can be 

proved by the Carathéodory’s theorem. Hence, there exists a solution pair ),( ∗∗ Λx  

of the dual problem (D) where the measure ∗Λ  has a finite support of no more than 

N ′  points. 

The dual semi-infinite problem (D) can be reduced to the finite dimensional 

optimization problem (PD), called the parameterized dual of problem (P), as the 

following: 

Problem (PD) 

),,(min
),,(

λtx
λtx kL ,       (21a) 

subject to  0λ ≥i ,  Ni ′= ,,2,1 L ,     (21b) 

di B∈ω ,  Nki ′≤= ,,2,1 L ,    (21c) 

where the integer k  is the parameterization number, [ ]Tkωωω ,,, 21 L=t  and 

[ ]kλλλλ ,,, 21 L= , in which [ ] mT
miiii ℜ∈= ,2,1, ,,, λλλ Lλ  and m  is the 

number of rows in matrix A . The cost function ),,( λtxkL  is given by 

∑
=

+=
k

i
ii

TT
kL

1
)(

2
1),,( λcxQxλtx ω .    (22) 
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According to the dual parameterization theory, once a solution ( )∗∗∗ λtx ,,  is 

obtained from solving the problem (PD), the optimal solution of the primal problem 

(P) will also be ∗x . To state the algorithm for solving the problem (P), denote the 

problem obtained from problem (PD) by fixing t  as problem (PD(t)). It can be 

shown easily that problem (PD(t)) is the dual problem of the following problem (P(t)) 

for fixed di B∈ω , ki ,,2,1 L= . 

Problem (P(t)) 

x
min    ( ) pJ TT ++= xbxQxx

2
1 ,     (23a) 

subject to   ( ) 0xg ≤iω, ,  for ki ,,2,1 L= .    (23b) 

Hence, we have the following theorem: 

Theorem 1 

Consider problems (P), (P(t)) and (PD). The following statements hold: 

(i) Let x  be an optimum solution of problem (P(t)). If x  satisfies the infinite 

constraint (16b), then x  is the optimal solution of the primal problem (P). 

(ii) Let kv  be the optimal value of problem (PD) with parameterization number 

k , then sequence { }kv  is decreasing, and there exists ∗k  such that 

kk
vv =∗ , for all ∗≥ kk . Furthermore, if 1≥∗k , then ∗∗ >

− kk
vv

1
. 

(iii) The ∗k  in (ii) is the minimum integer such that for ∗≥ kk , a global solution 

of the finite problem (PD) provides the solution for the primal problem (P) in 

the sense that if ),,( ∗∗∗ λtx  is a global optimizer of problem (PD), then ∗x  

is the global optimizer of the primal problem (P). 

(iv) If ∗<≤ kk0 , then 1+> kk vv . 

The proof of Theorem 1 can be found in [6]. The number ∗k  in Theorem 1 is called 
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the minimum parameterization number. If the optimal primal solution is an interior 

point of the feasible region, then 0=∗k . 

Let { }ik  be the given sequence of the parameterization numbers satisfying 

1+≤ ii kk . For each i , let { }ii
ji kj ,,2,1: L==Ω ω  be a given subset of dB  and let 

[ ]Ti
k

iii
i

ωωω L10=t . Define the density distance between iΩ  and dB  as 

( ) i
jljBdi

id

Bd ωω
ω

−≡Ω
≤≤∈ 1

minmax, .    (24) 

We have the following theorem: 

Theorem 2 

Let { }it  be the sequence given as above. Suppose ),( ii λx  is a solution of problem 

(PD( it )). If ( ) 0, →Ω di Bd  as +∞→i , then it holds that 

(i) { }ix  converges to the solution of the primal problem (P). 

(ii) ( ) ( )DvtPDv →)( i , where ( )Sv  denotes the optimal value of a given problem 

(S). 

The proof of Theorem 2 can be found in [6]. 

We finally obtain the following optimization algorithm: 

Algorithm: 

Step 0 (Initialization): Select a small number 0>ε . Choose a sequence of index sets 

iΩ . Set 1=i . 

Step 1 (Compute a local optimum): Solve the finite problem ( ))( itPD . Denote the 

local optimal solution as ),( ii λx . 

Step 2 (Test improvement of the objective): If 2≥i  and ( ) ε<− )()( DvtPDv i , then 

go to step 3, else 1+= ii  and go to step 1. 
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Step 3 (Compute the global optimum): Implement a local search for the finite dual 

problem (PD) with ikk = . The solution is denoted as ),,( ∗∗∗ λtx , and ∗x  is 

taken as the optimizer of problem (P). 

