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Abstract 
The effects of wearing a Virtual Reality headset is something that had not been fully investigated 

due to how new the consumer devices are. Using an Oculus Rift DK2, an accelerometer and 

adapting past studies by Geri (2002) and LoPresti (2003), a purpose made application was 

created that studied the effect of a Virtual Reality headset on head movement. While it was 

found that Virtual Reality headsets do not affect head movement, the process of creating the 

test application uncovered a potential issue with the Unity game engine where data spikes occur 

at regular intervals when a stream-reader is used to parse string output from a Python process.  

As the application provided a base on which to further investigate the effect of Virtual Reality 

headsets on head movement, the application was made freely available for others to replicate 

or adapt for use in further research regarding this area. 

 

Because there had been no studies that explored viewer preference within Virtual Reality, the 

second study investigated which camera view was preferred when spectating a Virtual Reality 

game in Virtual Reality. Using the HTC Vive and several camera angles, it was found that having 

a first person view of the gameplay is least preferred by spectators whereas having free roam 

around the game level is the most preferred view. Furthermore, a panning transition between 

cameras is preferred over an instant switch. Additionally, the level of presence felt in each view, 

determined by the Spatial Presence Experience Scale (Hartmann et al, 2015) had no effect on 

spectators preferred view. Although, results suggested a larger study may uncover a significant 

link. This study also led to the created application being made available for anybody who wished 

to continue research in this area as it provides a platform to implement and test other Virtual 

Reality spectator views. 
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Chapter 1 - Introduction 
Virtual Reality is defined by Greenbaum (1992) as “An alternate world filled with computer 

generated images that respond to human movements”. It has recently emerged at the forefront 

of consumer gaming hardware, with the Oculus Rift (Oculus, 2016) and HTC Vive (HTC and 

Valve, 2016) being two of the most advanced headsets released in 2016. As Virtual Reality gaming 

increases in popularity, the assumption could be made that the public are likely to want to 

spectate those playing Virtual Reality games as they do today with the live streaming of 

conventional games through sites such as twitch.tv (Twitch, 2016) and YouTube (Google, 2016). 

For example, 14 million people watched the final of the 2015 League of Legends (Riot Games, 

2009) World Championship through live streaming platforms, compared with 11 million the 

previous year. As Virtual Reality is a new way of playing games and therefore a new way of 

spectating games, the benchmarks of what makes a successful Virtual Reality spectator 

experience have yet to be fully established. 

 

Furthermore, as the usage of Virtual Reality headsets increase, the time spent wearing them for 

prolonged periods will also increase. Additionally, the increased usage of these headsets could 

affect head movement and cause injury or permanent damage. This could be due to an increased 

weight load on the head and neck. This thesis documents two studies which cover the previous 

points; the first investigates the difference in head movement when wearing a Virtual Reality 

headset and the second looks at the Virtual Reality viewing preferences of spectators through a 

comparison of different camera views and transitions. 

 

The idea for the first study was drawn from the observation of conventional video game 

spectators. it was noted that when spectating video games, head movements can change based 

on the type of game that is being watched and the viewing preferences of the spectator. For 

example, an RTS (Real Time Strategy) such as Starcraft 2 (Blizzard, 2010) could illicit different 

head movements from the spectator. Firstly, fast, darting head movements looking at each unit 

moving across the map, Second, a slow scanning pattern searching for flanking attacks by the 

enemy and third, the tracking of a specific unit making its way across the map. Furthermore, 

virtual reality will allow spectators to view games in several new environments. For example, a 

game could be projected onto a large up-close screen, forcing spectators to increase their head 

movement to look at each side of the screen. If these conventional head movements were found 

to be negatively affected when using a virtual reality headset, developers could tailor spectator 

modes to reduce head movement or implement new viewing angles fulfilling the viewing 

preferences of the spectator with a reduction in head movement. Additionally, new health 
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guidelines regarding the use of headsets could be implemented for the safety of users if 

increased head movement was found. 

 

Additionally, the first study was influenced by anecdotal evidence that suggests wearing a 

Virtual Reality headset has an impact on head movement. Determining the strength of this 

effect, or whether its observation is due to headset weight or immersion in Virtual Reality has 

not been recently explored. Furthermore, understanding these relationships may help designers 

of both Virtual Reality software and hardware by having a greater knowledge of the headset 

effect on users. The aim was to investigate these effects by seeing if there is a difference in head 

movement between Virtual Reality, non-Virtual Reality and Weighted Headset conditions. This 

study builds on non-empirical observations by Regan (1993) who noted that some users who 

wore a Virtual Reality headset moved slower and made fewer head movements than a non-

Virtual Reality condition. Various research into the effects of headset use have been completed, 

but only Geri (2002) has conducted a study that is similar to the one presented in this thesis, 

albeit with night vision goggles. In contrast to Regans’ observations, Geri found that night vision 

goggles did not significantly affect head movement. 

 

For the second study, an analysis and review of current and potential virtual reality spectator 

views were implemented to provide statistical evidence and qualitative data as to the most and 

least preferred spectator views within virtual reality with the aim of helping the design of future 

virtual reality spectator modes based upon these findings, improving the experience for 

spectators. 

 

The second study used the Spatial Presence Experience Scale (SPES) by Hartmann et al. (2015) 

to measure how “present” spectators felt within a virtual environment. The SPES was used to 

see whether presence felt within this environment contributed to view preference. That is, the 

greater the presence felt by the user in a level, the more they prefer their current view. 

Measuring presence in this study was influenced by Steuer (1993) who stated that the key to 

defining Virtual Reality is the concept of presence. By testing multiple camera views and 

transitions that are present in conventional media and Virtual Reality, the spectator’s opinion 

was recorded and their presence in each view was measured. This enabled a recommendation 

to be made as to the most favourable method of displaying Virtual Reality content to a spectator 

and to gauge the opinion of current Virtual Reality spectator modes. Due to how relatively new 

this technology is, Virtual Reality spectator methods have not been fully investigated although 
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have been implemented. An example of such is the DOTA 2 (Valve, 2013) spectator program, 

summarised by The Verge (2016). 

 

This thesis follows the chronology of processes used by the two investigations and aims to justify 

them as relevant to the research community. Firstly, the literature relevant to the first study 

looks at the current state of Virtual Reality, including a brief history of the technology. It also 

explores the associated health risks as well as previous work into the effect of head mounted 

displays on head movement. The literature then presents previous work related to the second 

study by reviewing current Virtual Reality spectator experiences within games and other Virtual 

Reality platforms. Current spectator methods within conventional media such as film, television 

and current video games are also reviewed as these methods could provide guidance to future 

Virtual Reality spectator views. Each study is then looked at in-depth regarding its design, 

methods, implementation, results, discussion and conclusions.  

Chapter 2 - Literature Review 

Existing Virtual Reality Spectator Modes 
The second study aimed to present and test various spectator views within Virtual Reality. 

Therefore, it was necessary to explore what type of games and platforms were available at the 

time to either base the study upon, or influence the design of the study platform. However, as 

the emergence of Virtual Reality games is a recent development, there is a lack of these games 

that include spectator modes. However, one of the most predominant modes that exists 

presently is the DOTA 2 (Valve, 2016) Spectator Experience. Valve describes it as a set of 

experiences that let you enjoy the world of DOTA (Defence of the Ancients) inside Virtual 

Reality, enabling you to watch live matches, replays and streams in a Virtual Reality theatre with 

up to 15 people. It also allows spectators to jump into the world itself to view the action life-

sized and browse through DOTA’s wide array of heroes to see all of them in full scale. An 

example of this spectator mode has been filmed by Polygon (2016). Another spectator mode that 

has been implemented, albeit with the intention of viewing the footage outside of Virtual Reality 

is Job Simulator by Owlchemy Labs (2016). This mode allows the player within the virtual 

environment to place a camera within their level which lets spectators view gameplay from 

multiple angles. Furthermore, Battlerite by Stunlock Studios (2016), features a natively 

implemented Virtual Reality spectator mode where viewers navigate around the map as the 

game is being played. It also allows viewers to direct their own coverage of matches too, by 

moving the in-game camera using virtual reality controllers. 
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Cameras which allow real world filming to be implemented within virtual reality have also 

become more widespread, with social media platforms such as Facebook and YouTube allowing 

the upload of 360-degree videos and images that can be viewed inside or outside Virtual Reality. 

Known as immersive or spherical videos, 360-degree videos are recording using either multiple 

cameras or an omnidirectional camera recording in each direction. This footage can then be 

stitched together to create the illusion of being within a picture or video. Virtual Desktop (Guy 

Godin, 2016) is one of several applications that have been designed to display 360-degree media. 

It allows users to render their desktop view within Virtual Reality and use their headset as an 

additional computer monitor. It also allows users to stream and play 360-degree videos from 

their own files or those which have been uploaded to an online media platform.  

Outside of game implementations, there are other methods that have been, or will be 

implemented to allow conventional video games to be viewed within Virtual Reality. JauntVR 

(2015) uses multiple 360-degree cameras to place the viewer within the crowed at various esport 

events. UploadVR (2015) noted that JauntVR intends to capture at least three different angles, 

with one camera behind each team and another placed at the front of the stage overlooking the 

audience. While Jaunt intends to focus on the core experience initially, they may experiment 

with some graphical elements such as statistic boards or overlays. Outside of Virtual Reality 

games, companies such as NextVR (2016) have utilised 360-degree cameras and placed them at 

various real world events allowing viewers using Virtual Reality to experience being within the 

crowd. 

 

Conventional Spectator Modes 

Looking at conventional spectator methods provided a different perspective of consuming 

media and helped to broaden the potential spectator views that were considered to implement 

within virtual reality for use in the second study. Heiderich (2016) stated that cinematography 

is the art of visual storytelling, controlling what the viewer sees and how the image of a scene is 

presented. Mascelli (1998) defined the “Five C’s of Cinematography”; camera angles, continuity, 

cutting, close-up and composition whereby each component is essential to the success of the 

spectator experience. Chandler (2001) elaborated on these factors by stating that television and 

film often use common conventions referred to as the “grammar” for conveying meaning 

through camera techniques. Although, these conventions are often broken for deliberate effect. 

Regarding the distances used in camera views, Chandler notes that there are four. The long shot, 

which shows all or most of a large subject and usually much of the surroundings. The 

establishing shot, which is used to set the scene and is often a variation of the long shot called 

the “Extreme long shot” where the camera is at its furthest away from the subject, emphasising 
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the background. The medium shot, where the subject or actor and its setting occupy roughly 

equal areas in the frame. Finally, the close-up shot which shows the subject in detail so that it 

fills up the screen.  

 

Chandler (2001) provided examples of camera angles in film and television which are used. For 

example, a high angle, where the camera looks down upon the character, is used to make the 

viewer feel more powerful, suggesting an air of detachment. In contrast, a low angle shot, where 

the camera is placed below the character, exaggerates the importance of that character. A point 

of view shot is made from a camera position at the line of sight of the performer who is to be 

watching the action shown. Additionally, wide-angle shots are used to give a broad field of view 

within the scene using a wide angled lens. In terms of camera movement, traditional filming 

techniques include zoom, whereby the camera does not move, but focuses from a long shot to 

a close-up while the subject is still being shown and therefore magnified upon completion of 

the transition. This transition can also be reversed whereby the opposite effect is achieved. A 

following pan and “Dollying” are two additional camera movements that are used to track a 

subject. The following pan involves the camera swivelling to follow a moving subject whilst 

remaining in the same position. Dollying tracks the position of the subject just as the following 

pan but involves the camera itself being moved towards or away from its subject.  

 

Tomlinson et al (2000) stated that most movies adhere to the same basic conventions about 

shot choice, sequence assembly, scene construction and lighting. Examples of these conventions 

include looking over the shoulder of a character to see what it is seeing, placing a moving 

character in the frame such that it is moving toward the centre of  the screen and choosing a 

shot of a character’s face to show that character’s emotion. Chowdhury (2016) discusses the 

subject of broadcasting live sports events, where the camera angles and viewing methods must 

change based upon the type of sport that are being viewed. For example, American Football 

games are viewed using a wide-angle camera to view a large section of the pitch, Basketball has 

the width of the court within the entire shot, panning as the players move around the court. 

Finally, Volleyball is viewed with a single camera view, which displays the entire court in an 

elevated, wide-angle view.  

 

Tomlinson et al (2000) also noted that the difference between conventional media and 

interactive media such as games is that the visual experience is different every time it is viewed. 

Video games by nature are spectated when they are being played, using multiple camera angles 
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to increase immersion or to provide a static view of the world. In terms of spectating of games 

through a defined spectator mode, examples being those included in Starcraft 2 (Blizzard, 2010) 

or League of Legends (Riot Games, 2009) the spectator methods often provide a different 

viewing experience compared to those playing the game. For example, the Starcraft 2 spectator 

mode provides information to those spectating that would be considered cheating if the player 

had access to the same information. Spectators can display overlays which show how many 

combat units each player has, resources collected, position on the map and buildings in each 

base. This altered view is similar to the League of Legends spectator view, where the spectator 

of the game views the same camera angle as those playing the game, but has access to more 

information, such as the position of enemy players and the gold collected. If this information 

was known by every player, it would diminish the competitiveness of the game. The spectators 

also have the option to switch between players in the game, letting them view actions of each 

player independently.  

