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Abstract:

The paper presents two approaches for fault detection and discrimination based on
principal component analysis (PCA). The first approach proposes the concept of y-
indices through a transposed formulation of the data matrices utilized in traditional
PCA. Residual errors (REs) and faulty sensor identification indices (FSIls) are
introduced in the second approach, where REs are generated from the residual sub-
space of PCA, and FSIIs are introduced to classify sensor- or component-faults.
Through field data from gas turbines during commissioning, it is shown that in-
operation sensor faults can be detected, and sensor- and component-faults can be
discriminated through the proposed methods. The techniques are generic, and will find
use in many military systems with complex, safety critical control and sensor
arrangements.
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1. Introduction

Fault Detection (FD) is an essential part in military control systems for operational
reliability and safety. With regard to previously reported techniques for FD, principal
component analysis (PCA) has been one of the most popular candidate solutions. An
overview of traditional PCA is given below.

1.1. Overview of traditional PCA

PCA is extensively applied for data analysis purposes to reduce a large dataset whilst
preserving ‘sufficient’ information contained in the original data [1]. Let X be the
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original data matrix, with a mean 0.0 and a standard deviation 1.0. X R where I
rows indicate the dimensions of data, i.e. the sensors, while J columns indicate the
repetition of data from the experiment, i.e. the time steps. It can also be expressed as

X=Xy where i=1,2,...,/ and j=1,2,...,J. )]
The empirical covariance matrix, C < R s derived using
1 T
C=—) XX . 2
=2 2)
The eigenvectors and eigenvalues of the covariance matrix are found from
viev =4, (3)

where V < R/ | with the I column vectors representing the / eigenvectors of C, and
Ac R is the diagonal matrix of eigenvalues of C, where Ay = A for i=j=k with
4 as the kth eigenvalue of C, and ;=0 for i# ;. The eigenvectors and

eigenvalues are rearranged in decreasing order. The cumulative sum of the variance
for the ith eigenvalue is calculated from

1
5= Ay fori=1.2, 1. @)
j=1
Basis vectors are selected from a subset of the eigenvectors, while achieving a high
value of s on a percentage basis, €.g. S,,en0a = 95% . When

Si—p
[l 2 Sthreshold > (5)

D4y

Jj=1

the first P columns of ¥ are used as the basis matrix ¥V, c R"" | with Vo =V; for
i=1,2,...,] and j=1,2,...,P where 1< P<[. To describe the original data in principal
component space, the following relation is used:

Y=V,X, (6)

where X = R*? is the principal component matrix, which is a representation of X
after PCA, with the ith row representing the ith principal component. Since V, is

orthonormal, for any new input data sequence, x € R’*!, an approximation of x is:
x=VVI'x. (7)
Decomposing the data matrix into two parts, the principal component estimation part,
and the residual part, gives
xXxX=x+e , (8)

where the residual can be expressed as

e=(r-vy)x. )
Principal components have been considered as the most important presentations in
PCA, and have been used extensively for FD [2,3].
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1.2. Principal components

Assume the original data matrix X is an /*J matrix, the principal component matrix ¥
is an /xJ matrix, with the jth column an /x1 interpretation of the original data for the
jth sample. The first row of the principal component matrix is a 1xJ vector, which
possesses the greatest variance in the original data. Therefore, the principal
components, particularly the first, are often used for system monitoring and fault
detection. For instance, [2] presented a framework based on PCA to detect real-time
faults in an aluminium electrolysis process. When applying PCA, the principal
component space defined by the first and third principal components is designated for
FD. Abnormal events of the anode spikes are clustered in a distinct area, identified as
the ‘problem area’, as shown in Fig. 1.
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Fig. 1 First and third principal component plot for fault detection in aluminium
electrolysis process [2]

In Fig.1, the jth point represents the total behaviour of all variables (sensors) at the jth
time step, through which it becomes useful for system monitoring. However, external
algorithms are required in order to locate the ‘fault position’ (i.e. the faulted sensor).

