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Abstract
Tracking individual marine predators can provide vital information to aid the identification of important activity (foraging, 
commuting, rafting, resting, etc.) hotspots and therefore also to delineate priority sites for conservation. However, in certain 
locations (e.g. Antarctica) many marine mammal or seabird colonies remain untracked due to logistical constraints, and the 
colonies that are studied may not be the most important in terms of conservation priorities. Using data for one of the most 
abundant seabirds in the Antarctic as a case study (the Chinstrap Penguin Pygoscelis antarcticus), we tested the use of cor-
relative habitat models (used to predict distribution around untracked colonies) to overcome this limitation, and to enable 
the identification of important areas at-sea for colonies where tracking data are not available. First, marine Important Bird 
and Biodiversity Areas (IBA) were identified using a standardised, published approach using empirical data from birds 
tracked from colonies located in the South Orkney Islands. Subsequently, novel approaches using predicted distributions of 
Chinstrap Penguins derived from correlative habitat models were applied to identify important marine areas, and the results 
compared with the IBAs. Data were collected from four colonies over 4 years and during different stages of the breeding 
season. Results showed a high degree of overlap between the areas identified as important by observed data (IBAs) and by 
predicted distributions, revealing that habitat preference models can be used to identify marine IBAs for these penguins. We 
provide a new method for designating a network of marine IBAs for penguins in Antarctic waters, based on outputs from 
correlative habitat models when tracking data are not available. This can contribute to an evidence-based and precautionary 
approach to aid the management framework for Antarctic fisheries and for the protection of birds.

Keywords  Antarctica · Conservation · Habitat modelling · Marine important bird and biodiversity areas · Penguins · 
Tracking data

Introduction

Our understanding of the at-sea distribution of marine spe-
cies has grown exponentially during the last decades, due to 
the major advances in remote tracking technologies (Greene 
et al. 2009; Block et al. 2011; Hazen et al. 2012; Hussey Electronic supplementary material  The online version of this 
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et al. 2015; Hays et al. 2016). Data collected by tracking 
individual animals have become one of the main sources of 
information to study the activity patterns, foraging behav-
iour and migratory movements of marine species (e.g. Dias 
et al. 2011, 2012; Hays et al. 2016). Such studies are also 
important for the identification of biodiversity hotspots in 
the ocean (Hazen et al. 2012; Lascelles et al. 2016; Dias 
et al. 2017). For example, more than 900 marine Important 
Bird and Biodiversity Areas (mIBAs) have been identified 
since 2010, now covering over 100 species of seabird and 
based on animals tagged at more than 70 locations world-
wide (Lascelles et al. 2016; Dias et al. 2017).

Most previous studies concerning the identification of 
marine hotspots based on tracking data have been focused 
on flying seabirds, sea-mammals, sea-turtles and some large 
fish species, such as tuna and sharks (e.g. Block et al. 2011; 
Maxwell et al. 2011; Lascelles et al. 2016). A standardised 
method to define important areas for marine conservation 
based on tracking data has been suggested (Lascelles et al. 
2016). This method (hereafter mIBA protocol) was, how-
ever, designed for (and applied mostly to) flying seabirds, 
especially species with very large movement ranges that 
breed at relatively few large colonies and which have been 
subject to intensive tracking studies (such as for albatrosses 
and petrels; e.g. Dias et al. 2017).