 

Previous Virtual Reality Spectator Work 
Although few studies have been completed into spectating Virtual Reality games specifically, 

looking at what has been investigated allowed the second study to be targeted where new 

knowledge could benefit the research community most. it is worth noting that Amerson and 

Kime (2000) proposed a system called FILM (Film, Idiom, Language and Model) that aimed to 

create an interactive narrative experience within three dimensional virtual worlds. The FILM 

uses common cinematographic techniques to construct camera placements based on input from 

a narrative planner. Information about common film idioms were encoded within a scene tree 

using the created FILM programming language. These encoded objects were used in 

conjunction with the narrative planner inputs to constrain the location and orientation of the 

camera for viewing an action at execution time. Similarly, Cavazza et al. (2010) presented a 

prototype of a real-time cinematic control for interactive storytelling, whereby a virtual director 

chose camera views within the three-dimensional world based upon the specification of the 

current event occurring within the scene. Examples such as the type of event, number of scene 

participants and story context were all used by the virtual director to choose the correct 

cinematic idiom. These methods could potentially be utilised within a video game spectating 

context, where the view of the game is automatically curated by tools such as these to display 

the most interesting segments of the game.  

 

Another spectator method involves the projection of Virtual Reality using methods such as the 

CAVE developed by Cruz-Neira et al. (1993). The CAVE surrounds viewers with video projection 
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displays, in combination with head tracking and stereoscopy. This allows multiple people to 

share a virtual reality experience without the need to wear a head mounted display. 

Czernuszenko et al (1998) described the CAVE as a multi-person 900 cubic foot theatre, with 

images projected on the walls which are screens and projected down onto the floor. Four 

projectors, one for each screen, are connected to separate or split graphics pipes in one or more 

high end workstations. In its current configuration, 1024 x 768 resolution stereoscopic images 

are displayed on each screen at 96Hz and viewers wear shutter glasses to view the images. One 

user's head is tracked with a six degree of freedom tracking system, and images are generated 

from that user's viewpoint. Additionally, a tracked “Wand” is used containing three buttons and 

a small, pressure-sensitive joystick that viewers can use to control CAVE applications. The CAVE 

produces a large angle of view, panorama and stereo high-resolution head-tracked images in an 

environment where five to ten people can share the experience. 

 

Czernuszenko et al (1998) presented two other projection based virtual reality displays, the 

ImmersaDesk and the Infinity Wall. The ImmersaDesk, developed in 1994 is a drafting table 

Virtual Reality display. It features a 67 x 50-inch rear-projected screen at a 45-degree angle. Up 

to five users wear shutter glasses to view high resolution, stereoscopic, head-tracked images. 

The ImmersaDesk screen fills most of a user's field of view, and at the same time enables the 

user to look forward and down. One user's head is tracked, allowing an accurate perspective to 

be generated. A tracked wand is also used, so that the user can interact with the environment. 

The Infinity wall is an extension of the PowerWall designed by the University of Minnesota and 

is designed for a larger audience group featuring larger screens compared to the CAVE. 

Although it sacrifices panoramic view for increased screen resolution, the Infinity Wall features 

a stereoscopic display and six degrees of freedom tracking, with users wearing shutter glasses as 

used in the CAVE and ImmersaDesk projectors. 

 

Presence and Virtual Reality 

Steuer (1993) stated that the key to defining Virtual Reality in terms of human experience rather 

than hardware is the concept of presence, defined as the sense of being in an environment. 

Furthermore, it refers to the experience of natural surroundings. That is, surroundings in which 

sensory input impinges directly upon the organs of sense. This link between presence and 

Virtual Reality influenced the question asked in the second study of if these two subjects are 

statistically linked. Whereby the level of presence felt effected the positive or negative 

experience when in a virtual environment. If a link was found, future implementations of virtual 

reality spectator modes could put more emphasis on increasing the level of presence felt by the 
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spectator, improving their overall experience and making virtual reality spectating a more 

compelling choice over conventional methods. 

 

Presence was defined by Barfield and Weghorst (1993) as the sensation of non-mediation while 

experiencing a meditated environment. In other words, media experiences such as Virtual 

Reality can be so absorbing and compelling that the observer loses sense of his or her physical 

surroundings and responds physically and emotionally in a way that is analogous to being in 

the mediated place. Additionally, Gibson (1966) stated that many perceptual factors contribute 

to generating presence, including input from some or all sensory channels, as well as more 

mindful, attentional, perceptual and other mental processes that assimilate incoming sensory 

data with current concerns and past experiences.  

 

This is elaborated by Loomis (1992) who added that presence is closely related to the 

phenomenon of distal attribution or externalisation, which refer to the referencing of our 

perceptions to an external space beyond the limits of sensory organs themselves. Presence has 

also been subdivided further by researchers who have coined the term “Telepresence”, defined 

by Michitaka (1998) as the sense of being in some remote location represented by the medium 

and “Social Presence” defined by Zhao (2003) as the sensation of being with and interacting with 

someone in another place. 

 

Burdea and Coiffet (2003) linked virtual reality and presence by stating that the hardware and 

software used to create a Virtual Reality system are designed to replicate the information 

available to the sensory and perceptual system in the physical world. In other words, a computer 

and its peripheral devices produce outputs that impinge on the body’s various senses, resulting 

in convincing illusions for each of these senses, inducing a sense of presence. Furthermore, Bohil 

et al (2009) states that the more one can provide the human sensory system with sensory inputs 

that simulate and effectively mimic those encountered in nature, the more convincing the 

resulting perceptual and cognitive experience will be for the user. Bohil et al. (2009) continued 

by saying that the most compelling virtual reality environments are implementations that 

envelop the user in a virtual world, surrounding the user with stereoscopic visual imagery and 

sound, tracking body motion, and responding to behaviour in the environment. Biocca (1996) 

stated that the goal of Virtual Reality environments is a computer-generated simulation that is 

indistinguishable to the user from its real-world equivalent. 
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Van Baren and Ijsselsteijn (2004) found that post-test questionnaires are the most frequently 

used measure of presence and that many different questionnaires have been developed. 

Furthermore, the questionnaires vary widely in scope and appearance, depending on the 

author’s conceptualisation of presence and their context of application. Some studies have used 

only one general item addressing presence, while others have tried to develop questionnaires 

reflecting the presumed multidimensional structure of presence of others. Lessiter et al. (2001) 

defined a criterion for presence questionnaires; Understanding of presence should not be 

assumed by asking how present participants feel, questions should avoid addressing two issues 

in one question, response options should ideally be consistent across items, questions should 

not make reference to specific media system and content properties, measures should be piloted 

on participants of a range of media systems/contents and questionnaires should be piloted with 

a sufficient number of subjects. 

 

Health concerns of Virtual Reality 
As virtual reality spectating of video games continues to increase, investigating the potential 

health issues that could arise from extended periods of time wearing a virtual reality headset 

was beneficial in informing the decision of which area to specifically target when creating the 

first study. One of the main discussions regarding the health effects of Virtual Reality is motion 

sickness. It is defined by Tyler and Bard (1949) as a specific disorder which is evoked in 

susceptible individuals after being subjected to movements that have certain characteristics. 

Kennedy and Frank (1985) elaborate by stating that motion sickness is a general term for abrupt, 

periodic or unnatural accelerations. Oman (1990) defines it as a general term describing a group 

of common nausea syndromes originally attributed to overstimulation of the vestibular organs 

of the inner ear. For example, you can get motion sickness when travelling by car because your 

eyes tell your brain that you’re travelling at more than 30 miles per hour, but your vestibular 

system tells your brain you’re sitting still (NHS, 2016). 

 

Motion Sickness within a Virtual Reality context has been discussed as “Cybersickness” by 

Laviola Jr (2000) who states that it is distinct from motion sickness in that the user is often 

stationary, but has a compelling sense of self motion through moving visual imagery. Laviola Jr 

also notes that the effects of Cybersickness are like motion sickness in that the user can 

experience symptoms that include eye strain, headache, pallor, sweating, dryness of mouth, 

fullness of stomach, disorientation, vertigo, ataxia and vomiting. As with motion sickness, 

vestibular stimulation alone can be sufficient to induce motion sickness (Money, 1970) although 

vision can also be a contributing factor (Kennedy et al, 1988). However, Cybersickness can occur 
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with visual stimulation and no vestibular stimulation. Kellog (1980) suggests that Cybersickness 

can also develop in the hours following Virtual Reality usage and can linger for hours and in 

some extreme cases, for days (Gower, 1989). 

 

Laviola Jr (2000) states that there are three main theories as to the cause of Cybersickness. The 

Sensory Conflict Theory, the Poison Theory and the Postural Instability Theory. The Sensory 

Conflict Theory is the most widely accepted view as to the cause of Cybersickness (Reason and 

Brand, 1975). The theory is based on the premise that discrepancies between the senses that 

provide information about the body’s orientation and motion cause a perpetual conflict which 

the body does not know how to handle. The Poison theory, discussed by Treisman (1977) is an 

attempt to explain why motion sickness and cybersickness occur from an evolutionary 

standpoint. The theory suggests that the ingestion of poison causes physiological effects 

involving the coordination of the visual, vestibular and other sensory input systems. The adverse 

stimulation found in some virtual environments can affect the visual and vestibular system in 

such a way that the body misreads the information and thinks it has ingested a toxic substance, 

causing an emetic response. Finally, the Postural Instability Theory, developed by Riccio and 

Stoffregen (1991) is centred on the idea that one of the primary behavioural goals in humans is 

to maintain postural stability. Postural Stability is defined as the state in which uncontrolled 

movements of the perception and action systems are minimised. 

 

As well as the theories outlined above, there are other technological issues that attribute 

themselves to inducing Cybersickness. For example, Pausch et al. (1992) stated that lag provides 

the user of Virtual Reality with an unsettling delay that can cause Cybersickness, where the user 

must wait for images to appear where they are expected to be. Lag was defined by Pausch et al. 

as the time between a user initiating an action and the action occurring. Biocca (1992) found 

that errors in the position tracking of users within a virtual environment has the potential to 

result in symptoms relating to Cybersickness such as dizziness and lack of concentration. 

Furthermore, Harwood and Foley (1987) stated that flicker, the perception of the user to the 

refresh rate of a screen, has been shown as a contributing factor in inducing Cybersickness 

symptoms. Pausch et al. added that the perception of flicker differs between individuals and 

depends on their flicker frequency threshold, the point at which flicker becomes visually 

perceptible. Laviola Jr (2000) stated that a refresh rate of 30Hz is usually good enough to remove 

perceived flicker. McCauley and Sharkey (1992) also noted that sickness frequency depends on 

the type of visuals within the Virtual Reality application. These visuals were categorised as 
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“Near” in which the user is stationary and all objects are within the user’s proximity and the 

absence of Vection (illusionary self-motion) and “Far” which involve distant objects, self-motion 

through the application and Vection. It is in these applications that vestibular input does not 

correspond to the visual display. McCauley and Sharkey noted that “Far” applications were more 

likely to cause Cybersickness. 

 

Additionally, there have been findings regarding factors that affect susceptibility to 

Cybersickness, irrespective of the type of Virtual Reality method they are using. Biocca (1992) 

found that women appear to be more susceptible to Cybersickness than men. One of the reasons 

is that women have a wider field of view. Kolasinski (1995) noted that a wider field of view 

increases flicker perception which was previously found as a contributing factor to 

Cybersickness by Pausch et al (1992). Reason and Brand (1975) found that age also plays a factor 

in the susceptibility to Cybersickness. They stated that susceptibility is greatest between the 

ages of 2 and 12 years and decreases rapidly from the ages of 12 to 21. They also claimed that 

around 50 years of age, susceptibility is almost non-existent. Furthermore, Stone (1993) found 

that eye strain is a common effect of exposure to virtual environments and is more common in 

children under twelve as their binocular vison is not fully developed. Illness is another factor 

that increases susceptibility to cybersickness. Frank et al. (1984) stated that in addition to illness, 

those who are suffering from fatigue, sleep loss, hangover, upset stomach, stress, head colds, 

flu, ear infection or respiratory illness should avoid virtual environment simulations.  

 

The position of a user when interacting with a virtual environment also plays a role in their 

susceptibility to Cybersickness. Riccio et al (1993) found that sitting down appears to be a better 

position than standing up when it comes to reducing Cybersickness. Furthermore, the postural 

instability theory suggests that by sitting down, the demands on postural control are reduced. 

Reason and Brand (1975) added that there is a significant reduction in motion sickness 

symptoms when an individual adopts a supine position. They attributed this to the restricted 

motion of the head.  

 

Elaborating upon posture when using Virtual Reality headset, Costello (1997) noted that those 

wearing older headsets were observed propping up the weight of the headset with one hand and 

interacting with the environment with the other. Di Zio and Lackner (1992) consider the role of 

headsets in motion sickness experiences, noting that the gravitational force that effects the 

inner ear also determines the effective weight on the head. Their experiment showed that 
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wearing a 600g weight on the head increased the susceptibility of motion sickness. Costello also 

reported that the long-term effect of this unnatural posture was difficult to quantify, but 

discomfort was often reported when using heavy Virtual Reality headsets. Although this issue 

will become less significant as headsets become lighter, it is important to realise that the weight 

of the headset does influence the posture of its user. So (1994) suggested that additional strain 

could be placed on the neck if the user remains relatively still and that potential issues could be 

exasperated by poorly fitting and poorly balanced headsets. Ultimately, this issue will cease to 

be a major drawback of Virtual Reality headsets. 