1.3. Squared prediction error

Residuals generated by PCA are variances that are not captured in principal
component space. When no faults are deemed to be present, they represent normal
dynamics and noise present in the system, in the PCA residual sub-space. In the
presence of a sensor fault, there is divergence of sensor correlations, and the residual
vector deviates from the normal range. When a component fault occurs, excessive
variance can be identified in the residual space, and the residual vector will also
deviate out of the normal range.

According to (9), the squared prediction error (SPE) can be obtained from the
predicted residual, e, as follows

SPE(x) =|ef = x"(1-V,¥7)x. (10)
Here, the eigenvector matrix V,, is calculated from the previous data sets, i.e. the data

history matrix, which is considered to be ‘normal’.

PCA based SPE, which is calculated in PCA residual sub-space, is well
established and extensively applied for FD in process and power control [4-11].
Because SPE alone could not isolate the faulty sensor, additional algorithms are
necessary for specific sensor fault identification (SFI). For instance, a sensor validity
index (SVI) was introduced for SFI in [4-8], and a SPE-contribution plot is presented
as a supplement to SPE to diagnose sensor faults in [9,10].
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[12] applied SPE for sensor fault detection (SFD) on a building energy management
and control system subject to four fault cases, including (a) sensor bias, (b) drifting
fault, (c) precision degradation and (d) complete failure, as shown in Fig. 2. For each
time step, the value of SPE represented the variance in the residual sub-space after
PCA for all the sensors. When SPE exceeded the threshold, it indicated abnormal
behaviour data being read from the sensor.
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Fig. 2 Sensor fault detection by SPE [12]

However, such techniques require a 2-stage sequential procedure since SPE only
provides results from an amalgamation of characteristics from the multiple sensors
within the group. Moreover, SPE may not be directly suitable for systems where
sensor data is subject to bias or drifting, for instance, which can be wrongly identified
as representing a sensor or component fault.

1.4. Concept of the proposed approaches

In the previous section, for both the principal component and SPE plots, each point in
the plot represents the behaviour of all the sensors for one time step.

Here, a reformulation of principal component concept is proposed. Instead of
looking for differences of a sensors’ behaviour at different time steps, here, the focus
is to investigate differences between sensors within a group. This can be achieved by
performing PCA on the original data matrix X with a dimension of Jx/, where J is the
number of samples, and / is the number of variables. The principal component matrix
Y is a Jx/ matrix, with the ith column a Jx1 interpretation of the original data for the
ith sensor. The first principal component is the first row of the matrix, which is a 1x/
vector. In this way, for a designed time period, the differences between different
sensors can be found from the first, or the first few 1x/ vectors, assuming it or they
cover sufficient variances of the original data. A y-index is introduced that relates to
the first principal component, a 1x/ vector, y,. A time-rolling window is used, as

shown in Fig. 3. For each time step, a dataset for a total time #, is studied by PCA, and
I individually quantifiable numbers describe the differences between the / sensors in
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the sensor group. The resulting / representative characteristics are presented to the user
on a rolling timeframe, showing changes in sensor behaviour that can be readily
identified.

PCA data set iner.
tb t i

total time

Fig. 3 The concept of PCA time rolling-in system

The second proposed approach is inspired by the traditional concept of PCA based
SPE, and is developed in the residual sub-space in PCA. To employ traditional SPE
methods, prior knowledge of the process is necessary, from which the SPE is then
calculated for new data from eigenvectors obtained by PCA from the ‘normal’
operating data. To avoid this, here, the residual error (RE) is developed by calculating
the residuals directly in real-time to monitor possible faults. As an alternative to the
original SPE, therefore, R is expressed as

R=X"(1-w")x (11)
where X is the real-time data matrix after centring, with a dimension of /xJ. RE is
calculated as the root-mean-square of the elements of R, where the mean is obtained
over J samples. RE brings benefits for system monitoring from direct data acquisition,
where no prior knowledge is required.