 

IV. COMPUTER NUMERICAL SIMULATION RESULTS 

To demonstrate the applicability of our proposed algorithm, a full band high 

order discrete-time differentiator is preferred. However, the magnitude response of the 

discrete-time differentiator would rise very fast if its order is high. Hence, it requires 

many filter coefficients for the implementation. To tradeoff between these two factors, 

a full band fifth order discrete-time differentiator is illustrated in this paper. That is, 

( ) 5ωω =D  dB∈∀ω . To design a full band fifth order discrete-time differentiator, 

small ripple magnitude and small transition bandwidth of the differentiator are usually 

preferred. However, it requires many filter coefficients for the implementation. To 

tradeoff among these factors, 32=N , 50064.0 πδ ×=  and π06.0=d  are chosen 

as the specifications. To demonstrate the performance of the full band fifth order 

differentiator, the effect of the weighted function should be removed and a uniform 

weighted function is employed, that is 1)( =ωW  dB∈∀ω . In our proposed dual 

parameterization algorithm, a small value of ε  is usually preferred. However, too 

small value of ε  would increase the number of iterations and so the computational 

complexity is increased. To tradeoff between these two factors, 6101 −×=ε  is chosen. 

A large number of discrete frequencies in the index sets are usually preferred. 

However, too many discrete frequencies would increase the computational complexity. 

Since the number of extrema of the magnitude response of the full band fifth order 

differentiator designed via the Remez algorithm is equal to 2+N , the number of 

discrete frequencies in the first index set is 2+N . For the simplicity, a uniform 
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sampling scheme is employed. So the first index set is initialized as 

⎭
⎬
⎫

⎩
⎨
⎧

+=⎟
⎠
⎞

⎜
⎝
⎛

+
−

+−==Ω 1,,1,0for  
1

2
2

:1 Nk
N

dkd
kk L

ππωω . The other index sets are 

constructed based on the previous index set by adding all violated index points of a 

refined set of grid points to the previous index set while dropping all unnecessary 

points from 1−Ωi  for 1>i . 

Our computer numerical simulation results are compared to that designed based 

on the eigen approach [2], the Remez approach [3] and the semi-definite 

programming approach [4]. These approaches are compared because these approaches 

are the most common approaches for the design of full band high order differentiators. 

The magnitude response of the full band fifth order differentiators designed via 

various approaches are shown in Figure 1, while the corresponding weighted error 

functions are shown in Figure 2. We can see from Figure 2 that the maximum ripple 

magnitude of the full band fifth order differentiator designed via the eigen approach is 

very large that it fails to satisfy the specification. Although the full band fifth order 

differentiator designed via the Remez approach achieves the smallest ripple 

magnitude among these approaches, the total weighted square error is the largest 

among these approaches. The full band fifth order differentiator designed via the 

semi-definite programming approach also fails the specification because the number 

of discrete frequencies is not large enough. On the other hand, the full band fifth order 

differentiator designed via the peak constraint least square approach satisfies the 

required specification and minimizes the total weighted square error. 

Actually it is difficult to have a fair comparison on the computational 

complexity of our proposed method to other existing methods because almost none of 

them solve the design problem via the semi-infinite programming approach with the 

guarantee of the convergence of the algorithms. In our proposed method, it is found 
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that the algorithm terminated after three iterations, and the number of discrete 

frequencies in the last index set is 1345. If the design problem is formulated via the 

semi-definite programming approach with the same number of discrete frequencies, it 

is shown in Figure 2 that the solution obtained does not satisfy the specification. 

Hence, more discrete frequencies are required for the semi-definite programming 

approach. It implies that the computational complexity of the semi-definite 

programming approach is much higher than our proposed algorithm [4]. 
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Figure 1. Magnitude response of the full band fifth order differentiators. 
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Figure 2. Weighted error function of the full band fifth order differentiators. 

V. CONCLUSION 

The main contribution of this paper is to formulate the optimum discrete-time 

differentiator design problem as a peak constrained least square optimization problem. 

Actually, the problem formulation can also be applied to non-full band arbitrary order 

discrete-time differentiator design problems. The formulated problem is a 

semi-infinite programming problem and our proposed dual parameterization 

algorithm is employed for solving the problem. The main advantages of our proposed 

algorithm are i) the guarantee of the solutions converging to the optimum one that 

satisfies the continuous constraints if the solution exists; and ii) low computational 

complexity because the semi-infinite programming problem is transformed to a finite 

dimensional optimization problem and just a few active points are sufficient to give 

enough information for searching the optimal solution. 
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