 

Knight and Baber (2007) stated that weight has a limited, detailed and direct attention regarding 

head mounted displays. Furthermore, wearing a head mounted display can force wearers to 

modify their neck posture. As such, the musculoskeletal system may be placed under increased 

levels of stress. Head mounted displays could dictate modifications in neck posture, which may 

have a detrimental effect and compound the weight effect of the headset. The results of Knight 

and Baber’s study found that an unloaded head result in no signs of musculoskeletal fatigue 

after 10 mins, whereas signs of fatigue can be induced after 4 minutes with a load of 0.5 kg 

attached to the front of the head, and after two minutes with a load of 2kg. Additionally, 

Abeysekera and Shahnavaz (1988) found that headsets with a weight between 350g and 1450g 

have a significant effect on the neck of users. In a separate study, Knight and Baber (2004) found 

that increased neck muscle activity and perceived pain attributable to increased head load was 

compounded when the neck was flexed and rotated. They concluded that the use of head 

mounted display presents a risk of detrimental effects to musculoskeletal system and that 

determining the effect of the added weight to the head required a knowledge of working 

postures. 

 

Gupta (1996) and Viirre (1994) stated that there is a risk of injury whilst using a head mounted 

display. Viirre noted that when a user is wearing a head mounted display, they are functionally 

blind in the real world. This can lead to collision with real world objects or headset cabling. 

Even if the user has some external vision, the immersive scene may distract attention from the 

outside world. Both Gupta and Viirre suggest that users be kept within a “safe zone” to minimize 

injury risk. Additionally, repetitive strain injuries (RSI) are another area of concern. Howarth 

(1994) argued that head movement within virtual environments be kept as natural as possible 

to alleviate any potential RSI. Howarth also suggests that interaction techniques that require 

continual repetitive movement be kept to a minimum, as it would be for a real-world task. 
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Head Tracking Studies 
After looking at the health concerns of Virtual Reality, the first study was focused on how the 

headsets effect head movement. Therefore, investigating previous studies on the subject helped 

to influence its design. McKnight (1995) found that a reduced field of view within a motorcycle 

helmet resulted in an increase in head movement. Additionally, Venturino (1990) concluded 

that the smaller the field of view, the greater the displacement and risk of injury. Reduced field 

of view and head movement is relevant to Virtual Reality headsets as the natural field of view of 

humans is close to 180 degrees whereas both the Oculus Rift and HTC Vive provide 110 degrees 

of view (Digital Trends, 2016). The increased movement, in addition to the potential head 

displacement, corresponds with Knight and Baber (2004) who stated that headsets increased 

neck muscle activity. Furthermore, the weight of both the Oculus Rift (470g) and HTC Vive 

(555g) are above the threshold of 350g recorded by Abeysekera and Shahnavaz (1988) where 

weight of a head mounted display could have a significant effect on the neck. 

 
So (2000) found that most investigations into head tracking have used symmetrically shaped 

targets. For example, Sirachi et al (1978), Wells and Griffin (1987) and So and Griffin (1996) all 

used circles in tasks implemented within their studies. Additionally, both So (2000) and Gerhart 

(1991) stated that the use of predictor displays and previews of future target positions improved 

manual tracking performance and significantly reduce head tracking errors. So (2000) stated 

that to provide a direction cue to a circular target moving along a predetermined path, future 

target positions should be shown in advance in the form of a trace. The length of the trace is 

determined by the lead time of future target positions. Furthermore, there is an absence of a 

significant effect of practice with the use of the look-ahead trace. This suggests that a trace 

provides a natural way to provide direction and movement cues. Additionally, when tracking a 

circular target, the use of a look-ahead trace can reduce head tracking phase lags, head tracking 

errors and subjective ratings of task difficulty. 

 

Geri (2002) looked at the effect of head movement in a visual search task using night vision 

goggles. Geri described night vision goggles as a head mounted display which provide a 

restricted field of view and have other characteristics that may affect head movements used in 

a visual search, not unlike a Virtual Reality headset. The study measured head scan patterns in 

two dimensions (Pitch and Yaw), as participants searched for a target image on a high and low 

resolution background. The results of this study suggested that the night vision goggles did not 

significantly affect any of the individual head movement variables. However, Geri did note that 
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although the results were not statistically significant, both head-scan speed and amplitude were 

higher when wearing night vision goggles compared to not wearing googles. 

 

LoPresti (2003) analysed head movements in the context of two computer exercises, an icon 

selection task and a tracking task using a head mounted display. In the tracking task, a circular 

target would appear at the centre of the screen. The target would begin to move in one of eight 

directions, with the participant instructed to track the target circle as close as possible. Once 

the target had reached the end of its path, it would disappear and a new target would appear in 

the centre of the screen. Each target moved from the centre to an edge of the screen. The 

selection task involved a circle that would appear at the centre of the screen. Once the 

participant’s gaze remained at the circle for a short period, the circle would appear elsewhere 

on the screen, with the user moving their head to that position. Within the virtual environment 

of these tasks, the participant was sat in a large wire mesh sphere. DeFrate (1999) found this 

display method helps participants perform standardised movement patterns, therefore assisting 

in a standardised measure of head movement.  

 

History of Virtual Reality 
To fully embrace the topic of this thesis, it was important to first investigate where Virtual 

Reality started from and how it has evolved from its early iterations as an “experience” and its 

transition into a video gaming platform. This section looks at the major progressions within 

virtual reality from its creation to the headsets of today. 

 

Virtual Reality was defined by Greenbaum (1992) as “An alternate world filled with computer 

generated images that respond to human movements”. Additionally, Steuer (1993) stated that it 

is a collection of technological hardware including computers, head-mounted displays, 

headphones and motion sensing gloves. However, today’s headsets do not include motion 

sensing gloves but a physical controller such as that included with the HTC Vive (HTC and 

Valve, 2016). Steuer (1993) noted that previous definitions refer to specific technological 

systems, meaning the application of these definitions is limited to those technologies. This 

statement is enforced by previous definitions of Virtual Reality which mention the hardware 

used in various systems over the experience felt by its users. For example, Coates (1992) stated 

that Virtual Reality is the electronic simulation of environments experienced via head mounted 

eye goggles and wired clothing, enabling the end user to interact in realistic, three-dimensional 

situations. Another hardware based definition by Krueger (1991) referred to Virtual Reality as a 

three-dimensional reality implemented with stereo viewing goggles and reality gloves. 
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Steuer (1993) suggested that the key to defining Virtual Reality is in terms of human experience 

rather than hardware, as well as the concept of presence. Gibson (1979) described presence as 

the experience of one’s physical environment; referring not to one’s surroundings as mediated 

by both automatic and controlled mental processes. By employing the concept of “telepresence”, 

which has been used to describe any medium-induced sense of presence, Steuer (1993) created 

a new definition of Virtual Reality as “A real or simulated environment in which a perceiver 

experiences telepresence”. When referring to the Virtual Reality headsets today, Steuer’s 

definition encompasses experiences the headsets provide above and beyond their hardware. 

 

Wheatstone’s (1838) research into viewing side by side images through a stereoscope, giving the 

perception of depth and immersion started the journey to current Virtual Reality. Morton Heilig 

then developed the Sensorama (Patented 1962) in 1950 which is defined as a multimodal 

“Experience Theatre”. Kock (2009) described the Sensorama as simulating the odours of a virtual 

environment as well as vibrations, wind and sound. Heilig then developed the Telesphere Mask 

(Patented 1960), which was one of the first examples of a head-mounted display, albeit with 

zero motion tracking. Per its patents, the Telesphere Mask comprises of a hollow casing, a pair 

of optical units, a pair of television tubes, a pair of earphones and a pair of discharge nozzles, 

all working together so the user can comfortably see images, hear sound effects and be sensitive 

to the air discharge. Comparing this description to headsets available today, Heilig’s 1960’s 

creation is not too dissimilar.  

 

 

Figure 1 - The Sensorama (Left) and the Telesphere Mask (Right) by Morton Heilig. 
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In 1961, the first motion tracking head mounted display was created in 1965 by Comeau and 

Bryan of the Philco Corporation. Dubbed the Headsight, it was designed to remotely view 

dangerous situations through closed circuit television. Although this does not necessarily class 

as Virtual Reality, it is the first instance of viewing tracked images through a head mounted 

display. It also shares some of the same characteristics as current devices. Regarding these 

characteristics of Virtual Reality devices, Sutherland (1965) described what he envisaged as the 

“Ultimate Display” which pertained to the perfect Virtual Reality experience. The ultimate 

display would be a room within which a computer can control the existence of matter. A chair 

would be good enough to sit in, handcuffs displayed would be confining, and a bullet displayed 

would be fatal. 

 

In 1968, Sutherland created what was referred to as the “Sword of Damocles”, which aimed to 

present its user with a perspective image that changed as they moved. This headset was the first 

to display a three-dimensional, computer generated image rather than a stereoscopic image. In 

1987, the formal term “Virtual Reality” was coined by Jarion Lanier, the founder of the Visual 

Programming Lab (VPL). In 1989, the VPL became the first company to sell consumer Virtual 

Reality goggles with the Eyephone. Blanchard et al. (1990) describes the Eyphone as a head-

mounted device consisting of twin LCD screens that completely cover the eyes and are offset 

from each other by six degrees so users get a binocular view of the virtual world. Images on the 

screens are updated in real-time and correspond to the movement of the user’s head. It also 

provides earphones that deliver three-dimensional sound to each ear. If we compare the features 

of the headsets mentioned so far, it would seem then that the overall design of Virtual Reality 

headsets had mostly been defined by the late 1980’s with influences stretching back to Heilig’s 

Telesphere Mask in 1960. 

 

Figure 2 - The "Sword of Damocles by Sutherland (1968)" 
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Figure 3 - The "Eyphone" by VPL (1989) 

Virtual Reality headsets were released in the 1990’s with Sega announcing a headset for their 

“Genesis” console in 1993 and Nintendo releasing the “Virtual Boy” in 1995. However, these 

headsets were plagued with performance issues and were cancelled and discontinued by their 

manufactures respectively. In 2013, Oculus released the first development kit of its “Rift” Virtual 

Reality headset. After multiple iterations, the first consumer version was released in 2016 along 

with the HTC Vive by HTC and Valve. The consumer Rift features a design similar to the 

Eyphone by VPL. However, with a OLED display, 2160 x 1200 resolution and a 90Hz refresh rate, 

it goes far beyond previous Virtual Reality headsets (Digital Trends, 2016). The HTC Vive 

features the same specifications as the Rift but also includes 15 x 15 feet tracking area which 

allows its users to walk around a virtual environment when wearing the headset. It also provides 

motion tracked controllers to interact with the virtual world. Oculus plans to release motion 

tracked controllers in late 2016. 

 

 

Figure 4 - Sega Genesis headset (Left) (Sega, 1990) and the Virtual Boy (Right) (Nintendo, 1993) 
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Finally, the technology of Virtual Reality has expanded beyond that of headsets attached to 

computers and have been implemented within mobile phones. Through the usage of a headset 

peripheral, users can attach their phone in front of their eyes and experience wireless Virtual 

Reality.  

 

Literature Summary 
This literature review looked at many topics concerning virtual reality, it looked at the history 

of virtual reality from its inception through to todays advanced headsets to provide a broad 

overview of how far this technology has advanced and how it has migrated from use as an 

experience to a video game platform. The health concerns of virtual reality were also looked at 

to provide direction to the studies presented in this thesis. Without an understanding of the 

potential effect of the virtual reality headsets on head movement for the first study and how 

motion sickness is caused and prevented for the second study, the quality of both studies would 

be diminished. Additionally, previous work into existing virtual reality spectator modes and 

head tracking studies were also investigated and helped to influence the direction of the studies 

within this thesis. By looking at what had already been done, the studies could adapt previous 

work and target new areas of the subject matter, with the aim of providing better understanding 

of virtual reality spectating and head movement. 

 

Conventional spectator modes were also looked at in the same manner with the aim of trying 

to see what spectator methods are currently used and if they could be adapted into a virtual 

reality format. Furthermore, current virtual reality spectator modes were looked at for 

inspiration for the second study to find successful views that could be implemented or adapted 

and to investigate the methods that made these current views so successful. Finally, an 

investigation into how presence influenced virtual reality experience was looked to provide a 

background for the second study whereby the link between the level of presence felt by 

spectators and their preferred spectator view was investigated. 

Chapter 3 – Study 1 
The first study was influenced by previous studies used to investigate the effect of head mounted 

displays on head movement and apply those methods to a current Virtual Reality headset as 

well as to provide developers with current information on how conventional head movement 

when spectating video games is affected by wearing a Virtual Reality Headset. Using an 

application created in the Unity game engine (Unity, 2016), the purpose of this study was to 

provide up to date information on the effects of a Virtual Reality headset on head movement. It 
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also aimed to provide an open source, standardised application that could be used again with 

other Virtual Reality headsets. Furthermore, this study resulted in the creation of a tailored data 

analysis script which enabled the automated generation of test results. Both the test and analysis 

applications including results and graphs can be found in the “Study 1” folder on the memory 

stick provided with this document. 

 

Hypothesis 
It was hypothesised that under the Virtual Reality condition, acceleration of the head would be 

slower than in the Non-Virtual Reality condition due to the additional weight of the Virtual 

Reality headset. This hypothesis was based on findings by Regan (1993) who stated that users 

who had worn virtual reality headsets in the past moved their heads cautiously. Although, these 

findings were contradicted by Geri (2002) who found no significant effect of head mounted 

displays on head movement. However, the addition of the virtual environment could affect head 

movement more than the night vision goggles used by Geri. 

 

Methods 

Conditions 
This study had three conditions which were used to measure the effect of an Oculus Rift 

Development Kit 2 (DK2) (Oculus, 2015) Virtual Reality headset on head movement. The first 

condition was classed as “Non-Virtual Reality” (NVR) where the participant viewed the chosen 

head movement tasks outside the virtual environment. The second condition was called “Non-

Virtual Reality Weighted” in which the same tasks as NVR were completed but participants were 

asked to wear a weighted headset of 440g, the same weight as the DK2. This condition would 

allow a comparison of head movement outside and inside a virtual environment to see if the 

weight of the headset contributed to a difference in head movement. The third condition was 

called “Virtual Reality” (VR), in this condition the real-world setting of the experiment was 

replicated in a virtual environment so the location and tasks remained as consistent as possible. 