In addition, where fault classification and identification is required, a faulted
sensor identification index (FSII) is introduced, where the missing sensor method is
used to calculate the difference between the principal component in the absence of the
sensor, and with it included. FSIIs are used to check different sensors’ behaviour. If
one FSII is significantly different from the others in the group, it is indicative of
divergent behaviour. Combining REs and FSIIs thereby allows fault detection,
classification and identification to be achieved.

The proposed ‘y-index’ method can be considered more robust than previously
proposed techniques since:

e [t can perform sensor fault detection and identification in one stage.

o Instead of investigating differences between a sensor’s behaviour implicitly as a
function of time, the proposed method provides results relating to the
differences of overall behaviour of a sensor with consideration of the behaviour
of other sensors within the group.

e The proposed method is suitable for sensor fault detection in situations subject
to bias and drifting during normal operation, where the results from traditional
PCA methods can lead to excessive false alarms.

And the proposed ‘RE’ approach brings the following benefits:

e Unlike previous PCA based techniques, such as SPE method, which requires
training datasets from historical process data to define the 'normal' behavior, the
proposed RE method is based on the residual space from real-time data.
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e Whilst SPE is only suitable to detect faults for a process in steady state, RE is
developed for fault detection in a quasi-steady process (processes without very
dramatic transients).

e The moving window is designed to overcome the static analysis property of
PCA and is applied to real-time (dynamic) data.

2. Methodology

2.1. Problem statement

To provide an illustrative focus to the proposed methodology, a group of four
vibration sensors sited on a twin shaft gas turbine is used (X and Y orientations on
either end of a power turbine shaft), as shown in Fig. 4. Because of their relative
positioning it has been observed that the data from these four sensors show
qualitatively similar trends even when subject to situations involving unit components
faults (as opposed to sensor faults). Practical examples of various conditions are
shown in Fig. 5.

Three typical classes of sensor faults have been identified viz. those that exhibit
transient ‘spikes’ in sensor readings (termed short faults); anomalous constant readings
(termed constant faults); and long duration noisy readings (termed noise faults) [13],
as shown, respectively, in Figs. 5(b),(c),(d). These datasets are subsequently termed
Test 1, Test 2 and Test 3, and are used to investigate the application of y-indices and
RE techniques.

2.2. Y-index

Assume the original data matrix X has a dimension of Jx/, where J is the number of
samples and / is the number of sensors The first principal component, a 1x/ vector,
¥, corresponds to the new axis with the greatest variances. The y-index is defined as

the integer part of the square root of the distance between the absolute first principal
component values, to describe the differences between the sensor reading data sets,

and is expressed as:
d, = [|»|-min(y]) . (12)

where y, is the first row vector of the principal component matrix, and |o| refers to the

absolute value. The greater the y-index, the more variance the particular sensor
measurement contributes in the original data.

Sensu\r 1 Sensor2  Sensor3 Sensor 4

Fig. 4 The structure of four vibration sensors on power-turbine shaft
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Fig. 5 Four sensor measurement characteristics during an emerging component
failure: (a) original; (b) Test 1: Transient faults on Sensor 1; (c) Test 2: Constant
reading fault on Sensor 2; (d) Test 3: Excessive noise fault on Sensor 4. (S =Sensor)

To check the efficacy of the y-index technique, Test 1 presents transient sensor faults
on sensor 1, while data from the other three sensors are considered normal. Test 2
shows a constant-measurement fault on sensor 2, and Test 3 shows excessively noisy
sensor data on sensor 4. Validation checks are carried out to calculate the errors e,

and d .,
combined principal component vector that takes into consideration all the principal

components in each row, and their variance contents, which contribute to the total
variance of the original data. The combined principal component vector is then

expressed as
ve=Alan ) e +Hen) (13)

where ¢; is the variance content of the ith principal component and y;is the ith row

vector in the principal component matrix — see Tables 1, 2 and 3. Note: the term ‘PC’
refers to ‘principal component’, A refers to the eigenvalue of the corresponding
principal component, and s indicates the cumulative sum of the variances, from:

between y; and y., and the errors e, between d, in which y, is the

2, :
'— and s; = ch where i=1,2,3.

