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Supplementary materials present additional discussion on the motivating dataset, a brief

review on the PPMx, detailed discussion on the graphical goodness-of-fit test of our regres-
sion model, an alternative interpretation of our model-based inference approach, choices of

hyperparameters, detailed posterior simulation scheme, additional simulation studies and
associated details, and MCMC convergence diagnostics.
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S.1 Historical Data and Potential Future Trial

Figure S.1 shows summaries for the covariates described in Section 2 in the historical database
and a potential future single-arm trial. Marginal frequencies for each of the covariates are
plotted clearly highlighting the differences between the two populations.

1.00- 1.00-

0.751 0.75- 0.75-
0.50- 0.50- 0.50-
0.25- I 0.25- 0.25-
<55 >55 <60 [60 80] >80 <50 Gy 250 Gy Yes
Age (in Years) Karnofsky Score Radiation Therapy Dose Standard of-Care
0.6- - d )
(C>J~ 0.6 0.75
o 04- - - T
8- 0.4 0.50
o 0.2- 0.2- 0.25- 7
L
o 00- 0.0 - N mmi S 0.00 - il - - ,
2 Yes Yes Female Male
@© C||n|ca| Trial Participation MGMT ATRX Gender
[0}
x 1.00-
0.75- 0.75-
0.50- 0.50-
0.25- 0.25-
_ 000 A _ 000 _ .
LITT Sub Gross |- III Other Theraputic
Extent of Resection Histologic Grade Surgery Reason

Arm . RWD . Treatment

Figure S.1: Relative frequency plots of the covariates in the two treatment arms.

S.2 Product Partition Model with Regression (PPMx)

Let i = 1,...,n be the indices of n data points. For the " unit (patient, in our case),
the data consists of covariates X, = (Xi,l,...,Xiyp)T and response variables Y;. Let
X ={Xy,...,X,} and Y = {Y7,...,Y,} be the complete set of covariates and responses
respectively. Let p, = {S1,..., Sk, } denote a partition of the n units into k, subsets, where
1 < k, < n. An equivalent representation of p, introduces cluster membership indicators
¢; = j if and only if ¢ € S;. Let X7 be the covariates corresponding to the samples in Sj.
In the PPMx, it is believed that data points with more similar covariate values are more
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likely to a prior:t be in the same cluster and the corresponding responses are also very sim-
ilar. The prior consists of two functions - (i) a cohesion function denoted by ¢(S; | ) > 0
for S; C {1,...,n} associated with a hyper-parameter « discerning the prior belief of co-
clustering of the elements of S;, and (ii) a similarity function denoted by g(X7 | §) and
parametrized by &, formalizing the ‘closeness’ of the X;’s in the cluster S; by producing
larger values of g( X7 | €) for X;’s that are more similar. Using the similarity and cohesion

functions, the PPMx assumes N

(pn | X,0,€) o< [ [ e(S; | )g(X] | €). (5.1)
j=1
A default choice for the first factor is ¢(S; | @) = ax (|S;]|—1)!, where @ > 0 and |-| being the
cardinality of a set, which is identical to probability function for a random partition under
the Chinese restaurant process (Ferguson, 1973). For the second factor, Miiller et al. (2011)
suggested the following default choice for similarity functions

9(X7 1€ = [ TLa(X: 1 ¢)GalG; | €)dc; (8.2)
i€S;

With a conjugate sampling model and prior pair of ¢ and Gy, the integral in (S.2) is
analytically available, facilitating easy computation. The pair is used to assess the agreement
of the data points in S; rather than any notion of statistical modeling.

The model construction is concluded by specifying a sampling model for the response

variable Y;’s. Let ¢; = j if © € S} denote cluster membership indicators for all i = 1,...,n.
For a given partition p,, we introduce cluster-specific parameters 8 = {6y,...,0;, } and
assume
. ind iid
Yi[0,ci=j ~ h(Yi]6;), 0;]e~110;] ), (5-3)

where h is a sampling model and II(- | ¢) is a prior on 6; with possible hyper-parameters ¢.
Recognizing that X;’s may not be random, with slight abuse of notations, under the
similarity function (S.2) the PPMx can be equivalently stated as

iid

Xilei=j,¢a(Xi1¢), ¢GlEXGE18). plpa) < [[e(Sila).  (S4)

S.3 Missing Data in PPMx

Following the thread of the discussion on handling missing data from Section 3.1 of the
main paper, we would like to point out that the model never rules out the possibility of co-
clustering a unit with missing entries with fully observed units. For the following argument
consider (S.4) with

. ind
Xilei=7,¢=(Grr - Gp)" ST @e(Xie | o),
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that is, with ¢(X; | {;) factoring over covariates. While implementing inference using a
Gibbs sampler, we then update the ¢; as follows

H(Ci =7 | XuCl:K,C—z') X H(Ci =7 ‘ C—i) X H?:l CM(Xi,E ’ CM)» (8-5)

where c_; is the set of ¢,’s for £ =1, ..., n excluding ¢;.

Now consider the case where we have missing observations in some components of X;
and let O; = {1 < ¢ < p: X, is observed} be the indices of the observed variables in Xj.
In this case (S.5) changes to

H(c; = j | Xi,Cuk,ei) o< Il(e; =7 | ;) x Heeoi qe(Xie

Gie)-

While updating the cluster membership of the units, only the observed variables X, ;s in X;
are matched with the corresponding (;, for all £ € O;. A more detailed discussion can be
found in Page et al. (2022).

S.4 Variations of the Importance Resampling Scheme

S.4.1 Number of Patients to Resample from the RWD

Due to various reasons (see, e.g., Hey and Kimmelman, 2014, for a review), in two-arm
designs the allocation of patients in the treatment and control arms are generally considered
to be equal, including in particular early-phase GBM trials (Stupp et al., 2014; Nabors
et al., 2015; Vanderbeek et al., 2018). As a rule of thumb, we thus recommend the size of
the resampled population to be equal to the treatment arm population.

