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S.1 Historical Data and Potential Future Trial

Figure S.1 shows summaries for the covariates described in Section 2 in the historical database

and a potential future single-arm trial. Marginal frequencies for each of the covariates are

plotted clearly highlighting the differences between the two populations.

Figure S.1: Relative frequency plots of the covariates in the two treatment arms.

S.2 Product Partition Model with Regression (PPMx)

Let i = 1, . . . , n be the indices of n data points. For the ith unit (patient, in our case),

the data consists of covariates Xi = (Xi,1, . . . , Xi,p)
T and response variables Yi. Let

X = {X1, . . . ,Xn} and Y = {Y1, . . . ,Yn} be the complete set of covariates and responses

respectively. Let ρn = {S1, . . . , Skn} denote a partition of the n units into kn subsets, where

1 ≤ kn ≤ n. An equivalent representation of ρn introduces cluster membership indicators

ci = j if and only if i ∈ Sj. Let X⋆
j be the covariates corresponding to the samples in Sj.

In the PPMx, it is believed that data points with more similar covariate values are more
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likely to a priori be in the same cluster and the corresponding responses are also very sim-

ilar. The prior consists of two functions - (i) a cohesion function denoted by c(Sj | α) ≥ 0

for Sj ⊂ {1, . . . , n} associated with a hyper-parameter α discerning the prior belief of co-

clustering of the elements of Sj, and (ii) a similarity function denoted by g(X⋆
j | ξ) and

parametrized by ξ, formalizing the ‘closeness’ of the Xi’s in the cluster Sj by producing

larger values of g(X⋆
j | ξ) for Xi’s that are more similar. Using the similarity and cohesion

functions, the PPMx assumes

Π (ρn | X, α, ξ) ∝
kn∏
j=1

c(Sj | α)g(X⋆
j | ξ). (S.1)

A default choice for the first factor is c(Sj | α) = α×(|Sj|−1)!, where α > 0 and |·| being the

cardinality of a set, which is identical to probability function for a random partition under

the Chinese restaurant process (Ferguson, 1973). For the second factor, Müller et al. (2011)

suggested the following default choice for similarity functions

g(X⋆
j | ξ) =

∫ ∏
i∈Sj

q(Xi | ζj)G0(ζj | ξ)dζj. (S.2)

With a conjugate sampling model and prior pair of q and G0, the integral in (S.2) is

analytically available, facilitating easy computation. The pair is used to assess the agreement

of the data points in Sj rather than any notion of statistical modeling.

The model construction is concluded by specifying a sampling model for the response

variable Yi’s. Let ci = j if i ∈ Sj denote cluster membership indicators for all i = 1, . . . , n.

For a given partition ρn, we introduce cluster-specific parameters θ = {θ1, . . . ,θkn} and

assume

Yi | θ, ci = j
ind∼ h(Yi | θj), θj | φ

iid∼ Π(θj | φ), (S.3)

where h is a sampling model and Π(· | φ) is a prior on θj with possible hyper-parameters φ.

Recognizing that Xi’s may not be random, with slight abuse of notations, under the

similarity function (S.2) the PPMx can be equivalently stated as

Xi | ci = j, ζ
iid∼ q(Xi | ζj), ζj | ξ

iid∼ G0(ζj | ξ), p(ρn) ∝
∏

c(Sj | α). (S.4)

S.3 Missing Data in PPMx

Following the thread of the discussion on handling missing data from Section 3.1 of the

main paper, we would like to point out that the model never rules out the possibility of co-

clustering a unit with missing entries with fully observed units. For the following argument

consider (S.4) with

Xi | ci = j, ζj = (ζj,1, . . . , ζj,p)
T ind∼

∏p
ℓ=1 qℓ(Xi,ℓ | ζj,ℓ),
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that is, with q(Xi | ζj) factoring over covariates. While implementing inference using a

Gibbs sampler, we then update the ci as follows

Π(ci = j | Xi, ζ1:K , c−i) ∝ Π(ci = j | c−i)×
∏p

ℓ=1 qℓ(Xi,ℓ | ζj,ℓ), (S.5)

where c−i is the set of cℓ’s for ℓ = 1, . . . , n excluding ci.

Now consider the case where we have missing observations in some components of Xi

and let Oi = {1 ≤ ℓ ≤ p : Xi,ℓ is observed} be the indices of the observed variables in Xi.

In this case (S.5) changes to

Π(ci = j | Xi, ζ1:K , c−i) ∝ Π(ci = j | c−i)×
∏

ℓ∈Oi
qℓ(Xi,ℓ | ζj,ℓ).

While updating the cluster membership of the units, only the observed variables Xi,ℓ’s in Xi

are matched with the corresponding ζj,ℓ for all ℓ ∈ Oi. A more detailed discussion can be

found in Page et al. (2022).

S.4 Variations of the Importance Resampling Scheme

S.4.1 Number of Patients to Resample from the RWD

Due to various reasons (see, e.g., Hey and Kimmelman, 2014, for a review), in two-arm

designs the allocation of patients in the treatment and control arms are generally considered

to be equal, including in particular early-phase GBM trials (Stupp et al., 2014; Nabors

et al., 2015; Vanderbeek et al., 2018). As a rule of thumb, we thus recommend the size of

the resampled population to be equal to the treatment arm population.

However, if desired any different ratio of sample sizes in treatment and control arm, say

R : 1, could be used. In that case, even if the the distribution of the covariates in the

two arms are same after the importance resampling population adjustment, the AUC of any

classifier used in step 5 of Algorithm 1 would be R/(R + 1), rather than 0.5.