i z}“i

(14)

J=1
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Table 1 Validation check for Test 1
A c (%) s (%)
PC1 100.63 95.85 95.85
PC2 3.16 3.01 98.86
PC3 1.20 1.14 100.00
I Y, Vs Ve e (%) d d, )
Sensor 1 | 14.93 0.33 0.02 14.31 4.15 3 3 0
Sensor 2 | 3.22 2.60 0.02 3.09 4.12 0 0 0
Sensor 3 | 5.76 1.17 1.34 5.52 4.15 2 2 0
Sensor 4 | 5.95 1.11 1.34 5.70 4.15 2 2 0
Table 2 Validation check for Test 2
A c (%) 5 (%)
PC1 521.78 98.32 98.32
PC2 7.74 1.46 99.78
PC3 1.16 0.22 100.00
I Y, Vs Ve e, (%) d d, )
Sensor 1 | 9.41 4.01 0.06 9.25 1.68 0 0 0
Sensor 2 | 34.20 0.26 0.01 33.63 1.68 5 5 0
Sensor 3 | 12.15 1.74 1.35 11.95 1.68 2 2 0
Sensor 4 | 12.63 2.01 1.28 12.42 1.68 2 2 0
Table 3 Validation check for Test 3
A c (%) s (%)
PC1 57.47 92.19 92.19
PC2 4.27 6.85 99.04
PC3 0.60 0.96 100.00
I A% Vs Ve e, (%) d d, )
Sensor 1 | 1.47 0.53 0.36 1.36 7.78 0 0 0
Sensor 2 | 2.59 1.19 1.02 2.39 7.76 1 1 0
Sensor 3 | 5.38 2.41 0.26 4.96 7.76 2 2 0
Sensor 4 | 8.73 0.94 0.07 8.05 7.81 3 3 0
The errors are calculated using
e —l—yc|><100(%). (15)

c
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d,. is the y-index calculated from the combined principal component vector y,. , which

dy. = |y min(y]). (16)

Validation checks given in Tables 1-3 show that although there are errors (<10%)
between the first row principal component vector and the combined principal
component vector, for y-indices results, no difference exists between the two vectors.
This shows a significant advantage for the efficiency of the y-index method. When the
y-index is calculated, only the largest eigenvalue of the covariance matrix is
considered to obtain the first row vector of the principal component matrix, and saves
significant computational effort for the calculations of the remaining eigenvalues.
Moreover, when plotted, the one-dimensional characteristic provides detection results
graphically with respect to time.

is written as

i i i i
Sengor 1 Sensor 2 Sengor 3 Sensor 4

Fig. 6 The y-indices for the three test cases

For instance, the y-indices of the four sensors from the original data set, and three test
cases, are presented in Fig. 6. The original data provides y-indices of four sensors to
be 1, 0, 1, 1, which is considered as ‘normal’ sensor behaviour. From the results of
using the other three test data sets, it can be seen that when the y-index is > 3, a sensor
fault is considered to have occurred.

2.3. RE and FSII

An efficient adaption of the PCA-based algorithm is now used to detect and classify
sensor- and component-faults. RE and FSII are both single quantifiable measures
calculated from a PCA data set for each sensor. Thus, four representative
characteristics can be presented using a ‘rolling window’ to identify qualitative
changes in behaviour.

Assume X is the original data matrix with a dimension of /xJ, where [ is the
number of samples and J is the number of sensors. Recalling (11), the RE for the jth
sensor is defined as:

1
RE; = |—
7114

1

1 (- %, - (17)
=1
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RE is used to detect abnormal conditions, i.e. unit component faults or sensor faults,
during system operation. Abnormal behaviour is indicated when the RE migrates out
of the normal range.