However, if desired any different ratio of sample sizes in treatment and control arm, say
R : 1, could be used. In that case, even if the the distribution of the covariates in the
two arms are same after the importance resampling population adjustment, the AUC of any
classifier used in step 5 of Algorithm 1 would be R/(R + 1), rather than 0.5.

S.4.2 Averaging over Multiple Resamplings

It may be tempting to average over multiple, say R, instances of the random importance-
resampling, to remove one source of variability. But this gives rise to some fundamental
problems. For illustrative purpose, we refer to Section 7 of the main manuscript where we
discuss the application in GBM. There we use the importance resampling strategy to generate
an equivalent subpopulation of the treatment arm and then use the Cox proportional hazard
model to test for treatment effects. In Figure 6(a), we plot the histogram of p-values under the
null scenario which resembles the Unif(0, 1) distribution. Now for R resamplings we would
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have multiple p-values corresponding to each of the R resampled populations. Subsequently
we need a statistic to summarize the p-values, let us denote it by 7. Letting pq,...,pr be
the p-values thus obtained, the distribution of T'(py,...,pr) will not be U(0,1) anymore
under the null. We therefore recommend against it. As importance resampling schemes are
asymptotically unbiased (Skare et al., 2003), under reasonably large sample sizes, a single
resampled population should be adequate.

S.5 Goodness-of-Fit Test for Continuous Responses

We use the approach of Johnson (2007) to suggest a graphical goodness-of-fit tool to validate
the mixture of lognormals model for the CA-PPMx. The procedure is valid as long as h in (7)
is a univariate continuous density, i.e., as long as the response variables are univariate and
continuous. For the moment, we suppress the additional s subindex on (X;,Y;),i=1,...,n.
Let m(Y | X)) be the marginal distribution after integrating out all model parameters

We implement a test of fit based on the following result. Assuming that m(Y | X) is the
true marginal distribution of Y, we have:

Proposition 1. Let w = (0, ¢1.,) be a sample from their posterior, H(y | 8) = [Y_h(z |
0)dz be the CDF, and U; = H(Y; | 6.,), i =1,...,n. Then, U; s Unif (0, 1).

Proof. Let uy.,, = {uy,...,u,} and define A(uy.n;w) =N {y: H(y | 0.,) < wu;}. Then,
Pr(U; <w; foralli=1,...,n) = // dll{w | X, Y)m(Y | X)dY.
A(ulzn;w)

Note that II(w | X,Y) = {[[_, h(Yi | 0.,)} (w | X)/m(Y | X). Substituting this in the
above equation, we get .
Pr(U; <w; foralli=1,...,n) = / {/ [[r(v: 1 Hci)dY} dll(w | X).
A(ul:n;w) =1
Now, the term inside the parenthesis integrates to [, u; which is independent from II(w |
X). Hence the proof. O

To understand the implications, consider the distribution (Y, w | X)) for a hypothetical
data set (X,Y). First sample @ = (8, ¢.,) from pw | X) = p(c | X) p(6 | ¢, X)
and then (Y | &, X) from the sampling model (7). Letting U; = H(Y; | 65), we then
have U; S Unif (0,1). Assuming that the observed data Y do in fact arise from the assumed
marginal model m(Y | X)), Proposition 1 sets up sampling from the alternative factorization
Y. w|X)=m(Y | X) pw|Y,X). It follows that Uy, and Uy, are indistinguishable

in distribution. The latter, U;.,, can be readily obtained from the posterior samples of



SUPPLEMENTARY MATERIALS S.6

w. Letting Ul(fz) denote the evaluation under the m®™ posterior MCMC sample w™), a
goodness-of-fit test can then be carried out to validate the uniform distribution.

Note that the Ul(fz)’s vary across different posterior samples w™ while also having hi-
erarchical dependence since all of them are sampled conditionally on the same Y (and X).
Although in principle formal prior-predictive-posterior based tests be carried out (Johnson,
2007; Cao et al., 2010), it can be numerically infeasible for complex models like ours. As a
practical alternative, goodness-of-fit can be assessed by inspecting the quantile-quantile plots
of U 1(";) Such visual tools can be effective for detecting departures from model assumptions
(Meloun and Militky, 2011, Chapter 2). We use it to assess the model fit in Section 7.

To assess the goodness-of-fit in the GBM application, where the outcomes are right-
censored survival data, we extend the result in the following corollary.

Corollary 1. Suppose we have right-censored survival outcomes (Y;,v;) with covariate X
where v; = 1 if Y; is an observed failure time, for i = 1,...,n. Following the notations of
Theorem 1, define U; = H(Y; | 0.,) if v; = 1, else if v; = 0 define U; = H(Y; | 0.,) + {1 —
H(Y; | 6.,)}, where v; S Unif(0, 1) independent from Y;. If the observed failure times are
independent of the censoring times, then U; S Unif (0, 1).

Proof of Corollary 1. Let }7, be the true failure time of the i individual, that is_z > Y; with
equality if and only if v; = 1. Letting U; = H(Y; | 8.,), Theorem 1 implies Uy, S Unif (0, 1).
Note that

H(Y; | 0) = viH(Y; | 6.) + (1 —vi) |H(Y; | 6.,) +{H(Y; | 6,) — H(Y; | 6.)}|.
Since H(Y; | 6..) ~ Unif(0,1) and is independent of Y;, H(Y; | 6,,) + {H(Y; | 6.,) — H(Y; |
0.)}Y:,0. ~ Unif{H(Y; | 6.,),1} which follows the same distribution as v, {1—-H(Y; | 0.,) }.
Hence the proof. O