Participants completed the same tasks as in the other two conditions. Figure 1 shows a 

comparison between the real-world and virtual iterations of the experiment location. 
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Figure 5 – Virtual and Real-World versions of the test environment. 

 

Tests Used 
This study adapted three methods used by Geri (2002) and LoPresti (2003) to evoke head 

movement from participants, each study from LoPresti was set on a wire mesh which was shown 

to aid uniform head movement by DeFrate (1999). Figure 2 displays the first task modelled from 

the method used by Geri. For this task, the participant searched for a target which became 

visible over time on a high-resolution background. The target position was randomised to 

prevent any practice effect as participants had to complete the test for each condition. The 

random target position allowed for the collection of scanning head movements while 

participants searched for the target. The second test, shown in Figure 3, is adapted from a task 

by LoPresti. A circle moved slowly to eight different positions on the screen, up and down, left 

and right and each diagonal location. This test aimed to evoke slow, deliberate head 

movements. Finally, the third test was also adapted from LoPresti with the same construction 

of task two but the target circle jumped instantly to each position to provoke accelerated head 

movements.  

 
Figure 6 - Adaptation of Geri (2002). 
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Figure 7 – Adaptation of LoPresti (2003) for use in task 2 and 3. 

 

Data Collection and Analysis 
To collect the data, an Adafruit BNO055 accelerometer (Adafruit, 2016) was attached to a 

running cap which was worn by participants (Figure 4). The accelerometer recorded the 

Heading, Roll and Pitch of head movements and was attached to the PC running the test 

application via a USB cable. Furthermore, the test application also recorded the duration of each 

task as well as the start time. The data was written to a .csv file for each participant in addition 

to the update time for each recording. This is specified as every 0.02 seconds due to the speed 

of the Unity game engine update tick. Data was only recorded to the .csv file when a task had 

started and stopped recording when the task had finished, ensuring only necessary data was 

collected. All data was zero normalised and each recording was manually added to nine new 

.csv files, one for each condition and task combination. 

 
Figure 8 - Running cap and Accelerometer. 
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The nine .csv files were loaded into an R script created specifically to work with the structure 

and types of data collected for the study. The script interpolated each recording to remove 

duplicate readings so that changes in head movement were easier to observe. Using the 

interpolated data, the Acceleration, Velocity and Movement of each participant within each 

condition and task were plotted in a time series graph by the script. The data was then 

condensed down by the script into an RMS (Root, Mean, Square) value for each participant for 

each condition and task, creating nine new tables with a single value for the Heading, Roll and 

Pitch. These RMS tables were then used for an ANOVA analysis comparing the Acceleration, 

Velocity and Movement of the data from each condition and task, with that of the same type 

from a different condition. For example, “Non-Virtual Reality Task 1 Pitch” was tested against 

“Non-Virtual Reality Weighted Task 1 Pitch” to see if there was any significant variation. The 

ANOVA was repeated for each possible task and condition variation, with the script also 

producing box plot graphs to better visualise the results. The results data and graphs can be 

found in the “Study 1” folder on the memory stick provided with this document. 

 

Tools Used 
Several tools were used to create the study application. Firstly, a suitable Virtual Reality headset 

was selected. While the study was being developed, both the Oculus rift and HTC Vive 

consumer versions were not yet available. Furthermore, the HTC Vive development kit was 

unobtainable. Therefore, the Oculus Rift Development Kit 2 (DK2) was selected as it was the 

highest specification headset available. The Unity game engine (Unity, 2016) was chosen for the 

development environment as it provided a simple Virtual Reality implementation, where a level 

could be specified as being within Virtual Reality or not. This allowed switching between Virtual 

Reality and Non-Virtual Reality while the application was running, streamlining experiment 

experience for participants. Furthermore, the developer was familiar with C#, the native 

language of Unity, which reduced the overall development time and enabled faster prototyping. 

 

To implement the weighted condition, a sweatband with rolls of electrical tape attached 

weighing 440g was used. This is the same as the Oculus Rift DK2. Figure 5 shows the weighted 

headset. Although not an elegant solution, the weighted headband was a close approximation 

of the weight load experienced when wearing the DK2. This is one element of the experiment 

that should be improved upon with a more elegant solution in future iterations. Due to budget 

constraints, this method was the closest and most feasible to produce that fulfilled the aim of 

the weighted condition.  



 
 

23 
 

 
Figure 9 - Weighted headset used in the first study. 

 

To record the axis movement of the head, an Adafruit BNO055 accelerometer (Adafruit, 2016) 

was used as it provides large amounts of additional data that could be investigated in future 

studies. For this study, the absolute orientation (Euler Vector) at 100Hz was used. While the 

Oculus Rift DK2 contains a built-in accelerometer, using an independent tool was preferred to 

maintain consistency between each condition. It also provided ability to record only necessary 

data and structure it within a .csv file suitable for the requirements of this study, rather than 

work within the confines of the DK2 data stream. However, the accelerometer is programmed 

in Python. This meant that a stream reader had to be coded within the C# application allowing 

it to start and stop the Python code used to record Heading, Roll and Pitch. By integrating the 

Python code of the accelerometer in the application, a single logging script that would output 

both the application and accelerometer data into a single file for each participant could be 

created, reducing the work volume. It also meant that the application could be distributed and 

used by others as a single software package.  

 

For the data analysis, the R programming language along with its development environment R 

Studio was used. Using R allowed thousands of lines of movement data for each participant to 

be analysed automatically and accurately, reducing the overall workload and chance of human 

error due to the repetitive nature of the analysis. Using R was also preferable over other statistic 

suites as it was code based, meaning that the developer of the application could use their 

existing programming background to analyse the data instead of having to learn separate 

statistical software suite. It also allowed for each analysis task including the construction of 

graphs to be contained in a single script that could be provided alongside the study application. 
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This meant a complete experiment is available which can be replicated or altered by others as 

the source code for each aspect of the study is freely available in the “Study 1” folder. 

 

Application Overview 
The application was created in the Unity game engine and was programmed in C#. It contains 

the replication of three tests by Geri (2002) and LoPresti (2003) in both a two-dimensional and 

virtual environment. The virtual environment aimed to replicate the layout of the room the 

study took place in (Shown in Figure 1). The order of these conditions was randomised by the 

program at launch, with each task being randomised within the condition order. This meant 

that all conditions were completed in a row, but with a random task order. This reduced the 

number of times the participant would have to put on and remove the headsets. The only 

controls needed to interact with the application was the space bar or trigger on a PC compatible 

controller to begin the current task. This action was completed by the person conducting the 

study. Another feature added to the application was a persistent connection check for both the 

accelerometer and Virtual Reality headset when the application was running. This ensured that 

all elements of the experiment were functioning correctly before each participant. Figure 6 

displays a start screen of the application with notifications stating a sensor and headset 

connection error. The error messages were shown in the two-dimensional and virtual 

environments so both the participant and experiment conductor were aware of any connection 

issues and can act accordingly. The error checking persisted throughout the duration of the 

study. If there was a connection error, the error message would display and the .csv file currently 

being wrote to was deleted, ensuring no incomplete data existed when the data was analysed. 

     
Figure 10 – Start screen of the first study application.                                                        

The .csv creation was also automated. Each time the test was started, a new .csv file was created 

and set as the write target for the applications logging script. The naming conventions of each 
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file was based upon the previous file existing in the “Participant Logs” folder. For example, if 

“Participant 1” existed within the folder, the next file to be created would be “Participant 2”. In 

addition to logging data from the accelerometer and Unity, the logging script also formatted 

the data in an easy to read format. Figure 7 shows an example of this format. This ensured the 

data was understandable when it came to manually condensing the files into one for each task 

and condition combination.  

 
Figure 11 – An example of how each participant file was laid out. 

 
To record head movement data from the accelerometer, a Python stream-reader was 

implemented in the application. The script created new Python process when the test 

application started and passed a text file containing the Python code including the necessary 

compile keys. This process then sent the accelerometer data to the logging script and checked 

to see if the accelerometer was connected every update tick. This script can be found in 

Appendix 1. 

 

To ensure the experiment instructions were consistent, audio instructions were included 

between each task that instructed participants of their next action, whether that be to remove 

or put on a headset or how to complete the next task. Using this method reduced the reliance 

on a single person conducting the experiment as all the participant instructions were included 

within the application, with only a single button press required by whoever is conducting the 

experiment to start a task. The rest of the application was automated with each participant being 

instructed through each task 

 

Participants were asked to complete each task outside and inside a virtual environment, 

requiring them to wear and remove a Virtual Reality headset. To streamline the study, both the 

Virtual Reality and two-dimensional tasks were implemented in the same application, enabling 

and disabling the Virtual Reality support depending on the test condition. When inside the 

virtual environment, the study continued the same as the two-dimensional environment. Each 

task appeared on a rendered television screen with audio and visual prompts of how to complete 

each task, as in the two-dimensional condition. Figure 8 displays a task instruction within the 

Virtual Reality condition. 
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Figure 12 – Instructions for Task 1 in Virtual Reality. 

Experiment Structure 
The study was conducted in an office containing a desk, widescreen television, chair and 

computer with other peripherals required for the study including the Oculus Rift headset and 

weighted headband (Figure 9). Before each participant, the accelerometer was calibrated by 

holding it stationary until the calibration error (Figure 6) disappeared. In addition to the 

participant setup, Figure 10 displays the chair in which the experiment coordinator was seated 

including a keyboard and controller that were used to begin each task. The coordinator was sat 

behind the participant to ensure they were not a distraction, but remained available to deal with 

any issues.  

 
Figure 13 – The setting and equipment of the first study. 
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Figure 14 – The experiment setting including the coordinator chair. 

 

At the beginning of each study iteration, participants would enter the room and be asked to fill 

out a consent form (Appendix 2) agreeing to perform each task in the study. Participants would 

sit down in the chair and the coordinator would press the spacebar or trigger on a PC controller 

to begin the tasks. The application would then instruct them as to whether they needed to put 

on the weighted headset, Virtual Reality or neither (Figure 11). The application then displayed 

the instructions for the task. Apart from their head movement, the only other thing participants 

would do was to state if they were ready to begin a task after they had read the instruction 

screen. Figure 12 displays the instructions for each task. Task two and three have the same 

instruction screens. If the participant was ready, the coordinator would begin the task. 

Additionally, when completing searching task by Geri (2002), participants were asked to say 

when they had found the target image. When the image had been found, the coordinator would 

progress the application to its next screen. The rest of the study follows the sequence of 

instructing the participant of what condition and task is next until all nine task and condition 

combinations have been completed. The participant is then shown the end of test screen and 

may leave the room. The application is then restarted and the accelerometer is recalibrated 

ready for the next participant. 
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Figure 15 – Headset instruction screen. 

 
Figure 16 – Instruction screens for each task. 

 

Results 

Participants 
21 people took part in the study. No gender or age information was recorded as it was not 

relevant to this initial study. However, participants were asked to confirm they were over the 

age of 18 to conform with ethics protocol. In future iterations, gender and age could be 

investigated in addition to head movement. Previous findings by Biocca (1992) stated that 

females are more susceptible to cyber sickness and Reason and Brand (1975) stated that age 

effects the likelihood of cybersickness. Therefore, the head movements of different genders and 

ages may affect their susceptibility to cybersickness and could be measured using this study. 

 

ANOVA Findings 
As this study required many ANOVA tests, and provided a large number of results, this section 

has been broken up into different parts that discuss the significant findings within head 
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acceleration, velocity and movement. The non-significant ANOVA results as well as box plots 

of the results can be found in the “Study 1” on the provided memory stick. 

 

Acceleration 
There was some significant difference in head movement acceleration between Non-Virtual 

Reality and Non-Virtual Reality Weighted conditions in task one and three, with the Pitch 

movement being significant in task one and Heading and Pitch being significant in task 3 

(Figures 24 and 25). Task two had a significant difference in Heading acceleration between Non-

Virtual Reality Weighted and Virtual Reality conditions. Task 3 also had a significant difference 

between Non-Virtual Reality and Virtual Reality conditions in Roll acceleration. The Heading 

acceleration had no significance across tasks, with Non-Virtual Reality Weighted and Virtual 

Reality having a significant difference in task 2 (Figure 26). The Heading difference between 

Non-Virtual Reality and Non-Virtual Reality Weighted conditions were significant in task 3 

(Figure 27).  

 

There was no significant difference in heading for task one. Roll was the only significant 

recording in task three between Non-Virtual Reality and Virtual Reality conditions (Figure 28). 

However, Pitch was significant between Non-Virtual Reality and Non-Virtual Reality Weighted 

conditions in task one and task three. Pitch appears to maintain its significance between tasks. 

Although not significant in task two, the Pr (>F) value was 0.2 which could point to a close to 

significant relationship between conditions. 
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[1] "NVR Task 1 Acceleration (Pitch) ~ NVRW Task 1 Acceleration 

(Pitch)" 

                  Df   Sum Sq  Mean Sq F value Pr(>F)   

Task1Dataset_NVRW  1 0.003991 0.003991   4.538 0.0464 * 

Residuals         19 0.016713 0.000880                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 17 – Significant difference between Non-Virtual Reality Task 1 Pitch and Non-Virtual 
Reality Weighted Task 1 Pitch. 
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[1] "NVR Task 3 Acceleration (Pitch) ~ NVRW Task 3 Acceleration 

(Pitch)" 

                  Df   Sum Sq  Mean Sq F value Pr(>F)   

Task3Dataset_NVRW  1 0.004159 0.004159   4.698 0.0431 * 

Residuals         19 0.016819 0.000885                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 18 – Significant difference between Non-Virtual Reality Task 3 Pitch and Non-Virtual 
Reality Weighted Task 3 Pitch. 
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[1] "NVRW Task 2 Acceleration (Heading) ~ VR Task 2 Acceleration 

(Heading)" 

                Df   Sum Sq   Mean Sq F value Pr(>F)   

Task2Dataset_VR  1 0.002106 0.0021063   3.965  0.061 . 