S.4.2 Averaging over Multiple Resamplings

It may be tempting to average over multiple, say R, instances of the random importance-

resampling, to remove one source of variability. But this gives rise to some fundamental

problems. For illustrative purpose, we refer to Section 7 of the main manuscript where we

discuss the application in GBM. There we use the importance resampling strategy to generate

an equivalent subpopulation of the treatment arm and then use the Cox proportional hazard

model to test for treatment effects. In Figure 6(a), we plot the histogram of p-values under the

null scenario which resembles the Unif(0, 1) distribution. Now for R resamplings we would
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have multiple p-values corresponding to each of the R resampled populations. Subsequently

we need a statistic to summarize the p-values, let us denote it by T . Letting p1, . . . , pR be

the p-values thus obtained, the distribution of T (p1, . . . , pR) will not be U(0, 1) anymore

under the null. We therefore recommend against it. As importance resampling schemes are

asymptotically unbiased (Skare et al., 2003), under reasonably large sample sizes, a single

resampled population should be adequate.

S.5 Goodness-of-Fit Test for Continuous Responses

We use the approach of Johnson (2007) to suggest a graphical goodness-of-fit tool to validate

the mixture of lognormals model for the CA-PPMx. The procedure is valid as long as h in (7)

is a univariate continuous density, i.e., as long as the response variables are univariate and

continuous. For the moment, we suppress the additional s subindex on (Xi, Yi), i = 1, . . . , n.

Let m(Y | X) be the marginal distribution after integrating out all model parameters

m(Y | X) =
∑
c

∫ {
n∏

i=1

h(Yi | θci)

}
dp(θ, c1:n | X).

We implement a test of fit based on the following result. Assuming that m(Y | X) is the

true marginal distribution of Y , we have:

Proposition 1. Let ω = (θ, c1:n) be a sample from their posterior, H(y | θ) =
∫ y

−∞ h(z |
θ)dz be the CDF, and Ui = H(Yi | θci), i = 1, . . . , n. Then, Ui

iid∼ Unif(0, 1).

Proof. Let u1:n = {u1, . . . , un} and define A(u1:n;ω) = ∩n
i=1{y : H(y | θci) ≤ ui}. Then,

Pr(Ui ≤ ui for all i = 1, . . . , n) =

∫ ∫
A(u1:n;ω)

dΠ(ω | X,Y )m(Y | X)dY .

Note that Π(ω | X,Y ) = {
∏n

i=1 h(Yi | θci)}Π(ω | X)/m(Y | X). Substituting this in the

above equation, we get

Pr(Ui ≤ ui for all i = 1, . . . , n) =

∫ {∫
A(u1:n;ω)

n∏
i=1

h(Yi | θci)dY

}
dΠ(ω | X).

Now, the term inside the parenthesis integrates to
∏n

i=1 ui which is independent from Π(ω |
X). Hence the proof.

To understand the implications, consider the distribution (Y ,ω | X) for a hypothetical

data set (X,Y ). First sample ω̃ = (θ̃, c̃1:n) from p(ω | X) = p(c | X) p(θ | c,X)

and then (Y | ω̃,X) from the sampling model (7). Letting Ũi = H(Yi | θ̃c̃i), we then

have Ũi
iid∼ Unif(0, 1). Assuming that the observed data Y do in fact arise from the assumed

marginal model m(Y | X), Proposition 1 sets up sampling from the alternative factorization

p(Y ,ω | X) = m(Y | X) · p(ω | Y ,X). It follows that Ũ1:n and U1:n are indistinguishable

in distribution. The latter, U1:n, can be readily obtained from the posterior samples of
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ω. Letting U
(m)
1:n denote the evaluation under the mth posterior MCMC sample ω(m), a

goodness-of-fit test can then be carried out to validate the uniform distribution.

Note that the U
(m)
1:n ’s vary across different posterior samples ω(m) while also having hi-

erarchical dependence since all of them are sampled conditionally on the same Y (and X).

Although in principle formal prior-predictive-posterior based tests be carried out (Johnson,

2007; Cao et al., 2010), it can be numerically infeasible for complex models like ours. As a

practical alternative, goodness-of-fit can be assessed by inspecting the quantile-quantile plots

of U
(m)
1:n . Such visual tools can be effective for detecting departures from model assumptions

(Meloun and Militký, 2011, Chapter 2). We use it to assess the model fit in Section 7.

To assess the goodness-of-fit in the GBM application, where the outcomes are right-

censored survival data, we extend the result in the following corollary.

Corollary 1. Suppose we have right-censored survival outcomes (Yi, νi) with covariate Xi

where νi = 1 if Yi is an observed failure time, for i = 1, . . . , n. Following the notations of

Theorem 1, define Ui = H(Yi | θci) if νi = 1, else if νi = 0 define Ui = H(Yi | θci) + γi{1−
H(Yi | θci)}, where γi

iid∼ Unif(0, 1) independent from Yi. If the observed failure times are

independent of the censoring times, then Ui
iid∼ Unif(0, 1).

Proof of Corollary 1. Let Ỹi be the true failure time of the ith individual, that is Ỹi ≥ Yi with

equality if and only if νi = 1. Letting Ũi = H(Ỹi | θci), Theorem 1 implies Ũ1:n
iid∼ Unif(0, 1).

Note that

H(Ỹi | θci) = νiH(Ỹi | θci) + (1− νi)
[
H(Yi | θci) + {H(Ỹi | θci)−H(Yi | θci)}

]
.

Since H(Ỹi | θci) ∼ Unif(0, 1) and is independent of Yi, H(Yi | θci) + {H(Ỹi | θci) −H(Yi |
θci)} | Yi,θci ∼ Unif{H(Yi | θci), 1} which follows the same distribution as γi{1−H(Yi | θci)}.
Hence the proof.

S.5.1 Illustrating Example for the Graphical Goodness-of-Fit Test

We illustrate the Bayesian goodness-of fit test in a linear regression problem. We simulate

data (Xi, Yi), i = 1, . . . , n (= 1, 000) from the following mixture distribution

Yi | Xi
ind∼ π0N(α0 + βT

0 Xi, σ
2
0) + (1− π0)Exp(α0 + βT

0 Xi), (S.6)

where Xi’s are p (= 5)-variate continuous covariates and Exp(a) denotes an exponential dis-

tribution with mean a. However, we fit the following misspecified Bayesian linear regression

model on the data using the MCMCpack R package

likelihood: Yi | Xi
ind∼ N(α + βTXi, σ

2);

prior: (α,β) ∼ Np+1(0, 10× Ip+1), σ
−2 ∼ Ga(0.1, 0.1). (S.7)

For varying values of π0, we show quantile-quantile plots in Figure S.2 where we see

deviation from the diagonal y = x straight-line aggravates as π0 → 0, i.e., with increasing

model misspecification.
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Figure S.2: Quantile-quantile plots for increasing model misspecification: Data are generated
from model (S.6) for different values of π0 and the Bayesian linear regression model in
Eqn (S.7) is fitted where π0 = 0.0 and 1.0 denote the extreme misspecified model and the
true model, respectively. Deviation from the diagonal y = x straight-line aggravates with
increasing model misspecification.