S.5.1 Illustrating Example for the Graphical Goodness-of-Fit Test

We illustrate the Bayesian goodness-of fit test in a linear regression problem. We simulate
data (X;,Y;),i=1,...,n (= 1,000) from the following mixture distribution
Y, | X; " moN(ap + BT X, 02) + (1 — mo)Explan + BT X)), (S.6)

where X;’s are p (= 5)-variate continuous covariates and Exp(a) denotes an exponential dis-
tribution with mean a. However, we fit the following misspecified Bayesian linear regression
model on the data using the MCMCpack R package

likelihood: Y; | X; ™ N(a + 87X, o2);

prior: (a,3) ~N,,1(0,10 x I,;;), 0> ~ Ga(0.1,0.1). (S.7)

For varying values of 7, we show quantile-quantile plots in Figure S.2 where we see
deviation from the diagonal y = x straight-line aggravates as my — 0, i.e., with increasing
model misspecification.
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Figure S.2: Quantile-quantile plots for increasing model misspecification: Data are generated
from model (S.6) for different values of my and the Bayesian linear regression model in
Eqn (S.7) is fitted where my = 0.0 and 1.0 denote the extreme misspecified model and the
true model, respectively. Deviation from the diagonal y = z straight-line aggravates with
increasing model misspecification.

S.6 Alternate Interpretation of the CA-PPMx

In Section 4.2, we introduced a model-based approach for inference on treatment effects in the
CA-PPMx model. An alternative interpretation of the approach arises from observing the
following connection with methods based on PS stratification (Wang et al., 2019; Chen et al.,
2020; Lu et al., 2022). The CAM model can be interpreted as a stochastic PS stratification.
To see this, first re-index all patients and patient specific variables across s = 1,2 as i =
1,...,N = ny + ny and define Z; € {1,2} if patient ¢ was originally in data set s = 1 or 2,
respectively. Assuming equal sample sizes n; = ny, we have p(Z; = 1| ¢; = 5)/p(Z; = 2 |
¢; = j) = m;/ma . That is, the terms in the CAM model correspond to different PS ratios
for the selection of a patient into s = 1 versus s = 2. Grouping patients in clusters C} is
then interpreted as stratification by PS, with clusters C; defining the strata. Within each
stratum we report treatment effect 6; = §{h(Y | 1), h(Y | 02;)}. Compare the discussion
in Section 4.2.

Whereas fixed consolidated unidimensional PSs may be inadequate in matching multi-
variate covariates (Stuart, 2010; King and Nielsen, 2019) and hence sensitive to the specifi-
cation of the PS model (Zhao, 2004), inference under the proposed CAM model overcomes
limitations by naturally including uncertainty in the stratification.
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S.7 CA-PPMx Specifications and Hyperparameters

Recall the setup from Section 3.1 and the notations from Eqn (4). For categorical co-
variate X, with categories 1,...,my, we choose q,(Xs¢ | {¢) = Mult(1; (1, .., Com,) and
90.(Co1y- - Com,) = Dir(1,...,1) to choose a uniform distribution over the simplex. For
continuous X, we choose qu( X5, | ¢o) = N(XS’K;MXJ,O'%(’@) with {, = (MX,&O%(,E) and
go.e(tx,e, 0% 0) = NIG(pxe, 0% 40,1, ax, 1), ie., pxe | 0%, ~ N(0,0%,), 0x7 ~ Ga(ax,1).
Following standard practice, we center px, around zero. Based on previous experience on
Gaussian mixture models, we set ax = #continuous covariates + 30, as a small prior vari-
ance on ag(/s favors a larger number of occupied clusters in the mixture model a posteriori,
allowing for a more flexible fit. Recall that we have assumed log oy ~ N(pg,02) for s = 1,2
on the concentration parameters in models (1) and (3). To specify weakly informative priors,
we set the hyperparameters p, and o2 such that E(a,) = 1 and var(ay) = 10 a priori for
s=1,2.

Regarding the parameters of the sampling model for survival outcomes in Eqn (8), we
set kg = 1 and ag = 10 to ensure a thin-tailed base-measure. In our experience, with too
heavy tailed prior distributions, small sample performance can easily get dominated by the
prior. Regarding the hyperprior on the mean parameter 19, we choose m,, using an empirical
Bayes type approach. Letting n be the number of observed failures combining the RWD and
the current trial, we set m, = 3" Zwsﬂ_:l Ys, i.e., the grand mean of the log-observed
failure times across all arms. We further set si = 1. Regarding the hyperprior on the scale
parameter by, we choose m;, and s7 such that E(by) = 5 and var(by) = 20 a priori to set a
weakly informative hyperprior.

Regarding the real-valued continuous responses in the simulation studies in Section 6, we
use the model in Eqn (8) on the actual response variables with v,; =1 for all i and s.

S.8 Posterior Computation

For computational convenience in the practical implementation, we consider the degree k
weak limit approzimation (Ishwaran and Zarepour, 2002a,b) of the GEM(«aw) distribution in
(1), i.e., we use a Dir(ay/k, ..., as/k) distribution, with fixed but large enough k. We set
k = 15 for all our simulation experiments and applications.

We develop a Gibbs sampler to avoid computational issues with a Gaussian mixture
models on the log transformed survival outcomes with censoring. Without loss of generality
we assume Y ;s (log transformed outcomes) are supported on the entire real line and describe
our algorithm for a mixture of Gaussian distributions. Let v;;’s be the censoring indicators
such that v,; = 1 implies Y} ; is an observed failure time; else if it is censored in the interval
(Ysii, Ysiu) then vg; = 0. For left and right censoring, we take Y;;, = oo and Y;,;; = —o0,
respectively. Let EN/“ be the true failure times, that is EN/“ =Y, if and only if v,; = 1. Off-
line, before starting MCMC simulation, we initialize }7“ at some admissible value for v5; =0
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and cluster membership indicator variables ¢; and ¢;. For the CAM model on covariates,
we consider a conjugate pair ¢ and go¢ for £ = 1,...,p. This allows us to analytically
marginalize with respect to the atoms (;’s. This strategy results in substantially improved
mixing of the Markov chain.