Recent studies have shown that the mIBA protocol can 
be easily extended to identify important areas for non-flying 
animals, such as penguins and pinnipeds (e.g. Augé et al. 
2018). However, one major limitation of this method is the 
lack of tracking data for all colonies in a given region. While 
for some species and regions this might not be important 
(e.g. very well-studied species; species that concentrate in 
few colonies easy to study; e.g. Ramos et al. 2013; Augé 
et al. 2018), for many others this lack of data can be prob-
lematic. For example, many sites and seabird colonies in 
Antarctica are difficult to track, especially where colonies 
are spread across large areas, or located in remote, inac-
cessible locations. The use of correlative habitat models to 
identify priority sites for conservation can help overcome 
this limitation (e.g. Raymond et al. 2015; Wakefield et al. 
2017). By identifying which ecological factors influence the 
distribution of foraging penguins, we can predict the most 
important at-sea areas for birds breeding at colonies where 
tracking data are not available. Habitat models can also iden-
tify areas that are important to different colonies, highlight-
ing areas used by multiple populations, thereby identifying 
additional areas of high conservation value (Wakefield et al. 
2017; Warwick-Evans et al. 2018).

In addition to these positive benefits, the use of habi-
tat models as tools to prioritise areas for conservation can 
create some complex issues. For example, maps of habitat 
suitability based purely on statistical models (especially if 
resulting from extrapolation from data collected elsewhere) 

can be more difficult for policy-makers to accept, due to the 
lack of direct, empirical evidence of site use. Furthermore, 
because habitat models are often developed using a fine 
spatio-temporal scale, mismatches in the spatio-temporal 
scales needed for site protection and long-term consistency 
of site occupation can exist (Lascelles et al. 2012), largely 
because of the dynamic nature of oceanographic conditions, 
such as variability in currents and sea surface temperature 
(e.g. Scheffer et al. 2016).

A plausible approach to resolve these issues is to combine 
both methods for identifying priority sites for at-sea con-
servation—that is, a direct, empirically based method such 
as the existing mIBA approach (Lascelles et al. 2016; Dias 
et al. 2017), and an inferential method based on predictions 
from correlative habitat models (e.g. Wakefield et al. 2017; 
Warwick-Evans et al. 2018). In this study, we evaluated if 
correlative habitat models can be used to complement the 
standard mIBA approach, especially in areas where track-
ing data are not available. We applied both methods to 10 
datasets containing tracking data from Chinstrap Penguins 
Pygoscelis antarcticus breeding at four colonies across 
the South Orkney Islands, and compared the results. Our 
approach results in a number of important considerations 
for both methods (mIBA approach and habitat modelling), 
facilitating future work on the identification of new IBA 
boundaries for Chinstrap Penguins even when no tracking 
data are available to apply the standard mIBA protocols 
(Lascelles et al. 2016).

Materials and methods

Study area, colony information and tracking data

Tracking data were collected using GPS devices deployed on 
186 individual Chinstrap Penguins from 4 colonies located 
in the South Orkney Islands (− 60.8°, − 45.5°; Fig. 1), corre-
sponding to 24% of the colonies existing in the Archipelago 
classified as terrestrial IBAs (n = 17; Harris et al. 2015). 
Data were collected over a period of 4 years, and cover dif-
ferent stages of the breeding cycle: incubation, brood and 
crèche (Table 1). In combination, the colonies studied hold 
ca. 110,000 breeding pairs of Chinstrap Penguins (ca. 30% 
of the population breeding in the South Orkneys; Poncet and 
Poncet 1985). Tracking data were organised in datasets, each 
corresponding to a unique combination of data collected in 
a specific colony, during a unique breeding stage (Lascelles 
et al. 2016). In some cases (mentioned where appropriate) 
data for the same colony and stage were available for more 
than 1 year, so we conducted the analyses separately for each 
year (Table 1). Details of the deployment procedures can be 
found in Warwick-Evans et al. (2018).
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Data analysis—mIBA approach