S.6 Alternate Interpretation of the CA-PPMx

In Section 4.2, we introduced a model-based approach for inference on treatment effects in the

CA-PPMx model. An alternative interpretation of the approach arises from observing the

following connection with methods based on PS stratification (Wang et al., 2019; Chen et al.,

2020; Lu et al., 2022). The CAM model can be interpreted as a stochastic PS stratification.

To see this, first re-index all patients and patient specific variables across s = 1, 2 as i =

1, . . . , N = n1 + n2 and define Zi ∈ {1, 2} if patient i was originally in data set s = 1 or 2,

respectively. Assuming equal sample sizes n1 = n2, we have p(Zi = 1 | ci = j)/p(Zi = 2 |
ci = j) = π1,j/π2,j. That is, the terms in the CAM model correspond to different PS ratios

for the selection of a patient into s = 1 versus s = 2. Grouping patients in clusters Cj is

then interpreted as stratification by PS, with clusters Cj defining the strata. Within each

stratum we report treatment effect δj = δ{h(Y | θ1,j), h(Y | θ2,j)}. Compare the discussion

in Section 4.2.

Whereas fixed consolidated unidimensional PSs may be inadequate in matching multi-

variate covariates (Stuart, 2010; King and Nielsen, 2019) and hence sensitive to the specifi-

cation of the PS model (Zhao, 2004), inference under the proposed CAM model overcomes

limitations by naturally including uncertainty in the stratification.
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S.7 CA-PPMx Specifications and Hyperparameters

Recall the setup from Section 3.1 and the notations from Eqn (4). For categorical co-

variate Xs,ℓ with categories 1, . . . ,mℓ, we choose qℓ(Xs,ℓ | ζℓ) = Mult(1; ζℓ,1, . . . , ζℓ,mℓ
) and

g0,ℓ(ζℓ,1, . . . , ζℓ,mℓ
) = Dir(1, . . . , 1) to choose a uniform distribution over the simplex. For

continuous Xs,ℓ, we choose qℓ(Xs,ℓ | ζℓ) = N(Xs,ℓ;µX,ℓ, σ
2
X,ℓ) with ζℓ = (µX,ℓ, σ

2
X,ℓ) and

g0,ℓ(µX,ℓ, σ
2
X,ℓ) = NIG(µX,ℓ, σ

2
X,ℓ; 0, 1, αX , 1), i.e., µX,ℓ | σ2

X,ℓ ∼ N(0, σ2
X,ℓ), σ

−2
X,ℓ ∼ Ga(aX , 1).

Following standard practice, we center µX,ℓ around zero. Based on previous experience on

Gaussian mixture models, we set aX = #continuous covariates + 30, as a small prior vari-

ance on σ2
X,ℓ’s favors a larger number of occupied clusters in the mixture model a posteriori,

allowing for a more flexible fit. Recall that we have assumed logαs ∼ N(µα, σ
2
α) for s = 1, 2

on the concentration parameters in models (1) and (3). To specify weakly informative priors,

we set the hyperparameters µα and σ2
α such that E(αs) = 1 and var(αs) = 10 a priori for

s = 1, 2.

Regarding the parameters of the sampling model for survival outcomes in Eqn (8), we

set κ0 = 1 and a0 = 10 to ensure a thin-tailed base-measure. In our experience, with too

heavy tailed prior distributions, small sample performance can easily get dominated by the

prior. Regarding the hyperprior on the mean parameter µ0, we choose mµ using an empirical

Bayes type approach. Letting ñ be the number of observed failures combining the RWD and

the current trial, we set mµ = 1
ñ

∑
s

∑
i:νs,i=1 Ys,i, i.e., the grand mean of the log-observed

failure times across all arms. We further set s2µ = 1. Regarding the hyperprior on the scale

parameter b0, we choose mb and s2b such that E(b0) = 5 and var(b0) = 20 a priori to set a

weakly informative hyperprior.

Regarding the real-valued continuous responses in the simulation studies in Section 6, we

use the model in Eqn (8) on the actual response variables with νs,i = 1 for all i and s.

S.8 Posterior Computation

For computational convenience in the practical implementation, we consider the degree k

weak limit approximation (Ishwaran and Zarepour, 2002a,b) of the GEM(α2) distribution in

(1), i.e., we use a Dir(α2/k, . . . , α2/k) distribution, with fixed but large enough k. We set

k = 15 for all our simulation experiments and applications.

We develop a Gibbs sampler to avoid computational issues with a Gaussian mixture

models on the log transformed survival outcomes with censoring. Without loss of generality

we assume Ys,i’s (log transformed outcomes) are supported on the entire real line and describe

our algorithm for a mixture of Gaussian distributions. Let νs,i’s be the censoring indicators

such that νs,i = 1 implies Ys,i is an observed failure time; else if it is censored in the interval

(Ys,i,l, Ys,i,u) then νs,i = 0. For left and right censoring, we take Ys,i,u = ∞ and Ys,i,l = −∞,

respectively. Let Ỹs,i be the true failure times, that is Ỹs,i = Ys,i if and only if νs,i = 1. Off-

line, before starting MCMC simulation, we initialize Ỹs,i at some admissible value for νs,i = 0



SUPPLEMENTARY MATERIALS S.9

and cluster membership indicator variables c1 and c2. For the CAM model on covariates,

we consider a conjugate pair qℓ and g0,ℓ for ℓ = 1, . . . , p. This allows us to analytically

marginalize with respect to the atoms ζj’s. This strategy results in substantially improved

mixing of the Markov chain.