The sampler iterates through the following steps. In Step 1, we impute }A;;,Z-’s for the
censored observations; in Step 2, we update the cluster membership indicators ¢; and co;
in Step 3, we update hyper-parameters related to the response model that allows sharing
of information via a hierarchical model; in Step 4, we update the parameters required to
implement the strategies outlined in Sections 3.2 and 4.2; finally in Step 5 we update the
Dirichlet hyperparameters for the two mixture models.

Step 1 We define the set S, _; = {i: ¢s; = j} \ {i}, nsj—i = |Ss,j—ils Ksj—i = Ko + Nsj—i,
Y 8,5,—1 — ZTGSS] Z.Y;r/ns,j, iy Ms,j,—i = (HO,UO + Ns.j,— Y 8,7,— )/Ks,j,fia Qs j,—i = Qo + 77/s,j,fi/27
bS,j,—z' = bg + ZTGSSJ'_Z'(Y;W — YS,],—Z) /2 -+ ns,j,_mo(?&j’_i — MO)Q/Ks,j’_i. Then for all i =
1,...,ns and s = 1, 2, generate

~ Y, with probability 1 if v,; = 1;

Y~

g o oo o= | (v V) | otherwise,

where tq{p, 0% | (a,b)} is a central Student s t-distribution, with degrees of freedom df,
median g and scale parameter o, truncated to the set (a,b).

Step 2 Letting fi{- | df,u,c?} and Fi{- | df,u,c*} denote the pdf and cdf of a central
Student’s t—distribu,tion with degrees of freedom df, median i and scale parameter o, respec-

1 be i s e | .
tively, we define 1, {Ysz | D0ty i s ji, 222 i(Fs g, —it )} ity =1

As,j,—ils,j,—i

byisi(i) = | F, {Yszu | 20 j,—i5 s, —bs‘j’%(ﬂs’j’fﬁl)}

Qs,j,—iks,j,—i

K +1 .
_Ft szl | 2asg —is Ms,j,—is M} otherwise.

As,j,—iKs,j,—i

Recall from Section 3.1 (see page 11) that O, ; is the set of indices of the covariates observed
for X ;, and define the sets C;, = U?_, {i : i € Sj,ﬁ € Oy and X739 = U2 { X1 € Cje}

Define the functions g(X7% | &) = [ Tiec,, e(Xoe | Gie)gos(Cre | €)dCse and vy (i) =

QZ(X]AEZ)
Heeo“ e EamUAL Then, ¢; can be updated as
H(Cl,i = j —) XX (7117]'7_1' + Oél/k?(ng)) X wY;l,j@) X wX;l,j(i) for j = 1, RN k’(ng)

Similarly ¢, can be updated as
H(C2’i :j | —) =1if ny; > 0 and N j—i = 0,
else H(Cgﬂ' = j | —) X (7’L27j7_i + O./Q//{?) X @DY;QJ(Z') X @UX;QJ(Z') fOI"j = 1, RN k.

Step 3 Define b= log by and let H(,uo,b | Y, g s Y, 1:my) be the joint posterior density of
Mo and b given Y;l s, ky1 and k, 2 be the number of non-empty clusters in the two cohorts
respectively. Then,
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(VJO - m,u)2 (’5 - mb)2

log H(”O’g | f/1,1:7117 %71:712) =K - 2 o 2 + (kn,l + kn,?)aog
2s3, 2s;
k:(ng) 2 J—
s,7 n 1 ~ s ‘YS )2
- E E (ag + u) log |€” + = { pdro + Y2 — (Kokto + 155V s5) ’
: 2 2 E: , o F 7o
j=1 s=1 16357]‘ ,

where K is a constant and 75,]- = ZZES YSZ We sample pg and b using a Hamiltonian
Monte Carlo (HMC) algorithm (Duane et al, 1987).

Step 4 Forj =1,...,k, wedefine the set S5 ; = {i : ¢s; = j}, Ksj = Ko+ns, ts; = (Koo +

Ns;Y sj)/Ksjs Qs —a0+nsj/2 bs.; —b0+zres | ST—757j)2/2+ns,jr<;0(757j—,LLO)Q/F;S’]-.
Then,

bs (ks +1
:us,j ~ tQaS,]’ {:us,j7 M} ) J ,] Ga(aS]a b 7j)a (88)

Us,jks,j

(0% (07
ﬁleir(nLl—i— ), 7T2~Dir<n2,1—|— n2k+ 2)

(0%} aq
m,...,nLk(nz)—Fm k’ L
For s = 1, we only sample for j = 1,...,k(n2) in (S.8). Note that the dimension of 7r; can
vary across MCMC samples.

Step 5 With lognormal priors on the Dirichlet mixture hyperparameters a; and as, log ag ~
N(pta; 02), s = 1,2, the log-posterior pdfs are given by

logIl(an | =) = K1+ log ————

1 —

. 2
Y 0‘1/’“”2>+"1>_10ga (log oy — pa)?

F Pt ['(aq) 202 ’
k+ 1 — 1y)?
log(ay | =) = K, —l—logF —I— Z log a2/ )nz) —log s — %.
Jing, ;>0 «a

As the respective pdfs are differentiable with respect to o1 and a», we sample the parameters
using HMC.

Remark 1. Note that in Step 2, C;, is the set of data points in S; with observed covariate
t, X739 is the collection of the observed values of the covariate £ in S; and ge( X7 | &) is
the joint marginal density. A conjugate pair q; and go, ensures the analytical availability
of go and x5 (i) becomes the conditional distribution of X, given X:7. For continuous
real-valued X, j,, we may take qu(- | ¢j) to be the univariate Gaussian pdf where §; is the set

of associated mean and variance parameters, and go,(C; | &) to be a normal-inverse-gamma
9e(X591€0)

[X*o\{Xs 7, Z}‘ﬁ

t-distribution density; for categorical X, ., a convement choice can be the multinomial-

density (compare Section S.7). In this case, the ratio

] reduces to a central

Dirichlet pair which again yields an analytical expression of the ratio.