Since it is not possible for the sole use of the RE to distinguish between
component- and sensor-faults, a further indicator, the FSII, is used. The proposed FSII
is based on the traditional concept of the ‘missing sensor method’. Each row of
principal components is calculated with- and without-the respective sensor, and the
sum of squared differences is used for the FSII. Specifically, for the jth sensor:

I
FSII, = %Z(yi—yi(”)z, (18)

i=1

where y is the principal component vector computed in PCA.

Tab. 4 REs for the three test cases

Original data Test 1 Test 2 Test 3
Sensor 1 1.123 1.218 1.112 1.107
Sensor 2 1.147 1.158 1.496 1.129
Sensor 3 1.219 1.208 1.203 1.197
Sensor 4 1.226 1.216 1.211 1.214

Tab. 5 FSIIs for the three test cases

Original data Test 1 Test 2 Test 3
Sensor 1 0.073 0.805 0.001 0.001
Sensor 2 0.017 0.003 1.042 0.003
Sensor 3 0.041 0.007 0.001 0.048
Sensor 4 0.053 0.007 0.001 0.587

FSII is paired with the RE to classify component- and sensor-faults. When a sensor
fault occurs, the FSII is also used to identify which sensor in the group is in error.

The REs and FSlls of the four sensors from the original data set, and the three
test cases, are listed in Tables 4 and 5. From the results, it can be seen that when the
RE value is higher than ~1.2, both component faults (original data from sensors 3 and
4) and sensor faults (Test 1 from sensor 1, Test 2 from sensor 2, Test 3 from sensor 4)
can be detected. According to the FSII table, it can be seen that, for a unit fault
(original data), all the FSIIs approach a relatively low level, less than 0.1, and for
sensor faults (Test 1-3), the FSII for the faulted sensor is much higher than those of the
other sensors, where the FSIIs of the normally operating sensors’ approach zero.

3. Further Experimental Results
Using the rolling-window process depicted in Fig. 3, where the PCA data set ¢, is
taken as 1000 minutes, and the time increment ¢ is set to be 30 minutes (#,is pre-

determined from the analysis of results from empirical trials, and ¢ is designed
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according to a time delay that is considered acceptable for the application), the y-
index, RE and FSII, are applied to three field examples, covering both normal unit
operation and operation when subject to known component and sensor faults.

3.1. Normal operation

Example data sets from vibration sensors are shown in Fig. 7(a), taken from a
randomly chosen field trial of normal unit operation, labelled as ‘Field Example 1°. It
can be seen that the characteristics are not completely smooth and steady, but there are
no sudden unexpected transients, or any apparent sensor measurement anomalies. The

corresponding y-index is shown in Fig. 7(b), and the RE and FSII for this dataset are
shown in Fig. 7(c).
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Fig. 7 Field Example 1: (a) Vibration measurements, (b) Y-index; (c) RE and FSII
(S =Sensor)

The y-indices continually show either 0 or 1, and no distinct increase of the RE is
evident (the RE is much lower than 1.2). This would therefore be classified as ‘normal
operation’ from the perspective of an operator (as expected). From site reports it is
known that no sensor faults or unit component failures occurred during this period.

3.2. Sensor fault detection

Fig. 8(a) shows real-time data with a sensor fault from the operational gas turbine,
labelled as ‘Field Example 2’. Specific periods of interest are from 3000 to 6000
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minutes, where a number of high-peak, ‘noisy’ readings from sensor 1 exist, and
during the 6000 to 7000 minute period where a ‘high’ reading appears on sensor 2
measurements, and several high readings from sensor 4 exist (in practice a field
engineer is performing sensor checks by swapping sensors during this time — in effect
is creating anomalous conditions during unit operation).