Residuals       19 0.010094 0.0005312                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 19 – Significant different between Non-Virtual Reality Weighted Task 2 Heading and 
Virtual Reality Task 2 Heading. 
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[1] "NVR Task 3 Acceleration (Heading) ~ NVRW Task 3 Acceleration 

(Heading)" 

                  Df   Sum Sq   Mean Sq F value Pr(>F)   

Task3Dataset_NVRW  1 0.002532 0.0025315   3.693 0.0698 . 

Residuals         19 0.013026 0.0006856                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 20 - Significant different between Non-Virtual Reality Task 3 Heading and Non-Virtual 
Reality Weighted Task 3 Heading. 
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[1] "NVR Task 3 Acceleration (Roll) ~ VR Task 3 Acceleration (Roll)" 

                Df   Sum Sq   Mean Sq F value Pr(>F)   

Task3Dataset_VR  1 0.002492 0.0024924   3.291 0.0855 . 

Residuals       19 0.014391 0.0007574                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 21 - Significant different between Non-Virtual Reality Task 3 Roll and Virtual Reality 
Task 3 Roll. 

Velocity 
There was no significant difference in velocity for task one. However, there was a close to 

significant difference in pitch between Non-Virtual Reality and Non-Virtual Reality Weighted 

conditions, with a Pr (>F) value of 0.199. A significant difference was found between Heading in 

task two between Non-Virtual Reality and Virtual Reality (Figure 29), although this did not 

persist between tasks. There was also significance in task two and three for Pitch (Figures 30 

and 31) and Heading (Figures 32 and 33) velocity between Non-Virtual Reality and Non-Virtual 

Reality Weighted.  

 
The Heading velocity had a significant difference between Non-Virtual Reality and Virtual 

Reality for task one, but this relationship did not persist through other tasks. However, between 

tasks two and three for Non-Virtual Reality and Non-Virtual Reality Weighted, a significant 

relationship remained. This indicates that participants moved their head quicker when they 

were not wearing a weighted headset. This again could be because of the front-loaded weight 

distribution of the weighted headset compared to the Virtual Reality headset which evenly 

distributes weight. Although there was a velocity difference between Non-Virtual Reality and 

Virtual Reality in task one, it was an isolated occurrence and if the difference was significant, it 
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would have persisted between tasks as the head movement were similar for each. Pitch was also 

significant between each task for Non-Virtual Reality and Non-Virtual Reality Weighted. The 

theory holds true for Pitch as it does for heading, the front weight load of the Non-Virtual 

Reality Weighted headset may have affected head movement speed compared to not wearing a 

headset. 

 

 
 
[1] "NVR Task 2 Velocity (Heading) ~ VR Task 2 Velocity (Heading)" 

                Df   Sum Sq   Mean Sq F value Pr(>F)   

Task2Dataset_VR  1 0.002242 0.0022418     7.1 0.0153 * 

Residuals       19 0.005999 0.0003157                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 22 – Significant difference between Non-Virtual Reality Task 2 Heading Velocity and 
Virtual Reality Task 2 Heading Velocity. 
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[1] "NVR Task 3 Velocity (Pitch) ~ NVRW Task 3 Velocity (Pitch)" 

                  Df   Sum Sq  Mean Sq F value Pr(>F)   

Task3Dataset_NVRW  1 0.005498 0.005498   5.467 0.0305 * 

Residuals         19 0.019107 0.001006                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 23 - Significant difference between Non-Virtual Reality Task 3 Pitch Velocity and Virtual 
Reality Task 3 Pitch Velocity. 
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[1] "NVR Task 2 Velocity (Pitch) ~ NVRW Task 2 Velocity (Pitch)" 

                  Df   Sum Sq   Mean Sq F value Pr(>F)   

Task2Dataset_NVRW  1 0.001237 0.0012367   5.481 0.0303 * 

Residuals         19 0.004287 0.0002256                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 24 - Significant difference between Non-Virtual Reality Task 3 Pitch Velocity and Virtual 
Reality Task 3 Pitch Velocity. 
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[1] "NVR Task 2 Velocity (Heading) ~ NVRW Task 2 Velocity (Heading)" 

                  Df   Sum Sq   Mean Sq F value Pr(>F)   

Task2Dataset_NVRW  1 0.001373 0.0013730   3.799 0.0662 . 

Residuals         19 0.006868 0.0003615                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 25 - Significant difference between Non-Virtual Reality Task 2 Heading Velocity and 
Virtual Reality Task 2 Heading Velocity. 
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[1] "NVR Task 3 Velocity (Heading) ~ NVRW Task 3 Velocity (Heading)" 

                  Df  Sum Sq  Mean Sq F value   Pr(>F)     

Task3Dataset_NVRW  1 0.01345 0.013450   15.95 0.000777 *** 

Residuals         19 0.01602 0.000843                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 26 - Significant difference between Non-Virtual Reality Task 3 Heading Velocity and 
Virtual Reality Task 3 Heading Velocity. 
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Movement 
There were no significant trends across tests for movement between each test condition. This 

suggests that the movement directions of individuals do not change based on if they are wearing 

a headset or not. Although a significant relationship was found between Non-Virtual Reality 

Weighted and Virtual Reality in Pitch for task 2 (Figure 34), and Non-Virtual Reality and Virtual 

Reality for heading in task 3 (Figure 35), these two significant findings did not occur in other 

tasks. 

 

 
 
[1] "NVRW Task 2 TimeSeries (Pitch) ~ VR Task 2 TimeSeries (Pitch)" 

                Df Sum Sq Mean Sq F value Pr(>F)   

Task2Dataset_VR  1  587.2   587.2   6.512 0.0195 * 

Residuals       19 1713.2    90.2                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 27 - Significant difference between Non-Virtual Reality Weighted Task 2 Pitch Movement 
and Virtual Reality Task 2 Pitch Movement. 
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[1] "NVR Task 3 TimeSeries (Heading) ~ VR Task 3 TimeSeries (Heading)" 

                Df Sum Sq Mean Sq F value Pr(>F)   

Task3Dataset_VR  1  312.7  312.69   4.015 0.0596 . 

Residuals       19 1479.6   77.88                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 28 - Significant difference between Non-Virtual Reality Task 3 Heading Movement and 
Virtual Reality Task 3 Heading Movement. 

This study found that there is no significant difference in head movement acceleration or 

velocity when wearing a virtual reality headset. This differs from the initial hypothesis where a 

significant difference in acceleration was predicated based on previous findings by Regan (1993). 

This may be due to the effective weight distribution that current headsets provide. This theory 

is supported by findings that there was a significant difference in head movement when wearing 

a weighted headset which was front loaded with reduced weight distribution. 

 

Although this study found instances of significant differences in head movement when wearing 

a Virtual Reality headset, it could be assumed that with a practice effect applied, the significant 

findings may vanish. Therefore, this study suggests that current Virtual Reality headsets 

distribute weight effectively enough that users can move their heads in a realistic manner, with 

no effect on their head movement. This means that Virtual Reality developers should not have 

to significantly consider the effect of the headset on head movement when developing 

applications, but should still focus on how their applications effect motion/cybersickness.  
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Data Spike Troubleshooting 
During the analysis of the accelerometer data, spikes at regular time intervals were observed in 

the data plots for each participant. Shown in Figure 13, spikes were observed to occur every 5.5 

seconds on average. Further examples can be found in the “Study 1” folder on the provided 

memory stick. To identify the cause of this issue, several scenarios were investigated and are 

discussed below. A separate script was created using R to remove the spikes whereby data that 

was above a threshold of 3 degree’s difference was either added (positive spike) to or subtracted 

from (negative spike) the previous recording to bring it into the range of the other records and 

avoid altering overall trend in movement data. 

 
Figure 29 – Data spikes occurring in a Velocity plot of a participant. 

Firstly, accelerometer and its Python script was run with the Unity engine closed and a basic 

logging script added. This was to see if there was a problem with either the accelerometer or its 

script. Figure 14 shows that the only data spikes that occurred were 0 to 360-degree orientation 

changes. The test was then repeated, but this time the Unity engine was open but test 

application was not running. This was to see if just running the engine caused data spikes. 

However, the same result occurred and only 0 to 360 degree spikes were observed (Figure 15). 

This suggested that the problem was based within the application created with the engine, not 

the Unity program itself. 
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Figure 30 – Running the accelerometer and its logging script outside of Unity. 

 
Figure 31 – Running the accelerometer and its logging script with Unity open. 

As running the accelerometer using a separate logging script caused no data spikes, the next 

troubleshooting method involved using the logging script in the test application. Additionally, 

the stream-reader script which read the data from the accelerometer had a basic logging method 

implemented to run at the same time as the logging script to check if it was causing data spikes. 

Figure 16 and 17 display the results of the logging script and stream-reader logging. 
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Figure 32 – Results of the logging script. 

 
Figure 33 – Results of the stream-reader script. 

 
Both the primary and stream-reader logging methods recorded the same data spikes even when 

the accelerometer data was logged directly from the stream-reader script. Figure 17 shows the 

stream-reader script logged data for a longer period. This was because its logging was not 

controlled by the application start and stop times. As no data spikes occurred when logging 

outside the application and the logging script just formats data parsed from the stream-reader, 

it was assumed that the data spikes were being caused by the stream-reader script. 

 



 
 

45 
 

To confirm the theory of the spikes being caused by the stream-reader, the test application was 

executed with the logging script disabled and using the basic logging script in the accelerometer 

code to record data. This was to see if just the windows process of the application running 

interfered within the accelerometer and caused it to produce data spikes. If there were no spikes 

within this recorded data, it could be assumed that only something within the application could 

be causing the data spikes as the accelerometer would be running independently of the 

application. Figure 18 displays the results of this test. 

 
Figure 34 – Running the accelerometer code with the logging script disabled. 

 

The logging for this test was completed outside of the application and no data spikes occurred, 

this suggested that data spikes were caused by the stream-reader. The only reason to doubt this 

assumption is that the test application was not logging at the same time. This was unable to be 

completed as the accelerometer could not be accessed by two scripts at the same time. 

 

As the issue had been attributed to the application, the next investigation involved checking 

various performance data whilst the application was running. It was here that spikes in the 

garbage collector at the same frequency as the accelerometer spikes were observed (see Figure 

19). In consulting the Unity Documentation (Unity 2016), it was stated that the constant 

appending of strings, as done is this application to create the .csv file, increased “garbage” and 

reduced performance. Therefore, the next test involved manually increasing the rate of garbage 

collection (see Figure 20) with the intention of reducing the accumulation of garbage to see if 

the spikes in garbage collection were behind the data spikes. I was also implemented to see if 
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the “little and often” garbage collection method could provide a solution. However, Figure 21 

shows that despite having the garbage collection on every frame tick, it had no effect on 

reducing data spikes. 

 
Figure 35 – regular spikes occurring within garbage collection. 

 

 
Figure 36 – “Always On” garbage collection. 

 
Figure 37 – Data spikes with persistent garbage collection. 

 

Instead of appending to a .csv file each update tick, the primary method of the test application 

was changed to write to a .csv file when the application was closed. This meant that the program 

was only dealing with an external file after all the data had been recorded. This checked if 

accessing a file every 0.2 milliseconds was a cause of the data spikes. Figure 22 shows that even 

when writing to a .csv after the data had been recorded, the spikes still occurred. This suggests 

that it is not an issue with writing to an external file every update tick or even logging to a file 

at all. It does support the theory of the issue being contained within the stream-reader script of 

the test application as the change in logging had no effect. 
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Figure 38 – Writing to a .csv file when the application is closed. 

 

The final test involved using a StringBuilder (Microsoft, 2016) instead of appending to a file to 

see if it had a positive effect on performance and remove the data spikes. However, as Figure 

23 shows, there was no effect on the data spikes and caused 0 to 360 degree spikes which had 

not occurred with the regular appending method. 

 

 
Figure 39 – Using the StringBuilder instead of appending to csv. 
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Troubleshooting focused on the potential causes of the data spikes. The cause of the spikes 

seemed to stem from the stream-reader script as there were no data spikes when the sensor 

recorded data outside of the application. Only when the Python process output was sent to the 

stream-reader did the data spikes occur. Multiple logging methods were also tried as it was 

found that constant string appending affected performance. However even with these new 

methods, the data spikes still occurred. 

 

As to why the stream-reader caused data spikes, a potential issue may involve the standard 

output not being redirected quick enough from the accelerometer to the stream-reader meaning 

that data could be missed causing a spike. It could also be an interface problem between C# and 

Python when C# begins a Python process. Another explanation could be that the rate of data 

being passed from the accelerometer to the stream-reader buffer was too high so when the 

buffer is cleared at regular intervals, the spikes occur. It could also be an issue with how Unity 

applications handle external processed being started from within its code. However, it seems 

the problem has been isolated to the stream-reader method of retrieving data meaning that in 

the future, a new method should be implemented. If the study was to be completed again, the 

logging of the accelerometer data should be independent of the application. 