In the GBM application and simulation studies in Section 6, we have considered conjugate
normal-inverse-gamma and multinomial-Dirichlet conjugate pairs for continuous real-valued



SUPPLEMENTARY MATERIALS S.11

covariates and categorical covariates, respectively. For all simulation studies and GBM
application, we consider 6,000 MCMC iterations, discarded the first 1,000 as the burn-in
samples, and saved every 5 MCMC sample to reduce autocorrelation.

Finally we note that the complete conditional for 7; ; in step 4 could be used to implement
Rao-Blackwellization (Robert and Roberts, 2021) in the evaluation of the weights w; in (6)
by replacing 7 ; with the conditional posterior means.

S.9 Additional Details on Simulation Studies

S.9.1 Procedure to Test for Treatment Effects in Section 6

Recall that in Section 6 we test Hy : § = 0 versus H; : 6 # 0 in each simulation setup. To
compute the power, we first estimate the treatment effect, say § in each setup. Estimated
treatment effects under CA-PPMx are evaluated using the posterior mean of Eqn (9). To
evaluate type-II error rates we use the empirical distribution of § under simulation truth
0 = 0 for each of the seven methods under consideration across the 500 repeat simulations
to obtain their distributions under Hy. We evaluate the empirical 2.5% and 97.5% quantiles,
say 5, and 0y and define the test function @(g) = 1545, 5, controlling the type-I error at
5% level of significance.

S.9.2 Details on Simulation Truths

CAM scenario: We set p11; =y =2 and p;; = 0 for all 7 > 2, and po5 = p1o6 = 2 and
po,; =0 for all j ¢ {5,6}, 0]2- = 0.05 for all 7 = 1,2, 3. Regarding the mixture weights, we set
m =m2 = 0.5 and mo; = Mo = 1/6 and my 3 = 2/3. Regarding the categorical covariates
we set 01 = 0.85, g2 = 0.65.

MIX scenario: We take & = 4. Recall that p,; = poj for all j < k, say p; =
(tj1s -5 pjp)T.  For each j < k, we take pjoj41 = Hj2j42 = 2 and p;, = 0 for
all £ ¢ {25 + 1,25 + 2}. Finally for per = (sp1,---sMskp). With s = 1,2, we set
P = ks = 2, Pk = 1 and pype = 0 for all £ ¢ {7,8,9}; and gk okr1 = Hok2kr2 = 2
and pore = 0 for all ¢ ¢ {2k 4+ 1,2k + 2}. In each repeat simulation we generate
Wi, ..., wik = SRSWRg(L, ..., 4) where SRSWR,.(S) denotes the simple random sampling
scheme with replacement of size r from the set S. Then we set m ; = wy ;/ Zle wy , for all
j=1,.. k weset my; =1/kforall j=1,... k.

Interaction scenario: Recall the covariates in the GBM dataset from Table 2 in the

main manuscript. We consider pairwise interactions between (Gender, Age) and (RT Dose,
Age). Following that, we have one-hot-encoded the covariates with more than two categories
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(e.g., KPS) so that we are left with all binary covariates (including the interactions). Let
X; = (Xi1,...,Xi,)" be the covariates corresponding to patient record i with p being the
number of covariates.

For each repeat simulation, we then generate b = (by, ..., b,)T = SRSWR,(—1,0.75). We
X b+0.8

then assign the patient record ¢ to the treatment arm with probability TTXTb05"

Oracle scenario: We follow the exact same strategy as described in the Interaction sce-

nario but without pairwise interactions.

Outcome model: Forx = (z1,...,7,)", we take f(x) = B11(z,>1.25,20>1.25) = B2 L(23>1.25 w4 >1.25) +

ﬁ31(m521.25,1621.25) + 54]1(%)712171«1721). In each repeat Simulation we let 51, 52 H’\(Ji Unlf(40, 60),
P ~ Unif (225, 275) and (B, ~ Unif(—5, —1).
In the Interaction and Oracle scenarios we simulate the linear regression coefficients

B=1(B1,...,5,)" = Unif(~10, 10).

S.9.3 Implementation of Matching and PS-Based Approaches

PS-based approaches: We implemented the composite likelihood and power-prior ap-

proaches using the psrwe R package. We set the hyperparameters as recommended in the
vignette. We create 5 strata (suggested in the package vignette) and borrow n; patients
from the RWD for all simulation studies. For the PS model, we consider both, linear logistic
regression and the random forest classifier.

Matching: We implemented these approaches using the optmatch R package. Following
the recommendations in the vignette, we set one control to be matched to each treatment.
It makes the matched control population to be of the same size as the treatment arm. We
then fit a linear model to estimate the treatment effect ¢.



SUPPLEMENTARY MATERIALS S.13

S.9.4 Bias for the Methods Considered in Section 6

n, : 50 n, : 100 ny : 150
200- 5 o oo —
150- .
100.%%'5%%%%%%%%#%%

k< 2Z§: woow ow = e e .

m 1 ® o0 oo0
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-1 0 1 3 -1 0 1 3 -1 0 1 3
0
n; : 100 n; : 150
H 'o;: e h ..;
Lﬂ h.# s n.# hﬁ ;..# L.H
e R : 1 %
-1 0 1 0

o)
Method M CA-PPMx E2 IS-LM E2 Matching B2 CL-Logistic B2 CL-RF EZ PP-Logistic B PP-RF

(a) CAM (top) and MIX (bottom) scenarios.

Scenarlo Interaction Scenario: Oracle

. i il
lﬁj m&“ .Lu&“ m&“ m&” m&“ m&é“ .Lu

)
Method ™ CA-PPMx B IS-LM & Matching & CL-Logistic &8 CL-RF & PP-Logistic # PP-RF

(b) Interaction (left) and Oracle (right) scenarios.