From Fig. 8(b), which shows the y-index plot for Field Example 3, it can be
observed that, after collecting the data, the index line for sensor 1 rises to > 2. This is
an indication of a potential sensor problem, and after further three time steps, the
index exceeds the final warning value of 3, indicating that the operator should be
alerted to check this particular sensor since it is showing anomalous characteristics
compared to the rest. Notably, ‘the transient faults’ that occur on sensor 2 and sensor 4
in the time period of 5800 to 5900 minutes have also been correctly identified.
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Fig. 8 Field Example 2: (a) Vibration information; (b) Y-index; (c¢) RE and FSII
(S = Sensor)

Also, the sensor measurements ‘recover’ to normal behaviour i.e. within the range of
values of 0 and 1, after 7000 minutes (which includes a delay of #,, 1000 minutes),

indicated by the indices becoming normal after the fault has been cleared.

From Fig. 8(c) it can be seen that the RE is out of range from 2100 to 6800
minutes. For this example, the RE shows a similar characteristic to the y-index output,
with the fault being detected by both at around 2100-2200 minutes. From the FSII
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calculations, at 2200 minutes, the results for sensor 1 are much higher than those of
the other sensors, with the FSIIs for the other sensors approaching zero. This identifies
a sensor fault, and not a component fault, and classifies it as being on sensor 1. The
transient faults on sensor 2 and sensor 4 are also identified at ~5800 to 6000 minutes
from the two peaks on the respective FSII plots at 5800 and 5900 minutes.

3.3. Component fault detection

High vibration and substantial mechanical transients can cause degradation of the
turbine shaft bearings and potential damage to the unit. Fig. 9(a) shows an example of
an emerging component fault, which occurs from around 4100 to 5100 minutes. After
increasing transient amplitudes, high vibration readings occur on sensors 3 and 4. This
example is termed ‘Field Example 3’. The corresponding y-index is plotted in Fig.
9(b), and the RE and FSII are plotted in Fig. 9(c). It can be seen that, for the short
period during the emergence of the component fault, the y-indices increase to 2, but
still does not exceed the limit of 3, which indicates that it is not a sensor fault. The
corresponding RE plot shows data from sensors 3 and 4 remain beyond the limit
during the emerging fault period and the FSIIs are all less than 0.1.
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Fig. 9 Field Example 3: (a) Vibration information; (b) Y-index; (c) RE and FSII
(S = Sensor)
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RE’s ‘out of range’ is indicative of a fault emerging, and when the FSIIs all approach
a common level, close to zero, it indicates that all the sensors are behaving
consistently, evidencing a component fault as opposed to a sensor fault. It is also clear
that the FSIIs have to be used in conjunction with the RE for fault detection, since the
FSIIs are only indicative of how differently the sensors are behaving.

Overall, sensor- and machine-fault detection can be accomplished by noting:

e For normal operation, y-indices are showing Os or 1s, and REs are much lower
than the RE threshold;

e When sensor fault occurs, y-indices are higher than the threshold value 3, while
REs are higher than the RE threshold value, and FSIIs of the faulted sensor are
much higher than those of the normal sensors;

e When a highly-transient component fault occurs, y-indices remain lower than 3,
but the REs are higher than RE threshold value, and FSIIs of all sensors
approach zero.

4. Conclusion

The paper has presented two readily implementable and computationally efficient
approaches for FD using PCA based y-indices and REs. The y-indices are introduced
by using transformed PCA input matrices, and are used to detect and identify sensor
faults, while the REs and FSIIs are applied to detect and classify component- and
sensor-faults. It has been demonstrated from various field data sets that a threshold for
the y-index value of 3 is reasonable for encompassing the three categorized fault
scenarios, and is investigated using experimental trials on gas turbine systems. The
paired use of RE and FSII has been considered for component- and sensor-fault
detection and discrimination. Initially, RE is used to detect abnormal operation
conditions, which could be caused by either a transient change in measurement
amplitudes or a sensor fault. Then, FSII is used to discriminate between component-
and sensor-faults, and also to identify the faulted sensor (if one exists). The validity
and efficacy of the proposed approaches have been demonstrated through the use of
real-time operational data from gas turbine systems, and that in-operation sensor faults
can be detected and identified by both proposed approaches. The techniques are
generic, and could find use in many complex military systems with critical safety
control requirements.
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