The sampler iterates through the following steps. In Step 1, we impute Ỹs,i’s for the

censored observations; in Step 2, we update the cluster membership indicators c1 and c2;

in Step 3, we update hyper-parameters related to the response model that allows sharing

of information via a hierarchical model; in Step 4, we update the parameters required to

implement the strategies outlined in Sections 3.2 and 4.2; finally in Step 5 we update the

Dirichlet hyperparameters for the two mixture models.

Step 1 We define the set Ss,j,−i = {i : cs,i = j} \ {i}, ns,j,−i = |Ss,j,−i|, κs,j,−i = κ0 + ns,j,−i,

Y s,j,−i =
∑

r∈Ss,j,−i
Ỹs,r/ns,j,−i, µs,j,−i = (κ0µ0 + ns,j,−iY s,j,−i)/κs,j,−i, as,j,−i = a0 + ns,j,−i/2,

bs,j,−i = b0 +
∑

r∈Ss,j,−i
(Ỹs,r − Y s,j,−i)

2/2 + ns,j,−iκ0(Y s,j,−i − µ0)
2/κs,j,−i. Then for all i =

1, . . . , ns and s = 1, 2, generate

Ỹs,i ∼

Ys,i with probability 1 if νs,i = 1;

t2as,j,−i

{
µs,j,−i,

bs,j,−i(κs,j,−i+1)

as,j,−iκs,j,−i
| (Ys,i,l, Ys,i,u)

}
otherwise,

where tdf{µ, σ2 | (a, b)} is a central Student’s t-distribution, with degrees of freedom df ,

median µ and scale parameter σ, truncated to the set (a, b).

Step 2 Letting ft{· | df, µ, σ2} and Ft{· | df, µ, σ2} denote the pdf and cdf of a central

Student’s t-distribution with degrees of freedom df , median µ and scale parameter σ, respec-

tively, we define

ψY ;s,j(i) =


ft

{
Ys,i | 2as,j,−i, µs,j,−i,

bs,j,−i(κs,j,−i+1)

as,j,−iκs,j,−i

}
if νs,i = 1;

Ft

{
Ys,i,u | 2as,j,−i, µs,j,−i,

bs,j,−i(κs,j,−i+1)

as,j,−iκs,j,−i

}
−Ft

{
Ys,i,l | 2as,j,−i, µs,j,−i,

bs,j,−i(κs,j,−i+1)

as,j,−iκs,j,−i

}
otherwise.

Recall from Section 3.1 (see page 11) that Os,i is the set of indices of the covariates observed

forXs,i, and define the sets Cj,ℓ = ∪2
s=1 {i : i ∈ Sj, ℓ ∈ Os,i} andX∗o

j,ℓ = ∪2
s=1 {Xs,i,j : i ∈ Cj,ℓ}.

Define the functions gℓ(X
∗o
j,ℓ | ξℓ) =

∫ ∏
i∈Cj,ℓ qℓ(Xs,i,ℓ | ζj,ℓ)g0,ℓ(ζj,ℓ | ξℓ)dζj,ℓ and ψX;s,j(i) =∏

ℓ∈Os,i

gℓ(X
∗o
j,ℓ|ξℓ)

gℓ[X∗o
j,ℓ\{Xs,j,ℓ}|ξℓ] . Then, c1 can be updated as

Π(c1,i = j | −) ∝ (n1,j,−i + α1/k(n2))× ψY ;1,j(i)× ψX;1,j(i) for j = 1, . . . , k(n2).

Similarly c2 can be updated as

Π(c2,i = j | −) = 1 if n1,j > 0 and n2,j,−i = 0;

else Π(c2,i = j | −) ∝ (n2,j,−i + α2/k)× ψY ;2,j(i)× ψX;2,j(i) for j = 1, . . . , k.

Step 3 Define b̃ = log b0 and let Π(µ0, b̃ | Ỹ1,1:n1 , Ỹ2,1:n2) be the joint posterior density of

µ0 and b̃ given Ỹs,i’s, kn,1 and kn,2 be the number of non-empty clusters in the two cohorts

respectively. Then,
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log Π(µ0, b̃ | Ỹ1,1:n1 , Ỹ2,1:n2) = K − (µ0 −mµ)
2

2s2µ
− (̃b−mb)

2

2s2b
+ (kn,1 + kn,2)a0b̃

−
k(n2)∑
j=1

2∑
s=1

(
a0 +

ns,j

2

)
log

eb̃ + 1

2

µ2
0κ0 +

∑
i∈Ss,j

Ỹ 2
s,i −

(κ0µ0 + ns,jY s,j)
2

κ0 + ns,j


 ,

where K is a constant and Y s,j =
∑

i∈Ss,j
Ỹs,i. We sample µ0 and b̃ using a Hamiltonian

Monte Carlo (HMC) algorithm (Duane et al., 1987).

Step 4 For j = 1, . . . , k, we define the set Ss,j = {i : cs,i = j}, κs,j = κ0+ns,j, µs,j = (κ0µ0+

ns,jY s,j)/κs,j, as,j = a0 + ns,j/2, bs,j = b0 +
∑

r∈Ss,j
(Ỹs,r − Y s,j)

2/2 + ns,jκ0(Y s,j − µ0)
2/κs,j.

Then,

µs,j ∼ t2as,j

{
µs,j,

bs,j(κs,j + 1)

as,jκs,j

}
, σ−2

s,j ∼ Ga(as,j, bs,j), (S.8)

π1 ∼ Dir

(
n1,1 +

α1

k(n2)
, . . . , n1,k(n2) +

α1

k(n2)

)
, π2 ∼ Dir

(
n2,1 +

α2

k
, . . . , n2,k +

α2

k

)
.

For s = 1, we only sample for j = 1, . . . , k(n2) in (S.8). Note that the dimension of π1 can

vary across MCMC samples.