Figure S.3: The bias in detecting treatment effects across different simulation setups: Seven
methods are used to estimate the effects where IS-LM and CA-PPMx are based on the
proposed CAM model. Panel (a) corresponds to the CAM (top) and MIX (bottom) scenarios.
Panel (b) shows results under the Interaction (left side) and the Oracle (right side) scenarios.
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S.9.5 Power for the Methods Considered in Section 6

The PS-based approaches yield very similar results. Therefore, for easier apprehension we
only show the results for CL-RF together with the other types of methods in Tables S.1 and
S.2, and the rest of the PS-based methods in Table S.3.

Table S.1: Power of detecting treatment effects under CAM and MIX scenarios

‘ ‘ Scenario: CAM ‘ Scenario: MIX H

‘ Scenario: CAM ‘

Scenario: MIX ‘

J ‘ ‘ ny p Power ‘ ny p Power H ‘ ny p Power ‘ ny p Power ‘
50 10 0.024 | 50 10  0.056 50 10 0.054 | 50 10  0.042

100 10 0.032 | 100 10  0.066 100 10 0.080 | 100 10  0.090

150 10 0.048 | 150 10  0.118 150 10 0.080 | 150 10  0.072

-1 50 20 0.206 | 50 20  0.052 50 20 0.050 | 50 20  0.056
100 20 0.040 | 100 20  0.050 100 20 0.068 | 100 20  0.052

150 20 0.062 | 150 20  0.030 150 20 0.118 | 150 20  0.064

50 10 0.050 | 50 10 0.050 50 10 0.050 | 50 10 0.050

100 10 0.050 | 100 10  0.050 100 10 0.050 | 100 10  0.050

% | 150 10 0.050 | 150 10  0.050 150 10 0.050 | 150 10  0.050

0 E 50 20 0.050 | 50 20 0.050 || = |50 20 0.050 | 50 20  0.050
Ay | 100 20 0.050 | 100 20 0.050 || = | 100 20 0.050 | 100 20  0.050
<| 150 20 0050 | 150 20 0.050 | 4 | 150 20 0.050 | 150 20  0.050
L.). 50 10 0.048 | 50 10  0.056 || B |50 10 0.056 | 50 10 0.090
Bl10 10 0.890 | 100 10 0.266 || £ | 100 10 0.064 | 100 10  0.080
% 150 10 0.950 | 150 10  0.674 § 150 10 0.112 | 150 10  0.042

1 S50 20 0.058 | 50 20  0.142 50 20 0.064 | 50 20  0.048
100 20 0.806 | 100 20  0.534 100 20 0.082 | 100 20  0.074

150 20 0.924 | 150 20  0.826 150 20 0.096 | 150 20  0.082

50 10 0.866 | 50 10  0.056 50 10 0.146 | 50 10  0.132

100 10 0.960 | 100 10  0.746 100 10 0.358 | 100 10  0.216

150 10 0.998 | 150 10  0.754 150 10 0472 | 150 10  0.154

3 50 20 0.966 | 50 20  0.754 50 20 0.164 | 50 20  0.078
100 20 0.958 | 100 20  0.900 100 20 0.312 | 100 20  0.228

150 20 0.998 | 150 20  0.900 150 20 0.518 | 150 20  0.240

50 10 0.056 | 50 10  0.014 50 10 0.050 | 50 10  0.076

100 10 0.056 | 100 10  0.056 100 10 0.064 | 100 10  0.044

150 10 0.042 | 150 10  0.060 150 10 0.096 | 150 10  0.100

-1 50 20 0.044 | 50 20  0.046 50 20 0.040 | 50 20  0.058
100 20 0.076 | 100 20  0.034 100 20 0.046 | 100 20  0.076

150 20 0.060 | 150 20  0.046 150 20 0.038 | 150 20  0.062

50 10 0.050 | 50 10 0.050 50 10 0.050 | 50 10 0.050

100 10 0.050 | 100 10  0.050 100 10 0.050 | 100 10  0.050

150 10 0.050 | 150 10 0.050 || & | 150 10 0.050 | 150 10  0.050

0 E 50 20 0.050 | 50 20  0.050 E 50 20 0.050 | 50 20  0.050
4| 100 20 0.050 | 100 20  0.050 || £ | 100 20 0.050 | 100 20  0.050
Q| 150 20 0.050 | 150 20  0.050 g 150 20 0.050 | 150 20  0.050
T[50 10 0.044 | 50 10  0.016 || 5 |50 10 0.078 | 50 10  0.070
<100 10 0.030 | 100 10  0.062 || 2 | 100 10 0.076 | 100 10  0.084
§ 150 10 0.040 | 150 10  0.042 || % | 150 10 0.150 | 150 10  0.106

1 50 20 0.038 |50 20 0.042| = |50 20 0.068 | 50 20  0.092
100 20 0.064 | 100 20  0.040 100 20 0.104 | 100 20  0.070

150 20 0.074 | 150 20  0.052 150 20 0.052 | 150 20  0.070

50 10 0.072 | 50 10  0.020 50 10 0.112 | 50 10  0.162

100 10 0.056 | 100 10  0.030 100 10 0.216 | 100 10  0.278

150 10 0.024 | 150 10  0.044 150 10 0.414 | 150 10  0.382

3 50 20 0.034 |50 20  0.066 50 20 0.154 | 50 20  0.132
100 20 0.064 | 100 20  0.038 100 20 0.206 | 100 20  0.230

150 20 0.046 | 150 20  0.030 150 20 0.236 | 150 20  0.294
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Table S.2: Power of detecting treatment effects under Interaction and Oracle scenarios

Method‘ Scenario ‘ 6 Power

‘Method‘ Scenario ‘ 6 Power

-1 0.079 -1 0.08

) 0  0.052 ) 0 0.052

% Interaction | 1 (047 Interaction | 1 83

5 3 0116 = 3 0497
B =

- -1 0.077 ) -1 0.091

o 0 0.053 0  0.053

Oracle | 1 084 Oracle | 1 092

3 0132 3 0570

-1 0.064 -1 0.108

) 0 0.053 ) 0 0.050

Interaction | 1 (062 w0 Interaction | | (191

& 3 0.071 £ 3 0575

2 4006l = -1 0103

0 0.053 = 0 0.053

Oracle | | 39 Oracle | 1 122

3 0.043 3 0.752

Table S.3: Power of the PS-based methods in CAM and MIX scenarios (upper table) and
Interaction and Oracle scenarios (lower table)