The datasets were analysed following the mIBA protocol 
(Lascelles et al. 2016), but further adapted to incorporate 
the specificities of the at-sea behaviour of the penguins (Dias 
et al. in prep, Online Resource 1). The mIBA protocol pro-
vides a consistent framework for using animal tracking data 
to delineate areas of global conservation importance, based 
on well-established and standardised criteria used worldwide 
to identify Important Bird and Biodiversity Areas (Donald 
et al. in press). In summary, the analysis runs through a num-
ber of stages, developed in R using common functions and 

packages (Lascelles et al. 2016), in order to (i) determine 
hotspots of activity for each individual using kernel density 
analysis, using a smoothing factor of 7 km and a kernel uti-
lisation distribution (kernel UD%, which reflects the prob-
ability density to relocate an animal at any place accord-
ing to the coordinates of this place; Calenge 2006) varying 
between 55% and 75%, depending on the breeding stage (the 
optimum values for Chinstrap Penguins; Dias et al. in prep 
and Online Resource 1); (ii) identify boundaries of areas of 
high intensity use by different birds (i.e. areas used by more 
than 20% of birds from the colony); these areas represent, 
at this step, mIBA candidate sites, (iii) combine this with 

Fig. 1   Location of the study 
area. Red dots indicate the loca-
tion of the colonies of Chinstrap 
Penguins Pygoscelis antarcticus 
where the tracking data were 
collected

Table 1   Summary of the tracking data analysed for Chinstrap Penguins Pygoscelis antarcticus in the South Orkney Islands

(1) BAS unpublished data
(2) Poncet and Poncet (1985)
(3) Dunn et al. (2016)

Colony Location (lat/long) Stage Sample size
(n birds)

Sample size
(n locations)

Years Colony size (pairs)

Laurie − 60.68, − 44.59 Brood 21 29,085 2011–2012 2439 (1)
Laurie − 60.68, − 44.59 Incubation 34 48,142 2011–2012 2439 (1)
Monroe − 60.6, − 46.06 Brood 28 12,772 2015–2016 33,333 (1)
Monroe − 60.6, − 46.06 Incubation 13 20,125 2015–2016 33,333 (1)
Monroe − 60.73, − 45.58 Crèche 12 7056 2015–2016 33,333 (1)
Powell − 60.73, − 45.58 Brood 34 51,442 2013–2014 55,213 (2)
Powell − 60.73, − 45.58 Incubation 13 25,369 2013–2014 55,213 (2)
Signy Island (2013) − 60.73, − 45.59 Incubation 9 21,477 2013–2014 19,530 (3)
Signy Island (2015) − 60.73, − 45.59 Brood 13 32,150 2015 19,530 (3)
Signy Island (2015) − 60.73, − 45.59 Incubation 9 17,937 2015 19,530 (3)
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information on colony size to predict at-sea abundances (by 
multiplying the percentage of the population using the mIBA 
candidate sites by the population size of the colony of origin 
of the tracked birds), and (iv) test values against IBA criteria 
to determine if an area may qualify as an IBA.

Data analysis—habitat models and comparison 
of both approaches

We used the models developed by Warwick-Evans et al. 
(2018) to evaluate the suitability of correlative habitat 
models to identify mIBAs for penguins. The details of the 
modelling procedures are described by Warwick-Evans 
et al. (2018). In brief, the authors used Generalized Addi-
tive Models (GAMs; Wood 2004; R package mgcv) to ana-
lyse a set of 15 remotely sensed oceanographic (e.g. mean 
sea level anomaly, primary productivity and ocean current) 
and geometric predictors (such as distance from the colony 
and bearing of the nearest point of the shelf edge from the 
colony), to model the foraging distribution of Chinstrap 
Penguins during incubation, brood and crèche, expressed as 
probability of occurrence in a given at-sea site.

The results revealed that the correlative habitat model 
with the best statistical support used only bearing and dis-
tance from the colony for predicting the locations of foraging 
dives at any point during the breeding season (Warwick-
Evans et al. 2018). Cross-validation tests showed good per-
formance of these models when predicting the locations for 
other colonies (AUC of 0.89, 0.96 and 0.94 for incubation, 
brood and crèche, respectively; Warwick-Evans et al. 2018).

