
1. Clone subject applications

The complete list of subjects (along with their GitHub URLs) used for the evaluation

of LeakPair is available in the Evaluation Results file. You may clone the subjects

one by one and follow the subsequent steps.

2. Run the subject applications

Installation and Build

After cloning a subject, you may want to follow the instructions on its GitHub

repository that specify the commands to install the necessary dependencies and to get

the app up and running. In case of both a SPA library or website, the build script is

usually build . Please execute the exact build script as specified in the respective

package.json file (and GitHub instructions) to verify the code correctness before and

after LeakPair execution (RQ 3).

Running a SPA website or web app

LeakPair repairs applications built by SPA frameworks (React and Angular). Hence, if

the project contains both server-side and client-side repositories, you may only want

to start the client-side code to replicate the results (though starting the server in

parallel will have no effect). After installing the subject dependencies, the script

to get the web app running is generally start , so you may want to use the command

yarn start or npm run start . Please verify the actual script from the package.json

file or GitHub instructions.

Running a SPA library

SPA libraries are typically built and tested using Storybook, a framework that allows

developers to test working demos of components and libraries on a localhost port. If

your subject is a SPA library, the script to execute it would most likely be

storybook . Hence, the command to get the demo running would be yarn storybook or

npm run storybook . Please verify the actual script from the package.json file or

GitHub instructions.

3. Run the test suite (if available)

In order to answer RQ3 (Do the patches by LeakPair break the functionality?), in

addition to a successful program build/compilation, we also need to track the test

suite results before and after LeakPair changes (if such test scripts are provided in

package.json). Hence, as the subject is running, open another terminal and execute

the test script. In most applications, this script is simply test , so you may want

to run the command yarn test or npm run test . To view the actual script, as well as

verify if a test script is provided at all, please check the package.json file. Some

projects also have end-to-end testing scripts (e2e). All such scripts should be run,

and their results noted, in order to assess LeakPair's impact on the program's

functionality later on.

4. Run Memlab

Once the subject is up and running, you can now install and run Memlab on your system,

following their official documentation. Please note that Memlab is a dynamic analysis

tool; hence, it requires that the application under test be in a running state (either

live or locally).

https://figshare.com/articles/dataset/LeakPair_An_automated_memory_leak_repair_tool_for_Single_Page_Applications/22106153?file=39370157
https://storybook.js.org/
https://facebook.github.io/memlab/docs/intro

After ensuring Memlab's installation, you can run Memlab on the subject app by

providing it with the absolute path to the scenario file:

memlab run --scenario [path-to-the-scenario-file] -v

-v is optional but useful to see the details of the error in case Memlab terminates

abruptly.

IMPORTANT: You may want to confirm that the initial (localhost) URL provided in the

scenario file is the same as the one opened up in your browser after starting the app;

otherwise, Memlab will throw an error.

The complete list of scenario files for all the subject applications, is available in

the memlab-scenario-files repository. Please select the respective scenario file by

matching the name, for e.g, roosterjs-scenario.js for roosterjs project, angular-

components-scenario.js for angular-components project, and so on.

5. Take note of memory footprints

On the completion of its execution, Memlab logs the detailed statistics of the memory

footprint of the app, including the count of leaking objects, retainer clusters, and

the final heap size. An example below:

https://figshare.com/articles/dataset/LeakPair_An_automated_memory_leak_repair_tool_for_Single_Page_Applications/22106153?file=39370148

As you will discover in the documentation, Memlab also outputs the logs in a file

format along with heap snapshots and some other meta data. However, for the evaluation

of LeakPair, taking note of the count of leaking objects/clusters and the final heap

size in the CLI would suffice.

6. Run LeakPair

After noting the initial memory footprints of the subject, you may now stop the

application. You would now run LeakPair on the subject. You should already be able to

run LeakPair if you have Node version 14 or above installed in your system (refer to

the LeakPair - Installation and Usage guide in the figshare dataset).

You can view the changes made by LeakPair using any diff tool if you want. An example

of the Subscriptions leak fix in GitHub Desktop is shown below:

7. Re-run the subject applications (+ test suite)

Once LeakPair has made its changes, you need to restart the application by following

the same commands as before.

RQ3: Do the patches by LeakPair break the functionality?

The subject should build and/or compile successfully after the changes. Also, if there

were any test scripts available, run them again now (in another terminal, as done

before). The count of passed/failing tests should remain unchanged.

8. Re-run Memlab

https://figshare.com/articles/dataset/LeakPair_An_automated_memory_leak_repair_tool_for_Single_Page_Applications/22106153?file=39370718

While the subject is still running, you can now run Memlab again with the same command

and scenario file.

9. Take note of memory footprints (after LeakPair changes)

RQ1: How effective is LeakPair?

Take note of the count of leaking objects and the final heap size this time. As

LeakPair bases its efficacy on the reduction in the count of leaking objects or the

heap size, at least one of them should show a noticeable reduction (in our

experiments, the count of leaking objects frequently showed a more significant

reduction).

RQ2: Are the patches by LeakPair acceptable?

As the review process is double-blinded, we plan to disclose the submitted PRs after

the final decision to preserve anonymity, since the PRs were all created by the

author's personal GitHub account (the status of the PRs at the time of submission, as

well as the answer to this RQ are presented in Section 5.2 in the paper).