Step 5 With lognormal priors on the Dirichlet mixture hyperparameters α1 and α2, logαs ∼
N(µα, σ

2
α), s = 1, 2, the log-posterior pdfs are given by

log Π(α1 | −) = K1 + log
Γ(α1)

Γ(α1 + n1)
+

∑
j:n1,j>0

log
Γ(α1/k(n2) + n1)

Γ(α1)
− logα1 −

(logα1 − µα)
2

2σ2
α

,

log Π(α2 | −) = K2 + log
Γ(α2)

Γ(α2 + n2)
+

∑
j:n2,j>0

log
Γ(α2/k + n2)

Γ(α2)
− logα2 −

(logα2 − µα)
2

2σ2
α

.

As the respective pdfs are differentiable with respect to α1 and α2, we sample the parameters

using HMC.

Remark 1. Note that in Step 2, Cj,ℓ is the set of data points in Sj with observed covariate

ℓ, X∗o
j,ℓ is the collection of the observed values of the covariate ℓ in Sj and gℓ(X

∗o
j,ℓ | ξℓ) is

the joint marginal density. A conjugate pair qℓ and g0,ℓ ensures the analytical availability

of gℓ and ψX;s,j(i) becomes the conditional distribution of Xs,i given X∗o
j,ℓ. For continuous

real-valued Xs,j,ℓ, we may take qℓ(· | ζj) to be the univariate Gaussian pdf where ζj is the set

of associated mean and variance parameters, and g0,ℓ(ζj | ξℓ) to be a normal-inverse-gamma

density (compare Section S.7). In this case, the ratio
gℓ(X

∗o
j,ℓ|ξℓ)

gℓ[X∗o
j,ℓ\{Xs,j,ℓ}|ξℓ] reduces to a central

t-distribution density; for categorical Xs,j,ℓ, a convenient choice can be the multinomial-

Dirichlet pair which again yields an analytical expression of the ratio.

In the GBM application and simulation studies in Section 6, we have considered conjugate

normal-inverse-gamma and multinomial-Dirichlet conjugate pairs for continuous real-valued
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covariates and categorical covariates, respectively. For all simulation studies and GBM

application, we consider 6,000 MCMC iterations, discarded the first 1,000 as the burn-in

samples, and saved every 5th MCMC sample to reduce autocorrelation.

Finally we note that the complete conditional for π1,j in step 4 could be used to implement

Rao-Blackwellization (Robert and Roberts, 2021) in the evaluation of the weights wi in (6)

by replacing π1,j with the conditional posterior means.

S.9 Additional Details on Simulation Studies

S.9.1 Procedure to Test for Treatment Effects in Section 6

Recall that in Section 6 we test H0 : δ = 0 versus H1 : δ ̸= 0 in each simulation setup. To

compute the power, we first estimate the treatment effect, say δ̂ in each setup. Estimated

treatment effects under CA-PPMx are evaluated using the posterior mean of Eqn (9). To

evaluate type-II error rates we use the empirical distribution of δ̂ under simulation truth

δ = 0 for each of the seven methods under consideration across the 500 repeat simulations

to obtain their distributions under H0. We evaluate the empirical 2.5% and 97.5% quantiles,

say δ̂L and δ̂U and define the test function Φ(δ̂) = 1δ̂ /∈[δ̂L,δ̂U ] controlling the type-I error at

5% level of significance.

S.9.2 Details on Simulation Truths

CAM scenario: We set µ1,1 = µ1,1 = 2 and µ1,j = 0 for all j > 2, and µ2,5 = µ2,6 = 2 and

µ2,j = 0 for all j /∈ {5, 6}, σ2
j = 0.05 for all j = 1, 2, 3. Regarding the mixture weights, we set

π1,1 = π1,2 = 0.5 and π2,1 = π2,2 = 1/6 and π2,3 = 2/3. Regarding the categorical covariates

we set ϱ1 = 0.85, ϱ2 = 0.65.

MIX scenario: We take k = 4. Recall that µ1,j = µ2,j for all j < k, say µj =

(µj,1, . . . , µj,p)
T. For each j < k, we take µj,2j+1 = µj,2j+2 = 2 and µj,ℓ = 0 for

all ℓ /∈ {2j + 1, 2j + 2}. Finally for µs,k = (µs,k,1, . . . , µs,k,p)
T with s = 1, 2, we set

µ1,k,7 = µ1,k,8 = 2, µ1,k,9 = 1 and µ1,k,ℓ = 0 for all ℓ /∈ {7, 8, 9}; and µ2,k,2k+1 = µ2,k,2k+2 = 2

and µ2,k,ℓ = 0 for all ℓ /∈ {2k + 1, 2k + 2}. In each repeat simulation we generate

w1,1, . . . , w1,k = SRSWRk(1, . . . , 4) where SRSWRr(S) denotes the simple random sampling

scheme with replacement of size r from the set S. Then we set π1,j = w1,j/
∑k

r=1w1,r for all

j = 1, . . . , k. we set π2,j = 1/k for all j = 1, . . . , k.

Interaction scenario: Recall the covariates in the GBM dataset from Table 2 in the

main manuscript. We consider pairwise interactions between (Gender, Age) and (RT Dose,

Age). Following that, we have one-hot-encoded the covariates with more than two categories
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(e.g., KPS) so that we are left with all binary covariates (including the interactions). Let

Xi = (Xi,1, . . . , Xi,p)
T be the covariates corresponding to patient record i with p being the

number of covariates.

For each repeat simulation, we then generate b = (b1, . . . , bp)
T = SRSWRp(−1, 0.75). We

then assign the patient record i to the treatment arm with probability
XT

i b+0.8

1+XT
i b+0.8

.

Oracle scenario: We follow the exact same strategy as described in the Interaction sce-

nario but without pairwise interactions.

Outcome model: For x = (x1, . . . , xp)
T, we take f(x) = β11(x1≥1.25,x2≥1.25)−β21(x3≥1.25,x4≥1.25)+

β31(x5≥1.25,x6≥1.25) + β41(xp−1≥1,xp≥1). In each repeat simulation we let β1, β2
iid∼ Unif(40, 60),

β3 ∼ Unif(225, 275) and β4 ∼ Unif(−5,−1).