 

Discussion 

Improvements 
The quality of the weighted headset used could be improved due to the lack of weight 

distribution compared to the Virtual Reality headset used. While the weighted headset was the 

same weight as the Virtual Reality headset, the distribution of that weight was front loaded 

whereas the weight distribution of the Virtual Reality headset is even. If an evenly distributed 

headset was used, the results observed could be different and a closer representation of the 

effect of pure weight on the head of a user could be fully investigated. 

 

Another improvement would be the logging of accelerometer data. At present, when data is 

recorded from the accelerometer, the logging script in the application rounds it up to nearest 

10 before it writes it to a .csv file. While this does not change the highly significant differences 

found, it could have possibly removed the differences that were just above significant and those 

that were found to be insignificant such as those observed in the acceleration ANOVA could 

have been significant findings. 
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As detailed by the data spikes section, by trying to integrate a stream-reader in the application, 

issues occurred with the data that significantly extended development time as a separate script 

had to be created to remove data spikes. In future iterations, the recording of accelerometer 

data should be completed outside of the application as it was shown that no spikes occurred in 

the accelerometer data when this was the case.  

 

Future work 

Recording gender and age as variables could provide a broader insight into how head movement 

varies across demographics. It could also provide more compelling findings should a significant 

difference in head movement be found. Including these variables also tie in to findings by Biocca 

(1992) who stated that females are more susceptible to cyber sickness, this could also mean that 

females potentially move their head in different ways compared to men as a difference in head 

movement could reduce the likelihood of cybersickness. Furthermore, as discussed by Reason 

and Brand (1975) age effects the likelihood of cybersickness so the same principle could be 

applied to different age groups to see if people move their heads differently as they get older 

and if that contributes to an increase or decrease in cybersickness. 

 

Increasing the sample size of participants in a future study would provide a greater observation 

of general head movements and would improve the validity of this study through the increased 

sample size. Adapting this study to test the difference between different Virtual Reality headsets 

could also provide an interesting dynamic. The weighted conditions could be replaced by 

another brand of headset and the different types of movement could be looked at and compared 

to see which headset has the greatest effect on head movement. 

 

Conclusion 
This study has investigated how a current generation Virtual Reality headset effects the head 

movement of its users. By implementing tests that have been successfully used in the past to 

measure head movement, a bespoke application and analysis tool were created that will be freely 

available for others to improve and alter to their specifications. Although this study found that 

there was no significant difference in head movement between wearing a headset and not, there 

are enough improvements that could be made as well as some significant differences between 

conditions that suggest a trend is there. Furthermore, this study is the first structured 

experiment into how these headsets effect how we move and it provides a firm starting point 

for the next iterations of studies surrounding this topic.  
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This study has provided knowledge that implementing a stream-reader of Python into a Unity 

application can cause data spikes at regular intervals. While the root cause was not discovered 

and solved, this study has shed light on an area of the Unity engine which could be investigated 

in the future. By finding these spikes, an additional script was created to remove them, meaning 

if this study was to be run again, the freely available script could be used to remove the spikes 

without those who are running the experiment having to solve this issue before they continue. 

 

In addition to providing the test application, providing the script used to analyse the collected 

data ensures that those wishing to replicate the study or investigate how it was constructed can 

do so without having to solve the development problems faced during its construction. Finally, 

while this study looks at the basic relationship between headset, no headset and weighted 

headset, the improvements and additions mentioned previously would improve the validity and 

depth of this study structure. Although, this study does provide a solid base to build upon. 

Chapter 4 – Study 2 
After first investigating how Virtual Reality headsets altered head movement, it was found that 

there was no significant effect. This allowed the development of the second study to progress 

without considering the reduced head movement of the user when implementing spectator 

modes. As there had been no studies that formally measure the success of Virtual Reality 

spectator modes, this study aimed to fill a gap in that knowledge by building upon the link of 

Virtual Reality and presence by investigating if the level of presence felt in a virtual environment 

effected viewing preference. As well as this, a general opinion regarding the preferred spectator 

methods and transitions modes was gathered allowing empirical evidence to be provided when 

recommending spectator methods to be used within a Virtual Reality game. 

 

To gather the data for this study, a mock game was created that put the participant as a viewer 

within a game as it was being “played” by a scripted character. Using the HTC Vive headset by 

HTC and Valve (2016), a greater range of views including walking around the game level could 

be used compared to the traditional sitting Virtual Reality experience also on offer. As with the 

first study, this application was created with the idea of making it freely available as a base 

application which can be used to implement and test new Virtual Reality spectator views as well 

as replicate this study again. An analysis script is also provided alongside the application. 

However, it performs no special task compared to the script used in the first study as the data 

it is analysing is non-complex. Therefore, those wishing to replicate or improve upon this study 
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can use their own analysis method without having to rely on the provided script. This 

application and results can be found in the “Study 2” folder on the provided memory stick. 

 

Hypothesis 
It was hypothesised that the first-person view would be the least preferred view and score the 

lowest average SPES total. This was due to the opinion that the view included elements that 

caused motion sickness such as a forced view and forced movement. The free roam view was 

hypothesised as being the most preferred and the most presence inducing view with the highest 

SPES score. This was due to the free roam view allowing the participant to walk around the play 

area and interact with the environment as they choose, not being forced to watch the gameplay 

from a fixed perspective. 

 

Methods 

Camera Views Used 
The camera views used in this study were a combination of dynamic and static views that cover 

each angle of the game level. While other angles could have been used that are used in film and 

television, the views chosen for this study were found to work the best within a virtual 

environment. This provided the viewer with enough variety to make an informed choice about 

their most preferred and least preferred camera view. 

 

The application contained five camera views, the first had the participant situated within the 

middle of the level allowing them to walk around within the designated play area (Shown in 

Figure 36). This view was chosen as it is the conventional mode for viewing applications using 

the HTC Vive headset. As the intention of this study was to provide views that could generate 

presence, by putting users in the middle of the level with the ability to walk around and view 

the objects up close, it was hoped that this method would fulfil the aim. 
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Figure 40 – The free-roam play area. 

Four cameras, one placed within each corner of the level were also used. As shown in Figure 37, 

each camera is raised up, giving the impression of “floating” above the play area. This gave 

spectators a view of the entire layout of the level. When viewing this condition during the 

experiment, the cameras were switched between each other, following the action of the scripted 

character. This attempted to mimic spectator methods often used in sports broadcasts where 

the camera view switches to different locations of the play area based upon where the action is 

occurring. This viewing method was also used within the study to gather opinions between two 

different transition modes. The first was an instant jump transition to the next camera location 

and the second was a slow deliberate pan between locations. While this study is predominantly 

about camera views within Virtual Reality, a comparison between these two transition modes 

was also implemented as they both give the corner camera view a different feel when either is 

being used. Also, a knowledge of preferred transitions between cameras could prove to be as 

valuable as knowing which camera view is the most preferred and this application provided the 

suitable platform to show these modes to spectators. 

 
A third-person view was also implemented as it is a common view within conventional video 

games such as Gears of War (Epic Games, 2006) and the Witcher (CD Projekt RED, 2007). 

Shown in Figure 38, it provided spectators with a close-up view of the scripted character as they 

followed it around looking over their shoulder. While not considered a conventional view for 

Virtual Reality due to its forced view and in this applications case, forced movement, including 

it in this study, could confirm a general opinion about the success of the view. 
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Figure 41 – The view from a corner camera within the game level. 

 
Figure 42 – The third-person view from the application. 

 

Finally, a first-person view (Shown in Figure 39) was implemented as without experiencing this 

view, it could be considered the most immersive spectator method. This is because spectators 

see exactly what the player of the game is observing, putting them in their position and 

mimicking the experience of the player. However, forcing a view within virtual reality increases 

the likelihood of motion/cybersickness. Including this view in the study application ensures 

that a variety of camera views were observed and an informed choice of preferred spectator 

mode could be made. 
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Figure 43 – The first-person view in the study. 

 

Data collection and Analysis 
To gather data, participants viewed each spectator view once and filled out a Spatial Presence 

Experience Scale (SPES) questionnaire after each playthrough to calculate the level of presence 

experienced for each view. Participants did not fill out a SPES when they were shown the 

transition modes in what was the final task of the experiment. As well as filling out the SPES 

questionnaires, participants were asked to state their “Most Preferred” and “Least Preferred” 

spectator mode in addition to which transition mode they favoured. They were also asked to 

provide reasoning for their decisions which could be used in the non-empirical results of the 

study. 

 
After this data was collected, the average SPES (Presence) score was calculated for each 

participant within each view. This showed the views in which the participants felt most and 

least present in. It also allowed for a total average to be calculated showing which view of the 

four provided participants with the greatest and least sense of presence. This data was then used 

in an ANOVA to check for statistical significance in presence felt between views as well as check 

to see if a participants most and least preferred view matched up with their highest/lowest SPES 

score, linking presence to preference of a spectator view. 

 

Tools Used 
To create the study, the HTC Vive Virtual Reality headset (HTC and Valve, 2016) was chosen as 

it was readily available for use and was considerably more powerful than the Oculus Rift 

Development Kit 2 (Oculus, 2015) used in the previous study. To develop the application, the 

Unity game engine (Unity, 2016) was chosen due to the developer’s familiarity with the 

development environment and the ready-made plugin by Valve (Valve, 2016) which implements 
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the HTC Vive play area, reducing development time through not having to implement the play 

area from scratch.  

 

As this application required the three-dimensional models to represent characters within the 

game, Adobe Fuse (Adobe, 2016) was used as no three-dimensional modelling skills are required 

to generate the character models. This reduced development time and cost significantly. 

Additionally, sound assets for the level were sourced from freesound.org (Freesound, 2016) who 

provide free to use sound assets.  

 

To calculate the presence felt by each participant, the SPES (Spatial Presence Experience Scale) 

developed by Hartmann et al (2015) was used. The SPES is a short, eight question survey which 

assesses spatial presence as a two-dimensional construct that comprises a user’s self-location 

and perceived possible actions in a media environment. Its asks questions such as “I felt like I 

was actually in the environment of the presentation” and “The objects in the presentation gave me 

the feeling that I could do things with them”. The full SPES questionnaire used in this study can 

be found in Appendix 3. To analyse the SPES scores using an ANOVA, the R programming 

language as well as R studio was used. As with the first study, a custom script was created 

allowing ANOVA analysis and graph creation to be automated. 

 

Application Overview 
As with the application created for first study, this application was built with the Unity game 

engine and was programmed in C#. Figure 40 displays a view of the entire game level. Each 

camera view was implemented within the same scene and could be switched between using the 

number keys on the keyboard. The transition modes between the corner cameras were 

implemented by pressing the control key and the “1”, “2”, “3” or “4” key to pan switch between 

the chosen corner camera. Although the order of the views observed by each participant is 

randomised, learning from the first study, the randomisation order was done outside of code. 

This reduced development time as a randomisation script did not have to be created.  

 

The setting of the game is based during a Zombie apocalypse with the scripted character 

running around the level shooting the approaching Zombies. At the start of the spectator 

experience the character (Figure 41) is standing stationary in the middle of the level with the 

sound of crackling of a fire setting a calm atmosphere and attempting to increase the presence 

felt. During this period, the camera angle for the next condition is switched to by one of the 

number keys on the keyboard. The gameplay of the level is started using the spacebar and when 



 
 

56 
 

it is pressed the Zombies begin to spawn and the character runs around its scripted path, 

shooting zombies at designated positions. The character moves around the level returning to 

its start position at the end of its path. The game then reverts to its calm atmosphere with 

Zombies despawning. When the player starts to run around the level, the sound of the game is 

also changed to set a tense atmosphere by playing Zombie sounds and a gunshot sound when 

the character’s gun is fired. 

 
Figure 44 – A view of the entire game level. 

 
Figure 45 – The character used for the study. 

 
The pathfinding of the character was completed by positioning waypoints at locations in the 

level and using the built-in Unity AI module to make the character move between them. Figure 

42 displays the waypoints in green positioned within the level. To make the character shoot the 

approaching zombies, separate waypoints, shown as red in figure 42 were placed. When touched 

by the character, the characters shooting animation was played and a ray cast in front of the 
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character was triggered. If the ray cast passed through a Zombie, their death animation was 

played and they were removed from the level. 

 
Figure 46 – The various waypoints for the character in the level. 

 

Experiment Structure 
The experiment was conducted within a room providing each participant with the 

recommended play area size of 1.5m x 2m for the HTC Vive. This play area size enabled 

participants to have enough room to walk around the level and fully immerse themselves within 

the virtual environment. Figure 43 displays a participant in the play area. Before each 

participant, the application was started and the headset was placed in the middle of the play 

area ready for the participant to put on. This ensured that the participant was placed directly 

into the test environment and became immersed within their setting immediately. The 

experiment coordinator was situated just behind the play area, sitting at the computer running 

the application allowing them to control the camera angles displayed. 

 
Figure 47 – A participant taking in the study wearing the HTC Vive headset. 
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At the start of each study iteration, the participant was asked to fill out a consent form that 

explained what would happen during the study and what would be expected of them during 

their participation (See Appendix 4). The participant would then be told which camera angle 

they would be experiencing first and was asked to put on the headset. When they were ready, 

the coordinator would press the space bar and the character in the game would run around its 

scripted path with the participant watching the gameplay unfold. After the gameplay finished, 

the participant would be asked to take off their headset and fill out a SPES questionnaire for 

that view. 

 

After the participant filled out the questionnaire, the process would be repeated until each 

camera view had been observed and a SPES questionnaire had been completed for each. After 

all camera views were observed, the participant was asked to state their most preferred and least 

preferred spectator view as well as their reasons behind their choice. This was recorded for 

future reference and can be found in the “Study 2” folder. 

 

The final stage involved showing the participant the transitions between the corner cameras. 