The models developed by Warwick-Evans et al. (2018) 
provide a useful basis for a comparative approach with the 
mIBA protocol, given that the variables selected do not vary 
through time (i.e. only static variables, that change only over 
space but not over time, were selected). We explored this 
comparison by using the predicted distribution maps for 
individual colonies to analyse the match with the results of 
the mIBA sites described previously. For each colony, we 
compared the results of mIBA protocol with the predicted 
distribution based on correlative habitat models (created 
with data from other colonies). By using predicted distribu-
tions of Chinstrap Penguins based on habitat models built 
using data from other colonies, we intend to evaluate the 
possibility of using habitat modelling approaches to identify 
mIBAs around colonies where tracking data are not avail-
able, or study is not possible.

The predicted distributions created by Warwick-Evans 
et al. (2018) were provided in the format of raster maps. 
The values of the raster cells reflect the probability of occur-
rence of foraging penguins on a scale from quasi-zero to 1. 
To identify which value of probability of occurrence should 
be used to identify the most important sites (i.e. to select 
the cells that have higher values of habitat suitability which 

should be used to delineate the boundaries of priority sites—
hereafter ‘model hotspots’), we tested 20 different values, 
ranging from the 90% quantile to the 99.5% quantile of the 
cell values after excluding the quasi-zero values (see details 
in Online Resource 1). These tests were performed with the 
aim of informing this and future studies to an appropriate 
threshold to use in order to extract mIBA boundaries from 
predicted distributions output from habitat models. The 
match between the model hotspots (i.e. the areas resulting 
from using the different thresholds form the models) and the 
results from the mIBA approach was evaluated using three 
complementary metrics (see details in Online Resource 1)

–	 Model-IBA overlap: the percentage of model hotspots 
that overlap with the IBA, weighted by the relative 
importance of the hotspot cells (measured by the value 
of probability of occurrence given by the model); higher 
percentages represent a better fit (maximum 100% indi-
cates that the entire model hotspot is included within the 
IBA);

–	 Percentage of less suitable cells in the IBA: the percent-
age of the less suitable cells (modelled values below the 
median value of all cells, after excluding the quasi-zero 
values) that overlap with the IBA; this reflects the quan-
tity of priority areas that were not included in the final 
results due to poor model performance in identifying 
them as highly suitable; lower percentages represent a 
better fit (minimum 0% indicates that the model is not 
missing any intensively used area);

–	 Percentage of birds: average percentage of the core areas 
of the tracked birds (from the IBA analysis) included in 
the model hotspot. To estimate this we used the maps 
with the percentage of birds using each area, and esti-
mated the average percentage values included in the 
model hotspot. We then compared these values with the 
average values in the IBA, using a bootstrap test (by ran-
domly selecting the same number of cells in IBA and 
model hotspot, and repeating the procedure 1000 times); 
percentages higher than 20% represent a fit better than 
expected by chance.

All the analyses were performed in R (R Core Team 2016).

Results

The match between the mIBAs and the correlative habitat 
models was generally high (Table 2, Fig. 2). A high percent-
age of the model hotspots (i.e. cells of high values of habitat 
suitability; see methods) fall inside the mIBAs (65%–100% 
during incubation, 81–95% during brood; variable Model-
IBA overlap in Table 2). Also, only a null or negligible per-
centage of the less suitable cells (modelled values below the 



21Polar Biology (2019) 42:17–25	

1 3

median) coincided with mIBAs (always < 1%; variable Less 
suitable cells in IBA in Table 2).

The areas highlighted by the models (corresponding to 
93% to 99.9% higher values; Table 2) were always consid-
erably smaller than the mIBAs (Table 2 and Fig. 2). Nev-
ertheless, and in all cases, these smaller model “hotspots” 
overlapped with the most important sites within the mIBAs; 
on average, model “hotspots” encompassed 42% of the core 
areas of the birds tracked (28%–73%), more than the mini-
mum percentage required to be included in the IBAs (set 
to cover a minimum of 20% of the birds—see methods and 
previous results; variable Percentage of birds in Table 2).