In the Interaction and Oracle scenarios we simulate the linear regression coefficients

β = (β1, . . . , βp)
T iid∼ Unif(−10, 10).

S.9.3 Implementation of Matching and PS-Based Approaches

PS-based approaches: We implemented the composite likelihood and power-prior ap-

proaches using the psrwe R package. We set the hyperparameters as recommended in the

vignette. We create 5 strata (suggested in the package vignette) and borrow n1 patients

from the RWD for all simulation studies. For the PS model, we consider both, linear logistic

regression and the random forest classifier.

Matching: We implemented these approaches using the optmatch R package. Following

the recommendations in the vignette, we set one control to be matched to each treatment.

It makes the matched control population to be of the same size as the treatment arm. We

then fit a linear model to estimate the treatment effect δ.
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S.9.4 Bias for the Methods Considered in Section 6
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Method CA−PPMx IS−LM Matching CL−Logistic CL−RF PP−Logistic PP−RF

(a) CAM (top) and MIX (bottom) scenarios.

(b) Interaction (left) and Oracle (right) scenarios.

Figure S.3: The bias in detecting treatment effects across different simulation setups: Seven
methods are used to estimate the effects where IS-LM and CA-PPMx are based on the
proposed CAMmodel. Panel (a) corresponds to the CAM (top) and MIX (bottom) scenarios.
Panel (b) shows results under the Interaction (left side) and the Oracle (right side) scenarios.
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S.9.5 Power for the Methods Considered in Section 6

The PS-based approaches yield very similar results. Therefore, for easier apprehension we

only show the results for CL-RF together with the other types of methods in Tables S.1 and

S.2, and the rest of the PS-based methods in Table S.3.

Table S.1: Power of detecting treatment effects under CAM and MIX scenarios

δ
Scenario: CAM Scenario: MIX Scenario: CAM Scenario: MIX

n1 p Power n1 p Power n1 p Power n1 p Power

-1

M
e
th

o
d
:
C
A
-P

P
M

x

50 10 0.024 50 10 0.056

M
e
th

o
d
:
IS

-L
M

50 10 0.054 50 10 0.042
100 10 0.032 100 10 0.066 100 10 0.080 100 10 0.090
150 10 0.048 150 10 0.118 150 10 0.080 150 10 0.072
50 20 0.206 50 20 0.052 50 20 0.050 50 20 0.056
100 20 0.040 100 20 0.050 100 20 0.068 100 20 0.052
150 20 0.062 150 20 0.030 150 20 0.118 150 20 0.064

0

50 10 0.050 50 10 0.050 50 10 0.050 50 10 0.050
100 10 0.050 100 10 0.050 100 10 0.050 100 10 0.050
150 10 0.050 150 10 0.050 150 10 0.050 150 10 0.050
50 20 0.050 50 20 0.050 50 20 0.050 50 20 0.050
100 20 0.050 100 20 0.050 100 20 0.050 100 20 0.050
150 20 0.050 150 20 0.050 150 20 0.050 150 20 0.050

1

50 10 0.048 50 10 0.056 50 10 0.056 50 10 0.090
100 10 0.890 100 10 0.266 100 10 0.064 100 10 0.080
150 10 0.950 150 10 0.674 150 10 0.112 150 10 0.042
50 20 0.058 50 20 0.142 50 20 0.064 50 20 0.048
100 20 0.806 100 20 0.534 100 20 0.082 100 20 0.074
150 20 0.924 150 20 0.826 150 20 0.096 150 20 0.082

3

50 10 0.866 50 10 0.056 50 10 0.146 50 10 0.132
100 10 0.960 100 10 0.746 100 10 0.358 100 10 0.216
150 10 0.998 150 10 0.754 150 10 0.472 150 10 0.154
50 20 0.966 50 20 0.754 50 20 0.164 50 20 0.078
100 20 0.958 100 20 0.900 100 20 0.312 100 20 0.228
150 20 0.998 150 20 0.900 150 20 0.518 150 20 0.240

-1

M
e
th

o
d
:
C
L
-R

F

50 10 0.056 50 10 0.014

M
e
th

o
d
:
M

a
tc
h
in
g

50 10 0.050 50 10 0.076
100 10 0.056 100 10 0.056 100 10 0.064 100 10 0.044
150 10 0.042 150 10 0.060 150 10 0.096 150 10 0.100
50 20 0.044 50 20 0.046 50 20 0.040 50 20 0.058
100 20 0.076 100 20 0.034 100 20 0.046 100 20 0.076
150 20 0.060 150 20 0.046 150 20 0.038 150 20 0.062

0

50 10 0.050 50 10 0.050 50 10 0.050 50 10 0.050
100 10 0.050 100 10 0.050 100 10 0.050 100 10 0.050
150 10 0.050 150 10 0.050 150 10 0.050 150 10 0.050
50 20 0.050 50 20 0.050 50 20 0.050 50 20 0.050
100 20 0.050 100 20 0.050 100 20 0.050 100 20 0.050
150 20 0.050 150 20 0.050 150 20 0.050 150 20 0.050

1

50 10 0.044 50 10 0.016 50 10 0.078 50 10 0.070
100 10 0.030 100 10 0.062 100 10 0.076 100 10 0.084
150 10 0.040 150 10 0.042 150 10 0.150 150 10 0.106
50 20 0.038 50 20 0.042 50 20 0.068 50 20 0.092
100 20 0.064 100 20 0.040 100 20 0.104 100 20 0.070
150 20 0.074 150 20 0.052 150 20 0.052 150 20 0.070

3

50 10 0.072 50 10 0.020 50 10 0.112 50 10 0.162
100 10 0.056 100 10 0.030 100 10 0.216 100 10 0.278
150 10 0.024 150 10 0.044 150 10 0.414 150 10 0.382
50 20 0.034 50 20 0.066 50 20 0.154 50 20 0.132
100 20 0.064 100 20 0.038 100 20 0.206 100 20 0.230
150 20 0.046 150 20 0.030 150 20 0.236 150 20 0.294
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Table S.2: Power of detecting treatment effects under Interaction and Oracle scenarios