While the default transition between the corner cameras in the first part of the test were jump 

cuts, this section incorporated panning transitions into the switching methods, allowing for a 

preference to be chosen. To display the different transition method, the test application was run 

again, but incorporated the new transitions into the corner camera switching as the character 

ran around the level. After the gameplay, had finished, the participant was asked which 

transition mode they preferred and their reasons behind that choice. These recordings can be 

found in the “Study 2” folder. 

Results 

Participants 
There were 20 participants in the study. No other demographic was used apart from the 

confirmation that each participant was over the age of 18 to fulfil ethics protocol. Although, if 

gender and age were used, some correlations could be investigated between level of presence 

felt and demographic information. However, looking at these correlations was not the focus of 

the study. 

 

Non-Statistical Findings 

This section looks at the non-statistical finding of this study, outlining the opinions of 

participants about each camera view as well as observations of their actions. This section has 
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been split up into different parts that discuss findings of each camera view and transition modes. 

To view the full participant transcripts as well as recordings of them observing the test 

application, they can be found in “Study 2” folder on the provided memory stick. 

 

The results of the study showed that the most preferred camera view was the free roam view 

with six preferred selections, this matched with the hypothesis. Second was the third person 

view with five, tied third was the corner camera view and the first person view with four and 

with one participant preferred none of the views. The least preferred camera view was the first 

person view with 11 participants choosing it, matching with the hypothesis. Second least 

preferred was the corner camera with six, third least was the third person view with three votes 

and the free roam view had only one choice. In terms of transition mode, the panning transition 

was the most preferred with 15 participants preferring it. The jump transition had three 

preferences with two participants stating they did not prefer one over the other. 

 

The view with the highest recorded presence (SPES Score) was the third person view, with an 

average of 4.03/5. The lowest presence recorded was the Corner Camera view with 3.71/5. Free 

Roam and First Person scored 3.97 and 3.87 respectively. The SPES scores differed from the 

hypothesis which predicted that the first-person view would have the lowest presence score and 

the free roam view would have the highest presence score. This points to a lack of correlation 

between SPES score and preferred/least preferred camera view in the case of this study. 

 
It is worth noting that in 10 cases, their most preferred view correlated with the most presence 

felt by them in that view (Figure 48). This also occurred in 10 participants least preferred view 

with 7 of the 20 participants having matching preferences with the most/least presence felt. This 

suggests that with a larger sample group, a significant correlation between the most or least 

preferred view and SPES score could be observed. 
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Figure 48 - Table displaying the links between most and least preferred view and level of presence 
felt 

Free Roam 
The free roam camera was the most preferred view with six participants choosing it as their 

most preferred and only one choosing it as their least preferred. The average SPES score was 

3.97 putting it as the second most effective spectator view. In contrast to the other modes which 

had complaints about disorientation and lack of immersion in the scene, the qualitative 

feedback from participants has been predominantly positive with comments about freedom of 

movement and immersion in the scene. For example; “I felt more involved compared to the other 

camera angles and I could move about wherever I wanted to go” and “It felt very immersive because 

I could walk around and do whatever I wanted” being two examples of how participants felt about 

this view. Overall, the free roam camera can be viewed as the least controversial view as it 

presents the generic Virtual Reality spectator experience compared to the others in this study 

which impose some form of view or movement alteration. 

 

Participant Most Preffered Least Preffered Most Presence Least Presence

1 Third Person Corner Cameras First Person - 4.0 Corner Cameras - 2.75

2 Third Person Corner Cameras First Person - 5.0 Corner Cameras - 3.25

3 Free Roam First Person Free, Corners, Third - 4.63 First Person - 4.25

4 Third Person First Person Third Person - 4.13 Corner Camera - 3.25

5 Third Person First Person Third Person - 5.0 Free, Corner, First - 4.0

6 Third Person Corner Cameras Third Person - 5.0 First Person - 3.25

7 Corner Cameras First Person First Person - 4.75 Free Roam - 4.13

8 Corner Cameras Third Person Corner Cameras - 3.50 Third Person - 2.75

9 First Person Corner Cameras Free Roam - 4.75 Corner Cameras - 2.75

10 Free Roam Corner Cameras All - 4.0 All - 4.0

11 Free Roam First Person Free Roam - 3.75 Corner Cameras - 2.75

12 Corner Cameras First Person Third Person - 5.0 Free Roam - 4.50

13 First Person Corner Cameras Free, First - 4.88 Corner - 3.50

14 None First Person Third Person - 4.50 Free Roam - 3.50

15 Corner Cameras First Person Third Person - 5.0 Free Roam - 4.0

16 Free Roam First Person Free Roam - 4.0 Third, First - 2.88

17 Free Roam Third Person Corner Cameras - 3.50 Free, Third - 3.13

18 Free Roam First Person Free Roam - 4.50 First Person - 1.50

19 First Person Free Roam First Person - 4.75 Free Roam - 3.63

20 First Person Third Person Third, First - 5.0 Free, Corner - 4.25

Matches With Most Preffered

Matches With Least Preffered
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Corner Cameras 
The corner camera view was the most preferred by 4 participants and least preferred by 6 

making it the second most disliked view. The SPES score of this view was 3.71 making it the 

lowest scorer. The predominant complaints about this mode was the perceived lack of 

involvement in the level as well as amplifying participants fear of being up high. This supports 

claims made by Chandler (2001) who found that high angle views cause detachment between 

the spectator and the scene. For example, one user commented “I was up in the tree and I felt 

very unstable and I felt as if I was going to fall and I didn’t feel very comfortable”. One participant 

also stated that they felt like they were falling through the floor and became visibly distressed 

when the camera switched and placed them amongst the trees. However, there were some 

positive reviews of this mode with one participant saying “I felt like I had an advantage over the 

player in that I could see more of the level even though I couldn’t interact with the level”. Although, 

the general opinion of this view was that of being forced into an uncomfortable position with 

no real idea of your current position due to the camera switching position. This was evidenced 

by one participant who said “I didn’t really feel like I was in the scene and it was disorientating 

when I was being switched between each camera”. 

 

Third Person 
The third person view was the most preferred by 5 participants and least preferred by 3 

participants. It had the highest average SPES score with 4.03 although reviews of the mode were 

very mixed. Whereas the other views had a majority decision in preference or dislike for it, the 

third person view received praise from participants who felt the moving aspect enhanced the 

experience such as “I actually felt like I was there. It felt as If I could actually reach over his 

shoulder and help him out”. Or took away from it by saying “I kept moving around with the 

character and it made my head hurt”. This view also made some participants visibly 

disorientated, some had to hold onto a chair to steady themselves as they followed the character 

around the level. The third person view could be the view for those who are not effected by 

motion sickness and can handle forced movement. If viewers can avoid feeling disorientated, 

this view would place them in the middle of the action with a potentially greater viewing 

experience but with a less severe view compared to the first-person camera. 

 

First Person 
The first-person view was the least preferred view in this experiment with 10 participants 

choosing it and 4 people choosing it as their most preferred camera view. It has a SPES score of 

3.87. While 4 people preferred this view, most of them also admitted that this view, although 
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immersive, made them disorientated due to the fixed camera angle. One participant said: “I felt 

I was more involved within the scene although it did make me feel a bit disorientated”. The general 

view of this spectator view was that it made the user disorientated. In several cases, participants 

were visibly disorientated and held their hands out to try and balance themselves while the 

character was moving. Some participants had to hold onto a chair to steady themselves when 

viewing in first person. One participant remarked, “It totally disorientated me, it made me feel 

physically sick and losing my balance”. This view is the most disorientating view of the 4 used in 

this study with many participants becoming visibly disorientated when viewing it, therefore its 

inclusion as a standard Virtual Reality spectator mode should come under careful consideration 

if not dismissed entirely. 

 

One participant reported that they felt disorientated well after using the headset. This supports 

findings by Kellog (1980) who suggested that Cybersickness can also develop in the hours 

following Virtual Reality usage and Gower (1989) who found that Cybersickness can linger for 

hours and in some extreme cases, for days after experiencing Virtual Reality. 

 

Transition Mode 
The transition mode investigation was a choice between instantly switching between corner 

camera views or slowly panning between them. Out of the 20 participants, 15 preferred the 

panning transition, 3 preferred the instant transition and 2 had no preference as to the transition 

mode. In terms of reasons why the panning transition was preferred, the opinion of the 

participants was that the panning movement gave them a better idea of where they were within 

the level as evidenced by one participant saying, “It was less disorientating, I had more of an idea 

of where I was when I moved compared to the jumping where I had no idea where I was so I to look 

around to find my position”. 

ANOVA Findings 
There was no statistically significant differences between the mean SPES scores for each camera 

view as determined by an ANOVA analysis (F(3, 76) = 0.691, p > .51). Figure 46 shows the Box-

Plot distribution of SPES score for each camera view. It can be assumed that the level of presence 

experienced does not correlate with the most or least preferred spectator view whereby the 

lowest SPES scoring camera angle is significantly different to the highest SPES score camera 

angle. Therefore, a more opinion based preference of spectator modes should be considered 

compared to the statistical levels of presence felt when deciding on which spectator mode to 

use within a Virtual Reality spectator experience. 
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Figure 49 – Box Plot of the SPES score distribution results for each camera view. 

 

Discussion 

Improvements 
One improvement that could alter the results of this study would be to create a game setting 

that is less horror focused. The reason for suggesting this improvement is due to some 

participants commenting about fearing the game environment which detracted their focus from 

observing the camera views. The reasoning behind creating a Zombie themed application was 

that the assets were readily available and implementing them within the game logic would 

reduce development time. However, should a different theme be chosen, the game logic would 

still work as the Zombie theme was a cosmetic choice. 

 
Another significant improvement would be to implement a more dynamic gameplay situation 

for the scripted character by adding more tasks for it to complete, giving a better impression 

that a game is being played instead of being scripted. Furthermore, the movement of the 

character could be improved through tools such as motion capture where an individual could 

be recorded acting as though they are playing the game. That motion could then be applied to 

the character and the movements would look more human. While actual gameplay could be 

used with a player’s movements streamed to the spectator view, this would sacrifice the 

continuity within the experiment application as the character’s movements would differ in each 
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iteration of the study. It would also require the actual implementation of game logic of which 

this test application does not currently have. 

 

Future work 
Although there was no significant difference between the SPES score of each spectator mode, 

this study did find that in 10 out of the 20 participants, either their most or least preferred 

spectator mode correlated with their lowest or highest SPES score. In 7 instances, both the 

highest and lowest score matched with the most or least preferred spectator mode. While it was 

found to be non-significant in this case, a wider study with an increased number of participants 

may find a correlation. 

 

A more directed version of this study could be developed with different camera angles being 

mixed together to present the gameplay like a film or current esport presentations. While it 

would mean that the study theme would stray from looking at specific camera angles, the future 

study could focus on these viewing methods as the test application provides a ready-made 

gameplay scenario in which to implement them. 

 

Giving participants control over what spectator views they watch the gameplay in could be 

implemented. This method would provide a natural way to measure preferred spectator mode 

as they should naturally navigate to their favourite view. The method of switching between tasks 

was already implemented on the HTC Vive controller as it was needed for testing the 

application. Therefore, integrating this feature into another experiment iteration would not 

require any additional development time. 

Conclusion 
This study aimed to see which type of spectator mode is preferred when viewing a Virtual Reality 

game. It also aimed to see if there was a link between the level of presence felt within the 

spectator experience and the preferred view of participants. This was completed by creating an 

application that provided users with multiple camera angles to observe a scripted gameplay 

sequence. It gathered the level of presence felt through a SPES questionnaire and asked them 

to state their most and least preferred spectator view. A comparison between transition modes 

was also included as the application provided a suitable platform in which to compare the 

methods.  

 

The results of this study found no correlation between the participant choices of most/least 

preferred and presence felt within each view. The SPES results show the most immersive view 
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was the third person view and the least immersive being the corner camera view. Compared to 

the participant choices of most preferred being free roam and the least preferred being first 

person. Based on these findings, it can be suggested that presence alone does not decide which 

view a spectator prefers. As well as comparing the numerical results with the participant’s 

choices, an ANOVA was also completed and found no significant difference in the presence felt 

between each of the views, ruling out any empirical evidence that a certain mode is significantly 

more or less effective at creating presence for the spectator.  

 

Although a significant correlation was not found, it is worth nothing however that in 10 

participant’s cases, their most preferred view correlated with the most presence felt by them in 

that view. This also occurred in 10 participants least preferred view with 7 of the 20 participants 

having matching preferences with the most/lest presence felt. This suggests that with a larger 

study, a significant result could be obtained as the correlations somewhat emerge.   

 

This experiment also provided participants with a choice between instant switching between 

cameras and a smooth panning transition. In this case, the switching was done within the corner 

camera view scenario but treated as a separate section of the experiment. With an overwhelming 

majority of 15 to 3, the panning mode was picked as the preferred mode of camera switching. 

Qualitative answers suggested that the greater sense of location provided by the slow movement 

to a new position made the panning transition preferable to the instant cut switches. 

 

There was no empirical evidence to suggest which camera views are the most successful as 

presence scores had no effect. However, the replies to the qualitative questions provide a useful 

insight into which modes are likely to be successful with a wider audience. For example, the 

first-person view was the least preferred with over half of the participants naming it with most 

participants noting how disorientated this view made them feel. Therefore, it can be suggested 

that this view should not be used in future Virtual Reality applications. In contrast, the free 

roam view was the most preferred choice with 6 participants selecting it and only one 

participant selecting it as their least preferred. Although not as decisive a result as the first-

person view, the comments about this view are more about the positive experience when using 

it rather than feelings of disorientation. The other two modes, corner cameras and the third 

person view have mixed review from participants with some stating them as their preferred view 

and others their least preferred. This could be because these views contain potentially 
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disorientating factors such as forced movement and height compared to the free roam where 

nothing is forced onto the user’s position and movement. 