Results in most cases had higher congruence during 
brood and crèche than during incubation (Table 2). The 
threshold that provided the best fit between both approaches 
was always higher than 90%, and in most cases (9 in 10) 
higher than 95% (global average 97%).

Discussion

This study represents a significant advance in the devel-
opment of new methods to identify priority at-sea sites of 
conservation for central place foraging seabirds and land-
based marine mammals. By comparing and combining two 
well-established but independent approaches (mIBA iden-
tification and habitat modelling), we have made progress in 
overcoming some of the limitations of each method (i.e. lack 
of tracking data to apply the mIBA method in all relevant 
colonies, and how to translate habitat preference surfaces 
into well-delimited areas for conservation priority), using 
as case-study mIBA the Chinstrap Penguin. We show that, 
for this species, correlative habitat models can predict very 
well the boundaries of mIBAs.

Comparisons between the mIBA approach and the habi-
tat models showed a high overlap between the areas high-
lighted as most important by both methods (Table 2). The 
“model hotspots” tended to capture the mIBAs very well 
and, within this, the sites used by a higher percentage of 
the birds (Table 2 and Fig. 2). Furthermore, these model 
hotspots were smaller than the mIBAs, and always corre-
sponded to a very small percentage (< 10%) of the extent 
of the areas modelled, so do not overestimate the important 
areas to conserve.

We note, however, that the threshold values used to 
delineate the model hotpots (i.e. values of habitat suitabil-
ity considered sufficiently high so as to be included in the 
hotspots) were chosen based on the quality of the match 
with the mIBA approach. While this can partially explain the 
high quality of the overlap between both results (although 
not totally, as the models could potentially highlight dif-
ferent areas, as they were created using data from different 
colonies than the one for which the predictions were made), 
the rationale for this approach was to find the optimum val-
ues and provide some guidance for future applications of 
the method. Threshold values corresponding to the highest 
3% ± 2% of most important cells (after excluding the quasi-
zero values; see methods) were the best options to coincide 
with the mIBA sites, and this threshold should be used in 
future applications of this approach. We note also that the 
variability of the results between stages (brood vs. incuba-
tion) was considerably higher than the variability between 
colonies. This provides additional confidence when applying 
a model to a new (untracked) colony, given that the phase 
of the breeding period is known for the data from which the 
model was built. Naturally, with the advent of new tracking 
data, further review of this guidance is feasible.

The models developed for the brood stage matched 
the mIBA approach better than those developed for the 

Table 2   Comparison between the marine IBA approach and the habitat modelling approach applied to Chinstrap Penguins Pygoscelis antarcti-
cus tracked in the South Orkney Islands

The * represents the results of the bootstrap tests (see Online Resource 1): **p < 0.01; ***p<0.001

Colony Stage Threshold model 
(quantile) (%)

IBA area (km2) Model hotspot 
area (km2)

Model-IBA 
overlap (%)

Less suitable cells 
in IBA (%)

Percent-
age of 
birds

Laurie Incubation 99.9 759 204 100 0.039 73***
Monroe Incubation 98.5 5343 2317 64.9 0.13 28
Powell Incubation 97.5 3669 3339 71.04 0.15 34
Signy2013 Incubation 98.5 9340 1942 79.65 0.21 32***
Signy2015 Incubation 96.0 8932 5519 73.95 0.148 28
Laurie Brood 98.5 641 404 83.93 0 34
Monroe Brood 97.5 1056 639 94.76 0 47**
Powell Brood 98.0 694 340 91.92 0 47
Signy2015 Brood 93.0 2394 1514 81.12 0 55***
Monroe Crèche 96.0 1632 1043 81.4 0 43
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Fig. 2   Comparison between the results of the mIBA protocol and the 
predictive maps based on correlative habitat models. Background 
maps show the predicted probability of occurrence of Chinstrap Pen-