Method Scenario δ Power Method Scenario δ Power

C
A
-P
P
M
x

Interaction

-1 0.079

IS
-L
M

Interaction

-1 0.085
0 0.052 0 0.052
1 0.047 1 0.083
3 0.116 3 0.497

Oracle

-1 0.077

Oracle

-1 0.091
0 0.053 0 0.053
1 0.084 1 0.092
3 0.132 3 0.570

C
L
-R

F

Interaction

-1 0.064

M
at
ch
in
g

Interaction

-1 0.108
0 0.053 0 0.050
1 0.062 1 0.121
3 0.071 3 0.575

Oracle

-1 0.061

Oracle

-1 0.103
0 0.053 0 0.053
1 0.039 1 0.122
3 0.043 3 0.752

Table S.3: Power of the PS-based methods in CAM and MIX scenarios (upper table) and
Interaction and Oracle scenarios (lower table)

δ
Scenario: CAM Scenario: MIX Scenario: CAM Scenario: MIX Scenario: CAM Scenario: MIX

n1 p Power n1 p Power n1 p Power n1 p Power n1 p Power n1 p Power

-1

M
e
th

o
d
:
P
P
-L

o
g
is
ti
c

50 10 0.082 50 10 0.022

M
e
th

o
d
:
P
P
-R

F

50 10 0.062 50 10 0.022

M
e
th

o
d
:
C
L
-L

o
g
is
ti
c

50 10 0.068 50 10 0.016
100 10 0.044 100 10 0.072 100 10 0.050 100 10 0.056 100 10 0.044 100 10 0.064
150 10 0.036 150 10 0.056 150 10 0.048 150 10 0.064 150 10 0.036 150 10 0.070
50 20 0.060 50 20 0.044 50 20 0.036 50 20 0.026 50 20 0.058 50 20 0.040
100 20 0.062 100 20 0.038 100 20 0.074 100 20 0.036 100 20 0.060 100 20 0.034
150 20 0.060 150 20 0.044 150 20 0.066 150 20 0.052 150 20 0.048 150 20 0.048

0

50 10 0.050 50 10 0.050 50 10 0.050 50 10 0.050 50 10 0.050 50 10 0.050
100 10 0.050 100 10 0.050 100 10 0.050 100 10 0.050 100 10 0.050 100 10 0.050
150 10 0.050 150 10 0.050 150 10 0.050 150 10 0.050 150 10 0.050 150 10 0.050
50 20 0.050 50 20 0.050 50 20 0.050 50 20 0.050 50 20 0.050 50 20 0.050
100 20 0.050 100 20 0.050 100 20 0.050 100 20 0.050 100 20 0.050 100 20 0.050
150 20 0.050 150 20 0.050 150 20 0.050 150 20 0.050 150 20 0.050 150 20 0.050

1

50 10 0.058 50 10 0.030 50 10 0.072 50 10 0.018 50 10 0.060 50 10 0.020
100 10 0.040 100 10 0.054 100 10 0.036 100 10 0.054 100 10 0.036 100 10 0.058
150 10 0.028 150 10 0.042 150 10 0.044 150 10 0.034 150 10 0.030 150 10 0.048
50 20 0.034 50 20 0.050 50 20 0.028 50 20 0.024 50 20 0.028 50 20 0.048
100 20 0.040 100 20 0.038 100 20 0.068 100 20 0.032 100 20 0.036 100 20 0.040
150 20 0.062 150 20 0.054 150 20 0.080 150 20 0.060 150 20 0.064 150 20 0.048

3

50 10 0.084 50 10 0.018 50 10 0.072 50 10 0.020 50 10 0.072 50 10 0.026
100 10 0.040 100 10 0.038 100 10 0.062 100 10 0.026 100 10 0.044 100 10 0.028
150 10 0.038 150 10 0.050 150 10 0.028 150 10 0.044 150 10 0.034 150 10 0.056
50 20 0.052 50 20 0.064 50 20 0.038 50 20 0.042 50 20 0.048 50 20 0.064
100 20 0.042 100 20 0.042 100 20 0.060 100 20 0.030 100 20 0.040 100 20 0.038
150 20 0.040 150 20 0.028 150 20 0.058 150 20 0.040 150 20 0.038 150 20 0.038

Method Scenario δ Power Method Scenario δ Power

C
L
-L
og
is
ti
c Interaction

-1 0.060

P
P
-L
og
is
ti
c Interaction

-1 0.058
0 0.052 0 0.052
1 0.058 1 0.058
3 0.062 3 0.058

Oracle

-1 0.065

Oracle

-1 0.063
0 0.053 0 0.053
1 0.036 1 0.036
3 0.043 3 0.045

P
P
-R

F

Oracle

-1 0.061

P
P
-R

F

Interaction

-1 0.066
0 0.053 0 0.053
1 0.039 1 0.057
3 0.043 3 0.064
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S.9.6 Multiple Historical Controls

We consider a setup with historical controls arising from multiple sources, i.e., with S > 2. As

mentioned earlier in Section 3.1, we merge the historical datasets and treat the merged data

set as a single RWD population with increased heterogeneity. We study the performance of

the CA-PPMx model in this scenario via simulation studies. We extend the MIX scenario dis-

cussed in Section 6. We generate the treatment armX1,i
iid∼

∑k
j=1 π1,jNp(µj, σ

2Ip). We gener-

ate two RWD datasets from X2,i
iid∼

∑k−1
j=1 π2,jNp(µj, σ

2Ip) and X3,i
iid∼

∑k
j=2 π3,jNp(µj, σ

2Ip).

In this construction, the historical populations X2 and X3 are substantially different, with

one distinct atom each, as well as varying weights for the common atoms. Letting X2′ denote

the merged X2 and X3 population, we fit the CA-PPMx model on X1 and X2′ . Note that

the current trial population X1 has an extra atom compared to each of the RWD populations

but the merged X2′ and X1 share common atoms.