‘ ‘ Scenario: CAM ‘ Scenario: MIX ‘ ‘ Scenario: CAM ‘ Scenario: MIX ‘ ‘ Scenario: CAM ‘ Scenario: MIX ‘

0 | |m p Power | n, p Power| |m p Power| n, p Power| |n p Power | n; p Power|
50 10 0.082 | 50 10 0.022 50 10 0.062 | 50 10 0.022 50 10 0.068 | 50 10 0.016

100 10 0.044 | 100 10 0.072 100 10 0.050 | 100 10 0.056 100 10 0.044 | 100 10 0.064

150 10 0.036 | 150 10 0.056 150 10 0.048 | 150 10 0.064 150 10 0.036 | 150 10 0.070

-1 50 20 0.060 | 50 20 0.044 50 20 0.036 | 50 20 0.026 50 20 0.058 | 50 20 0.040
100 20 0.062 | 100 20 0.038 100 20 0.074 | 100 20 0.036 100 20 0.060 | 100 20 0.034

150 20 0.060 | 150 20 0.044 150 20 0.066 | 150 20 0.052 150 20 0.048 | 150 20 0.048

50 10 0.050 | 50 10 0.050 50 10 0.050 | 50 10 0.050 50 10 0.050 | 50 10 0.050

100 10 0.050 | 100 10 0.050 100 10 0.050 | 100 10 0.050 100 10 0.050 | 100 10 0.050

;% 150 10 0.050 | 150 10 0.050 150 10 0.050 | 150 10 0.050 E 150 10 0.050 | 150 10 0.050

0 bﬂo 50 20 0.050 | 50 20 0.050 E 50 20 0.050 | 50 20 0.050 %D 50 20 0.050 | 50 20 0.050
3 100 20 0.050 | 100 20 0.050 N 100 20 0.050 | 100 20 0.050 S 100 20 0.050 | 100 20 0.050

a, | 150 20 0.050 | 150 20 0.050 | A | 150 20 0.050 | 150 20 0.050 | & | 150 20 0.050 | 150 20 0.050

Q.-: 50 10 0.058 | 50 10 0.030 'g 50 10 0.072 | 50 10 0.018 O 50 10 0.060 | 50 10 0.020

g [100 10 0.040 | 100 10 0.054 | = | 100 10 0.036 | 100 10 0.054 | 2 | 100 10 0.036 | 100 10 0.058

< | 150 10 0.028 | 150 10 0.042 § 150 10 0.044 | 150 10 0.034 | £ | 150 10 0.030 | 150 10 0.048

1 20 50 20 0.034 | 50 20 0.050 50 20 0.028 | 50 20 0.024 g 50 20 0.028 | 50 20 0.048
100 20 0.040 | 100 20 0.038 100 20 0.068 | 100 20 0.032 100 20 0.036 | 100 20 0.040

150 20 0.062 | 150 20 0.054 150 20 0.080 | 150 20 0.060 150 20 0.064 | 150 20 0.048

50 10 0.084 | 50 10 0.018 50 10 0.072 | 50 10 0.020 50 10 0.072 | 50 10 0.026

100 10 0.040 | 100 10 0.038 100 10 0.062 | 100 10 0.026 100 10 0.044 | 100 10 0.028

150 10 0.038 | 150 10 0.050 150 10 0.028 | 150 10 0.044 150 10 0.034 | 150 10 0.056

3 50 20 0.052 | 50 20 0.064 50 20 0.038 | 50 20 0.042 50 20 0.048 | 50 20 0.064
100 20 0.042 | 100 20 0.042 100 20 0.060 | 100 20 0.030 100 20 0.040 | 100 20 0.038

150 20 0.040 | 150 20 0.028 150 20 0.058 | 150 20 0.040 150 20 0.038 | 150 20 0.038

Method | Scenario ‘ 6 Power H Method | Scenario ‘ 6 Power

-1 0.060 -1 0.058

0 0.052 0 0.052

) Interaction | 4 0.058 ) Interaction | 4 0.058
@J 3 0.062 gﬂ 3 0058
= -1 0.065 = -1 0.063
5 0 0053 & 0 0053
Oracle 1 0.036 Oracle 1 0.036

3 0.043 3 0.045

-1 0.061 -1 0.066

= 0 0053 2 0 0.053
& Oracle 1 0.039 o Interaction | 0.057
~ 3 0.043 ~ 3 0.064
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S.9.6 Multiple Historical Controls

We consider a setup with historical controls arising from multiple sources, i.e., with S > 2. As
mentioned earlier in Section 3.1, we merge the historical datasets and treat the merged data
set as a single RWD population with increased heterogeneity. We study the performance of
the CA-PPMx model in this scenario via simulation studies. We extend the MIX scenario dis-

cussed in Section 6. We generate the treatment arm X ; S Zle 71 Np(pj, 0%1,). We gener-

ate two RWD datasets from Xs ; ~ Z;:ll 2Ny (g, 02L,) and X, 2?22 73, Np(pj, 021).
In this construction, the historical populations X5 and X3 are substantially different, with
one distinct atom each, as well as varying weights for the common atoms. Letting X5 denote
the merged X, and X3 population, we fit the CA-PPMx model on X; and X . Note that
the current trial population X; has an extra atom compared to each of the RWD populations
but the merged Xo and X; share common atoms.