 

This experiment found no significant link between presence felt within a Virtual Reality scene 

and a user’s preferred view of a Virtual Reality scene although there is evidence to suggest that 

a larger study may confirm these links. As such, the test application used in this study is freely 

available for those who wish to replicate or adapt this study for their own uses. This experiment 

did find, through qualitative interviews, that most participants dislike forced movement and 

viewpoints and prefer an experience which allows them the freedom to choose where they look 

and when they do it. In addition, the preferred method of switching between camera views is 

that of a panning transition over that of a jump cut as participants noted a greater sense of 

location when being moved to a new position over time rather than instantly. 

Chapter 5 – Discussion and Conclusion 
Real-World Application 
The results of both studies have provided us with a better understanding of how a virtual reality 

headset affects head movement and what type of view spectators prefer when observing virtual 

reality gameplay. This section outlines some “real-world” advice of the results of each study and 

how they could potentially be used to improve current or future virtual reality spectator 

practices. 

 

First study 
Whilst the results of the first study found no significant difference in head movement between 

wearing a Virtual Reality headset and not, it should be noted that significant results were found 

in some of the tests. While a practice effect could eliminate the significant results, or the 

significant results could be attributed to outliers, the significant results suggest that there may 

still be improvement with regards to the weight distribution and overall weight of virtual reality 

headsets. Improving these aspects of virtual reality headsets is a common goal amongst 

hardware developers, but one that is emphasised as important by the results of the first study. 

 

Furthermore, the significant results should be considered when developing new virtual reality 

spectator modes where extreme head movement is required, such as placing the spectator close 

to a large virtual screen. While wearing a virtual reality headset has been shown to have no real 

negative effect on head movement, fast paced, extreme movement across an axis could have an 

impact due to the increased weight load on the head. 
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Second study 
The results of the second study found that spectators of a virtual reality game prefer to be in 

control of their movement within the virtual environment and negatively viewed forced 

perspective, especially within a first person view as it contributed to feelings on motion sickness 

and loss of control. This suggests that developers should look to more of a free movement 

situation when developing spectator experiences to avoid the potential discomfort forced view 

and movement can have within a virtual environment. Furthermore, there was reason to believe 

a link between presence felt and preference of view would emerge if a larger scale study was 

conducted. This suggests that developers should endeavour to make their virtual environments 

as engaging as possible and promote free movement to produce an optimal virtual reality 

experience. 

 

Thesis Conclusion 
This thesis investigated two subjects that have not been looked at within an experiment setting 

regarding the speciation of Virtual Reality games. The first investigation stemmed from the 

question of how current generation headsets would affect its users as the time spent watching 

Virtual Reality games through these headsets increases. The second study was a study on how 

different camera angles could be implemented within a virtual environment and if they 

provided an enjoyable spectator experience. The second study also saw if a significant link could 

be made between the level of presence felt within a spectator view and the spectators favourite 

and least favourite view. 

 

Although the first study found that there was no significant difference in head movement when 

wearing a Virtual Reality headset, a ready-made test application and data analysis tool was 

created that is freely available for others to improve upon or use as a platform for another head 

movement test. Lessons were learnt during the development of this study. For example, trying 

to implement a stream-reader of Python output within a Unity application results in data spikes 

from the accelerometer readings. In troubleshooting this issue, it was discovered that the best 

way to gather the accelerometer data was to record it separately in the first place. Additionally, 

by automatically rounding the data recordings, some slightly significant results may have been 

lost. This should be changed if the study was conducted again. The quality of the weighted 

headset used in this study should also be improved as its weight distribution was different from 

that of the Virtual Reality headset used. This could mean a different result could be found if 

both headsets were closer in design. However, this study has investigated an important subject 
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area that has not been explored with current Virtual Reality headsets and has provided a large 

application and analysis script which others can use to further research in the topic of virtual 

reality head movement. 

 

The second study found that participants preferred having the ability to walk around a virtual 

environment and spectate gameplay without being forced into a specific view. It also found that 

the least preferred view was having a first-person perspective of the character in the game, with 

multiple reports of motion sickness during this view. The second objective of the study, which 

tried to find a link between presence (measured using the SPES questionnaire) and preferred 

spectator views, did not find a significant link. However, half of the participants had a link 

between either their most preferred or least preferred view and their highest or lowest presence 

score. As the application used for this study will be made available for anybody to replicate, a 

link between SPES score and preferred spectator view may yet be found either through a direct 

replication or an adaptation.  

 

While both studies detailed in this thesis may not have discovered ground breaking new 

knowledge, it has investigated two critical factors emerging within Virtual Reality video game 

spectating, how the headset effects its users and which spectator modes people prefer. 

Additionally, it has found issues within the Unity game engine which caused data spikes and 

led to the creation of a tool that that eliminates these spikes. It has also spawned a tool built 

specifically for automating the analysis of accelerometer data, as well as the applications used 

for the experiments which will be made freely available for others to replicate, adapt or build 

upon. 
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End of thesis, thank you for reading 
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Appendix 

Appendix 1 – stream-reader script. 
 
using UnityEngine; 
using System; 
using System.IO; 
using System.IO.Ports; 
using System.Diagnostics; 
 
public class Python : MonoBehaviour 
{ 
    private ProcessStartInfo PythonInfo; 
    private Process PythonProcess; 
    private StreamReader PythonStreamreader; 
    private string PythonExe; 
    private string PythonScript; 
    public string PythonOutput; 
 
    //This is used to display the "sensor not connected" text from ConnectionStatus.cs 
    public bool SensorConnected = false; 
    public bool StreamData = false;//This is enabled and disabled in the 
TestManager.cs script, allowing data to only be read when the partcipants are 
completing the tasks. 
    public bool COMConnected = false;//This is toggled true and false depending on if 
the acceleromter is connected to the correct COM port. In this case, it needs to be 
connected to COM3. 
 
    private string[] Ports;//This array will save all COM connected devices, allowing 
us to scan through it and find out device. 
    private string Port = "COM3"; 
 
    private TextAsset Sensor;//This is what we will save our Python script into, as a 
.txt file. 
 
    void Start () 
    { 
        StreamData = false;               
        PythonExe = "python"; 
 
  //Loads in the text file containing the python code. 
        Sensor = (TextAsset)Resources.Load("sensor", typeof(TextAsset)); 
        PythonScript = "-c \"" + Sensor.text + "\"";//Adds the Python compile keys. 
 
        PythonInfo = new ProcessStartInfo(PythonExe); 
  //Stops the Python shell being opened. 
        PythonInfo.UseShellExecute = false; 

 //Redirects the output to Unity so it can be logged. 
        PythonInfo.RedirectStandardOutput = true; 
        PythonInfo.CreateNoWindow = true;//Stop a window being opened to show output. 
        PythonInfo.Arguments = PythonScript;//Passes our script to our Python process. 
 
        PythonProcess = new Process(); 
        PythonProcess.StartInfo = PythonInfo; 
        PythonProcess.Start(); 
 
        PythonStreamreader = PythonProcess.StandardOutput; 
        PythonOutput = PythonStreamreader.ReadLine(); 
 
        Ports = SerialPort.GetPortNames(); 
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        //Initial check to see if data is being streamed from the sensor. 
        if (String.IsNullOrEmpty(PythonOutput) == true) 
        { 
            SensorConnected = false; 
        } 
        else 
        { 
            SensorConnected = true; 
        } 
        //Initial check to see if our sensor is connected to the correct COM port. 
        if (Array.IndexOf(Ports, Port) < 0) 
        { 
            SensorConnected = false; 
            COMConnected = false; 
        } 
        else 
        { 
            COMConnected = true; 
        } 
    } 
    //Constantly checks to see of the connection to the sensor is still there. 
    void check_connection() 
    { 
        Ports = SerialPort.GetPortNames(); 
        if (String.IsNullOrEmpty(PythonOutput) == true) 
        { 
            SensorConnected = false; 
        } 
        else 
        { 
            SensorConnected = true; 
        } 
        if(Array.IndexOf(Ports, Port) < 0) 
        { 
            SensorConnected = false; 
            COMConnected = false; 
        } 
        else 
        { 
            COMConnected = true; 
        } 
    } 
    void get_data() 
    { 
  //Send the sensor output to the stream reader, then assigns it to our string. 
        PythonStreamreader = PythonProcess.StandardOutput; 
        PythonOutput = PythonStreamreader.ReadLine(); 
    } 
 void Update () 
    { 
        check_connection();//We always check the connection to the sensor. 
        get_data();//We are always getting the data. 
    } 
    //When the program closes, we stop the Python process.  
    void OnApplicationQuit()  
    { 
        PythonProcess.Close(); 
    } 
} 



 
 

81 
 

 

Appendix 2 – Head movement study consent form 
 

A Comparison of Head Movement with and Without a Virtual Reality Headset 
 

Thank you for agreeing to participate in this study. This study aims to see if there is a difference in 

head movement when wearing a Virtual Reality headset. This document is intended to provide you 

with all the relevant information regarding the study. If you agree to continue your participation, 

please sign at the bottom of the page and proceed with the study. This document will also act as a 

debrief with relevant contact information should you wish to withdraw from the study. 

Method 

You will be sitting for the entire experiment facing the television screen. Instructions will appear on 

the screen asking you to complete various visual tasks which will involve moving your head. The study 

includes two tracking tasks where you will follow a circle around the screen, and one searching task 

where you will look for a target image. In order for us to collect your head movement data, you will 

wear a hat that has an accelerometer attached. 

Firstly, if you wish to, you can spend some time in the Oculus demo scene to get used to being in a 

virtual reality environment. If you do not wish to do so and feel comfortable within virtual reality, we 

may begin the test immediately.  

For this study you will complete each task 3 times in three separate conditions; wearing a VR headset, 

not wearing a VR headset and wearing a weighted headset. The order of tasks and conditions are 

randomised. There are audio instructions for each step of the experiment telling you what to do. Feel 

free to ask any questions during the study. 

Data Collected 

Apart from your name which is used for withdrawal purposes, no personal information is collected. 

The only data we collect is from the accelerometer that is attached to the hat you will wear during the 

study. 

Withdrawing 
If you wish to withdraw your data, you can for anytime up until 7 days after you have completed the 

study. To do so please send an email to jgallacher@lincoln.ac.uk with your name and statement of 

withdrawal.  

 

After reading the brief, I agree to participate in this study: 

 

X
Name:
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Appendix 3 – SPES Questionnaire 
 

SPES Questions 
Please put a tick in your chosen answer. 

 

Self-Location 
1- I felt like I was actually in the environment of the presentation. 

I do not agree at all I do not agree Neither I agree I fully agree 
     

 

2- It seemed as though I actually took part in the action of the presentation. 

I do not agree at all I do not agree Neither I agree I fully agree 
     

 

3- It was as though my true location had shifted into the environment in the presentation. 

I do not agree at all I do not agree Neither I agree I fully agree 
     

 

4- I felt as though I was physically present in the environment of the presentation. 

I do not agree at all I do not agree Neither I agree I fully agree 
     

 

Possible Actions 
1- The objects in the presentation gave me the feeling that I could do things with them. 

I do not agree at all I do not agree Neither I agree I fully agree 
     

 

2- I had the impression that I could be active in the environment of the presentation. 

I do not agree at all I do not agree Neither I agree I fully agree 
     

 

3- I felt like I could move around the objects in the presentation. 

I do not agree at all I do not agree Neither I agree I fully agree 
     

 

4- It seemed to me that I could do whatever I wanted in the environment of the presentation. 

I do not agree at all I do not agree Neither I agree I fully agree 
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Appendix 4 – Virtual Reality spectator study consent form 
 

Consent Form 
 

Thank you for taking the time to agree to take part in this study. Before we can continue please 

read and sign this consent form to formally agree of your participation in this short study. 

Purpose 
The purpose of this study is to investigate the emerging capabilities of VR as an entertainment 
platform through exposing users to various spectator view points of a video game. 
 

Study Overview 
You will be using a HTC Vive Virtual Reality headset to view some recorded gameplay. You 

will view this gameplay multiple times with various camera angles. After each camera angle, 

you will remove the headset and fill out a short questionnaire aimed at recording how engaged 

you were with the scene using that particular camera angle, there are 4 viewing methods in 

total. After you have viewed all 4 modes, you will be given the HTC Vive controllers which 

allow you to switch between each of the camera modes you have previously experienced as 

a final look at which one is your favourite/least favourite. 

After you have done this, you will be asked to state which spectator mode is your favourite as 

well as provide reasoning as to why this is the case. You will also be asked to state which 

spectator mode is your least favourite and state reasons why this is the case. 

What Data do you need to provide? 
In signing this form, you agree to have the data provided on the questionnaire used for analysis 

as well as video recording of your experience using the headset as well as an audio recording 

of your answers to the questions asked as the end of the study. No other data will be required 

for this study. The data you provide will also be fully anonymous. 

Withdrawing 
If you wish to withdraw your consent after you have taken part in this study, please email 

jackleslie.gallacher@gmail.com stating your participant number and intention to withdraw from 

the study. You may withdraw from the study at any time. 

Contact Information 
If you have any questions after the study has been completed, please email 

jackleslie.gallacher@gmail.com. 

 

I Agree to take part in this study and confirm to the requirements stated above. 

 

Name: 

Signature: 
 

mailto:jackleslie.gallacher@gmail.com
mailto:jackleslie.gallacher@gmail.com