We generate the response Y1,i
ind∼ N(δ + XT

1,iβ, 1) and Ys,i
ind∼ N(XT

s,iβ, 1) for s = 2, 3

implying δ to be the true treatment effect. We let n2, n2 and n3 denote the sample sizes

in the three populations, respectively where we set n2 = n3 = 3 × n2 in coherence with

the simulation studies in Section 6. We set the dimension of the covariates p = 10 and

repeat the the experiments for δ = −1, 0, 1, 3 and n2 = 50, 100, 150. We plot the power

of discovering the treatment effect in Figure S.4 calculated in the exact same manner as

described in Section 6. We observe that the power increases with respect to both sample

size and strength of the treatment effect.

Figure S.4: Multiple historical data in the CA-PPMx model: We combine different historical
datasets and combine them as a more heterogeneous single population and subsequently fit
the CA-PPMx model. We observe that the power increases with respect to both sample size
and strength of the treatment effect.
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S.9.7 Effect of Missing Confounders

In this section we briefly study the effect of missing confounders on inference under the

proposed CA-PPMx model. In particular we consider the case where a confounding factor is

completely unobserved. In such cases causal inference methods are often biased; see Nguyen

et al. (2017) and the references therein for a detailed review. However, in many applications,

multivariate covariates are often correlated among each other. Several imputation methods

for partially observed confounders are based on this assumption (Cole et al., 2006; Moons

et al., 2006). In such cases, observing and using another covariate which is correlated to the

missing confounder as predictor can reduce bias. We study this in a simulated example.

We consider a regression setup in a case-control study (Xs,i, Ys,i), i = 1, . . . , ns,

s = 1, 2 with bivariate covariate Xs,i = (Xs,i,1, Xs,i,2)
T. First, we generate Xs,i,1 ∼∑k

j=1 πs,jN(µj, 0.01) and subsequently generate Xs,i,2 = mXs,i,1 + εs,i where εs,i
iid∼ N(0, 1)

and m ∈ R. Then, we generate the responses Y1,i = δ + βX1,i,1 + ϵ1,i and Y2,i = βX2,i,1 + ϵ2,i

where ϵs,i
iid∼ N(0, 1) implying δ to be the true treatment effect. Thus conditionally on the

Xs,i,1’s, the responses Ys,i’s are independent of the Xs,i,2’s. We take n2 = 50, n2 = 300,

k = 3, (µ2, µ2, µ3) = (−3, 0, 3), δ = 3 and β = 1. We repeat the simulation experiment

independently 100 times and randomly generate the πs,j’s in each replicate.

Figure S.5: Effect of missing confounder in the CA-PPMx model: The bias in estimating
the treatment effect decreases as the correlation between the observed covariate and the
unobserved confounder increases.

We consider two analysis scenarios: (1) Unobserved : Xs,i,1 is assumed to be unobserved

and the CA-PPMx model is fitted using (Xs,i,2, Ys,i); (2) Observed : the CA-PPMx model is

fitted using (Xs,i, Ys,i). We compute the bias in estimating the treatment effect δ for varying

values of m in both scenarios. We show boxplots of the biases over the repeat simulations

in Figure S.5.

Note that for m = 0, Xs,i,1 and Xs,i,2 are uncorrelated. Additionally, |corr(Xs,i,1, Xs,i,2)|
is an increasing function of |m|. Coherently, the bias is maximum in the Unobserved scenario
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for m = 0 as the Xs,i,2’s carry no information regarding the confounding factor Xs,i,1’s. The

marginal correlation between the observed covariate and the response increases with m and

accordingly we see a reduction in the bias. This simulation study indicates that the CA-

PPMx method will not yield terribly biased results as long as the data includes observed

covariates that are correlated to the unmeasured confounder.

S.9.8 Computation Times for the CA-PPMx Method

In this section we report computation times of the MCMC sampler proposed in Section S.8

across different sample sizes and covariate dimensions. We consider the CAM and MIX

scenarios and the exact same simulation setups discussed in Section 6 of the main paper.

Since the model implementation times do not depend on the treatment effect size, we report

the computation times for δ = 3 only. Computation times for 6, 000 MCMC iterations in

seconds for a single repeat simulation on an Intel Core i9-13900K CPU with 128GB of RAM

are provided in Figure S.6 where we see that the computational cost increases with the

covariate dimension p as well as the sample size n1.

Scenario: CAM Scenario: MIX
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Figure S.6: Computation times of the MCMC sampler in seconds: n1 and p denotes the
number of patients in the current trial arm and the dimension of the covariates, respectively.

S.10 MCMC Diagnostics

In this section, we provide some convergence diagnostics of the MCMC sampler discussed in

Section S.8 for one trial replicate discussed in Section 7. We show traceplots and Geweke’s

convergence diagnostics (Geweke, 1992) for some selected parameters, using an implementa-

tion in the ggmcmc R package (Fernández-i Maŕın, 2016).

Recall the importance resampling weights wi ∝
π1,c2,i

n2,c2,i
in Eqn (5) attached to the historical

patients. We evaluate MCMC convergence diagnostics for the five wi’s with the largest

posterior means, the lognormal hyperparameters µ0 and b0 mentioned in Step 3 and the
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Dirichlet mixture hyperparameters α1 and α2 in Step 5 of the MCMC sampler in Section

S.8. The results, provided in Figure S.7, do not suggest any convergence or mixing issues.

(a) MCMC analysis of the largest 5 importance resampling weights.

(b) MCMC analysis of the Dirichlet mixture hyperparameters α2 and α2.
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(c) MCMC analysis of the lognormal hyperparameters µ0 and b0.

Figure S.7: MCMC convergences diagnostics for some selected parameters: Panel (a), (b)
and (c) shows results for the top five wi ∝

π1,c2,i

n2,c2,i
with largest posterior means, the lognormal

hyperparameters µ0 and b0 and the Dirichlet mixture hyperparameters α1 and α2 in Step
5, respectively. In each panel, we show the corresponding traceplots across the thinned out
MCMC samples on the left, and Geweke’s diagnostics on the right.
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