guin Pygoscelis antarcticus from habitat models; dark blue dashed 
polygons represent the boundaries of model hotspots; red polygons 
represent the boundaries of candidate marine IBAs
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incubation stage. This is probably because foraging trips 
were shorter during brood (see above; Kato et al. 2009), 
and thus birds were more constrained, with less flexibility 
to deviate from foraging trajectories, resulting in higher 
model performance (Warwick-Evans et  al. 2018). The 
areas identified by the models and by the mIBA proto-
col during brood were consequently smaller than the ones 
identified during incubation, and in most cases included 
within the latter (see Fig. 2). Therefore, we suggest that 
future work should prioritise modelling the at-sea distribu-
tion of birds during brooding in order to identify priority 
sites, as the areas resulting from these predictions are more 
likely to correspond to the mIBAs, and also more likely 
to include the areas used during incubation. Finally, we 
should highlight that these analyses were only based on 
data collected for Chinstrap Penguins. The foraging distri-
bution of this species during the breeding period is mostly 

driven by static factors (such as distance to the colony 
and bearing of the nearest point of the shelf edge from the 
colony; Warwick-Evans et al. 2018). The lack of temporal 
dynamism of these variables can have a positive influence 
on the efficiency of the extrapolations of the models to 
other colonies and on the utility of habitat models in pre-
dicting marine IBAs. Also, the fact that they have such a 
predictable foraging strategy in space (as evidenced by the 
very good performance of the habitat models; Warwick-
Evans et al. 2018) and prey mostly on super abundant spe-
cies (Antarctic krill Euphausia superba; Lishman 1985) 
can have also an influence on the good results found on 
this study. However, the same might not hold true to other 
species more reliant on dynamic variables, with differ-
ent foraging strategies and/or preying on less predictable 
types of prey. Therefore, we suggest, as a precautionary 
approach and as a first step, that only habitat models for 

Fig. 2   (continued)
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Chinstrap Penguins should be used to identify mIBAs. 
Nevertheless, and given that the distance to the colony is 
a key factor in shaping the foraging behaviour of seabird 
species during the breeding season (Wakefield et al. 2009), 
we anticipate that this results will be mirrored in similar 
studies with other species.

Finally, we also note that extrapolation performance 
of the habitat models can be highly variable (e.g. Ran-
din et al. 2006; Torres et al. 2015). The models we have 
used performed considerably better at more local scale 
(i.e. when extrapolation to nearby colonies) than to larger 
scales (Warwick-Evans et al. 2018), so we recommend 
some caution when using habitat models built from data 
collected in distant locations and/or contrasting environ-
mental conditions.

Conclusions and recommendations

In this study we showed, for the first time, that maps of 
predicted distributions from correlative habitat suitability 
models (built from data collected from other colonies) can 
be used with a high degree of confidence to identify mIBAs 
for Chinstrap Penguins. Results obtained with data collected 
during the brood phase were consistently better than those 
during incubation.

Given the difficulty in collecting data at many important 
colonies of penguins, the results shown here open a new pos-
sibility for the designation of a complete network of mIBAs 
for penguins in Antarctic waters. Nevertheless, tracking data 
should be used where possible to identify mIBAs follow-
ing the already established protocols (e.g. Lascelles et al. 
2016; Dias et al. in prep). Results from Trathan et al. (2018) 
highlight that tracking data are best derived from the region 
under consideration. However, in the cases where tracking 
data are not available (or not possible to collect), correla-
tive habitat models represent a robust alternative, especially 
if parameterised mainly with ‘static’ variables that can be 
easily and freely obtained in public databases, and which 
are not subject to temporal variation (Warwick-Evans et al. 
2018). A broader application of this methodology around 
other important penguin colonies, e.g. Chinstrap Penguins 
breeding at the South Shetland Island (Trathan et al. 2018), 
or other central place-foragers (with the necessary testing 
as developed in this study) could improve the basis for a 
precautionary—but still evidence-based—management of 
the fisheries in Antarctica.
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