We generate the response Y ; ) N(§ + XEiﬁ,l) and Y, F N(Xglﬂ,l) for s = 2,3
implying 6 to be the true treatment effect. We let ny, ny and ng denote the sample sizes
in the three populations, respectively where we set ny = n3 = 3 X ng in coherence with
the simulation studies in Section 6. We set the dimension of the covariates p = 10 and
repeat the the experiments for 6 = —1,0,1,3 and ny, = 50,100, 150. We plot the power
of discovering the treatment effect in Figure S.4 calculated in the exact same manner as
described in Section 6. We observe that the power increases with respect to both sample
size and strength of the treatment effect.

1.00-
0.75-
()
3 ] 50
5 050 - 100
150
0.25-
0.00-

-1 1 3

o]
Figure S.4: Multiple historical data in the CA-PPMx model: We combine different historical
datasets and combine them as a more heterogeneous single population and subsequently fit

the CA-PPMx model. We observe that the power increases with respect to both sample size
and strength of the treatment effect.
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S.9.7 Effect of Missing Confounders

In this section we briefly study the effect of missing confounders on inference under the
proposed CA-PPMx model. In particular we consider the case where a confounding factor is
completely unobserved. In such cases causal inference methods are often biased; see Nguyen
et al. (2017) and the references therein for a detailed review. However, in many applications,
multivariate covariates are often correlated among each other. Several imputation methods
for partially observed confounders are based on this assumption (Cole et al., 2006; Moons
et al., 2006). In such cases, observing and using another covariate which is correlated to the
missing confounder as predictor can reduce bias. We study this in a simulated example.

We consider a regression setup in a case-control study (X, Ys:), i = 1,...,ns,
s = 1,2 with bivariate covariate X; = (Xs;1, Xs:2)7. First, we generate Xy;1 ~
25:1 75,;N(115,0.01) and subsequently generate X, ;o = mX,;1 + 5; where ¢, s N(0,1)
and m € R. Then, we generate the responses Y1, =0 + 38X ,;1 + €1, and Yy, = 8X9,;1 + €2,
where € ; S N(0,1) implying § to be the true treatment effect. Thus conditionally on the
Xsi1's, the responses Y ;’s are independent of the X, ;2’s. We take ny = 50, ny = 300,
k =3, (2, p2, p3) = (—3,0,3), § = 3 and f = 1. We repeat the simulation experiment
independently 100 times and randomly generate the 7, ;’s in each replicate.

2.0-
1.5-
o Scenario
©
mn E3 Observed
o 4 0- B Unobserved
0.5- i
0.0-
0 0.25 05 1

m

Figure S.5: Effect of missing confounder in the CA-PPMx model: The bias in estimating
the treatment effect decreases as the correlation between the observed covariate and the
unobserved confounder increases.

We consider two analysis scenarios: (1) Unobserved: X, is assumed to be unobserved
and the CA-PPMx model is fitted using (X2, Y5,); (2) Observed: the CA-PPMx model is
fitted using (X, Ys:). We compute the bias in estimating the treatment effect ¢ for varying
values of m in both scenarios. We show boxplots of the biases over the repeat simulations
in Figure S.5.

Note that for m = 0, X, ;1 and X, ;2 are uncorrelated. Additionally, |corr(Xs;1, Xs,2)|
is an increasing function of |m|. Coherently, the bias is maximum in the Unobserved scenario
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for m = 0 as the X ;5’s carry no information regarding the confounding factor X, ;’s. The
marginal correlation between the observed covariate and the response increases with m and
accordingly we see a reduction in the bias. This simulation study indicates that the CA-
PPMx method will not yield terribly biased results as long as the data includes observed
covariates that are correlated to the unmeasured confounder.

S.9.8 Computation Times for the CA-PPMx Method

In this section we report computation times of the MCMC sampler proposed in Section S.8
across different sample sizes and covariate dimensions. We consider the CAM and MIX
scenarios and the exact same simulation setups discussed in Section 6 of the main paper.
Since the model implementation times do not depend on the treatment effect size, we report
the computation times for § = 3 only. Computation times for 6,000 MCMC iterations in
seconds for a single repeat simulation on an Intel Core i9-13900K CPU with 128GB of RAM
are provided in Figure S.6 where we see that the computational cost increases with the
covariate dimension p as well as the sample size n;.

Scenario: CAM Scenario: MIX
40-
> 60-
ke
5
30- 50-
o p
n 10
S 40- -~ 20
g 20'
= 30-
10- p
) ) ) 20- ) ’ ]
50 100 150 50 100 150
ni

Figure S.6: Computation times of the MCMC sampler in seconds: n; and p denotes the
number of patients in the current trial arm and the dimension of the covariates, respectively.

S.10 MCMC Diagnostics

In this section, we provide some convergence diagnostics of the MCMC sampler discussed in
Section S.8 for one trial replicate discussed in Section 7. We show traceplots and Geweke’s
convergence diagnostics (Geweke, 1992) for some selected parameters, using an implementa-
tion in the ggmeme R package (Fernandez-i Marin, 2016).

Recall the importance resampling weights w; o 2—: in Eqn (5) attached to the historical
patients. We evaluate MCMC convergence diagnostf::s for the five w;’s with the largest
posterior means, the lognormal hyperparameters po and by mentioned in Step 3 and the
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Dirichlet mixture hyperparameters a; and as in Step 5 of the MCMC sampler in Section

S.8. The results, provided in Figure S.7, do not suggest any convergence or mixing issues.
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(a) MCMC analysis of the largest 5 importance resampling weights.
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(b) MCMC analysis of the Dirichlet mixture hyperparameters ay and ao.
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1 Geweke Diagnostics
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(¢) MCMC analysis of the lognormal hyperparameters po and by.

Figure S.7: MCMC convergences diagnostics for some selected parameters: Panel (a), (b)
T1.co s . .
and (c) shows results for the top five w; n:# with largest posterior means, the lognormal
€2

hyperparameters pg and by and the Dirichlet ‘mixture hyperparameters «; and ay in Step
5, respectively. In each panel, we show the corresponding traceplots across the thinned out
MCMC samples on the left, and Geweke’s diagnostics on the right.
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