1. Clone subject applications

The complete list of subjects (along with their GitHub URLs) used for the evaluation
of LeakPair is available in the Evaluation Results file. You may clone the subjects
one by one and follow the subsequent steps.

2. Run the subject applications

Installation and Build

After cloning a subject, you may want to follow the instructions on its GitHub
repository that specify the commands to install the necessary dependencies and to get
the app up and running. In case of both a SPA library or website, the build script is
usually build . Please execute the exact build script as specified in the respective
package.json file (and GitHub instructions) to verify the code correctness before and
after LeakPair execution (RQ 3).

Running a SPA website or web app

LeakPair repairs applications built by SPA frameworks (React and Angular). Hence, if
the project contains both server-side and client-side repositories, you may only want
to start the client-side code to replicate the results (though starting the server in
parallel will have no effect). After installing the subject dependencies, the script
to get the web app running is generally start , so you may want to use the command
yarn start or npm run start . Please verify the actual script from the package.json
file or GitHub instructions.

Running a SPA library

SPA libraries are typically built and tested using Storybook, a framework that allows
developers to test working demos of components and libraries on a localhost port. If
your subject is a SPA library, the script to execute it would most likely be
storybook . Hence, the command to get the demo running would be yarn storybook or
npm run storybook . Please verify the actual script from the package.json file or
GitHub instructions.

3. Run the test suite (if available)

In order to answer RQ3 (Do the patches by LeakPair break the functionality?), in
addition to a successful program build/compilation, we also need to track the test
suite results before and after LeakPair changes (if such test scripts are provided in
package.json). Hence, as the subject is running, open another terminal and execute
the test script. In most applications, this script is simply test , so you may want
to run the command yarn test or npm run test . To view the actual script, as well as
verify if a test script is provided at all, please check the package.json file. Some
projects also have end-to-end testing scripts (e2e). All such scripts should be run,
and their results noted, in order to assess LeakPair's impact on the program's
functionality later on.

4. Run Memlab

Once the subject is up and running, you can now install and run Memlab on your system,
following their official documentation. Please note that Memlab is a dynamic analysis

tool; hence, it requires that the application under test be in a running state (either
live or locally).

https://figshare.com/articles/dataset/LeakPair_An_automated_memory_leak_repair_tool_for_Single_Page_Applications/22106153?file=39370157
https://storybook.js.org/
https://facebook.github.io/memlab/docs/intro

After ensuring Memlab's installation, you can run Memlab on the subject app by
providing it with the absolute path to the scenario file:
memlab run --scenario [path-to-the-scenario-file] -v

-v is optional but useful to see the details of the error in case Memlab terminates
abruptly.

IMPORTANT: You may want to confirm that the initial (localhost) URL provided in the
scenario file is the same as the one opened up in your browser after starting the app;
otherwise, Memlab will throw an error.

The complete list of scenario files for all the subject applications, is available in
the memlab-scenario-files repository. Please select the respective scenario file by
matching the name, for e.g, roosterjs-scenario.js for roosterjs project, angular-

components-scenario.js for angular-components project, and so on.

5. Take note of memory footprints

On the completion of its execution, Memlab logs the detailed statistics of the memory
footprint of the app, including the count of leaking objects, retainer clusters, and
the final heap size. An example below:

page-load[59MB](baseline)[s1] > action-on-page[70.7MB] > revert[68.5MB] > action-on-page[74.2MB](target)[s4] > revert[68.7MB](final)[s5]

total time: 2min
Memory usage across all steps:
8.3
74.
64.
53.
43.
32.
22.
11.
1.

=
——
——
R

detect and set JS snapshot engine: V8
Alive objects allocated in target page:

(index) name type count | retainedSize
[} 'Detached HTMLDivElement' "native’ '6.5MB’
1 'Object’ 'object’ '2.2MB’
2 "Array’ 'object’ '2.2MB’
3 'StandaloneKeybindingService' 'object’ '1.4MB’
4 'KeybindingResolver' 'object’ '1.3MB"
5 'Detached HTMLSpanElement' "native’' '1.1MB’
6 'Detached FiberNode' 'object’ "IMB'
7 v 'closure’ '861KB’
8 'system / Map' 'object shape' '790.9KB"
9 'ResolvedKeybindingItem' 'object’ '695.3KB"
10 'dispose’ 'closure’ '636KB’
11 'Map"' 'object’ '573.4KB"
12 "Emitter’ 'object’ '415.2KB"
13 'StandaloneEditor’ 'object’ '390.5KB"
14 'Detached Text' "native’ '299.4KB"
15 "Node' 'object’ '296.1KB"
16 'Detached CSSStyleDeclaration’ "native’ '278.6KB"
17 'Detached InternalNode' 'native’ '252KB’
18 'TextModel"' 'object’ '211KB’
19 'InternalEditorAction’ 'object’ '200.6KB"

- fiber node size: 1.4MB

- regular fiber node size: @ byte

- detached fiber node size: 1.4MB

- alternate fiber node size: @ byte
- error: 5.2KB

Number of Traces: 27477
Sampling Ratio: 18.2%

https://figshare.com/articles/dataset/LeakPair_An_automated_memory_leak_repair_tool_for_Single_Page_Applications/22106153?file=39370148

As you will discover in the documentation, Memlab also outputs the logs in a file
format along with heap snapshots and some other meta data. However, for the evaluation
of LeakPair, taking note of the count of leaking objects/clusters and the final heap
size in the CLI would suffice.

6. Run LeakPair

After noting the initial memory footprints of the subject, you may now stop the
application. You would now run LeakPair on the subject. You should already be able to
run LeakPair if you have Node version 14 or above installed in your system (refer to
the LeakPair - Installation and Usage guide in the figshare dataset).

You can view the changes made by LeakPair using any diff tool if you want. An example
of the Subscriptions leak fix in GitHub Desktop is shown below:

Changes 27 History r ommon-componer p Itip, p tooltip.directive.ts

27 changed files 1. @@ -15,6 +15,9 @@ import {

15 15 "
; ild-dev-project/at . Jroll-call-set 8 import { ComponentPortal } from "@angular/cdk/portal";

16 16 import { TemplateTooltipComponent } from "./template-tooltip.component";
src/app/child-dev-project/attenda.../at lend it.ts 17 17
’ ild-dev-project deta. te-detail lent.ts EEM +import { takeUntil } from “rxjs/operators";

EEM +import { Subject } from “rxjs";

src/app/core/analytics/analytics.service.ts

20 B

¥ src/appjcore/common-components/temp.../template-tooltip.directive.ts (=] [ECRERANINES
3 - : 19 22 * A directive that can be used to render a custom tooltip that may contain HTML code.
src/app/core/config/config.service.ts
20 23 * When a tooltip is only a string, the {@code MatTooltip} should be used instead.
src/appfcore/dashboard/dashbo.../dashboard-list-widget.component.ts : @e -36,6 +39,7 @@ import { TemplateTooltipComponent } from "./template-tooltip.component";
T /d data-initializer.service.ts 36 39 standalone: true,
y . . 37 40 3
ST e/entity- ts/entity-se. tity-select.component.ts
38 41 export class TemplateTooltipDirective implements OnInit, OnDestroy {
src/app/core/entity-components/entity-sub...[row-details.component.ts m + private _destroy$: Subject<any> = new Subject<any>();
src/app/core/entity/entity-remove.service.ts 39 43 /%%
‘ 40 44 % Whether to disable the tooltip, so it won't ever be shown
rc/: e/entity/sct dataty D th.ts 41 45 »
src/app/core/fform-dialog/form-dialog.service.ts e
o @e -106,6 +110,8 @@ export class TemplateTooltipDirective implements OnInit, OnDestroy {
src/app/core/language/language.service.ts
106 110 }
r /latest-ct d nager.service.ts 107 111
rf: /permissior bility.service.ts 108 | 112 ngonDestroy() {
. o . tion directived 113 |3 this._destroy$.next(true);
T e/permi; it ation.directive.ts
phiteilimh i il 114 this._destroy$.complete();
r ion/auth, Jaccount-page. rent.ts 109 115 this.hide();
. 110 116 }
src/app/core/session/auth/keycloak/pa.../password-reset.component.ts
111 117
-
¥
'E Summary (required) o @@ -148,8 +154,8 @@ export class TemplateTooltipDirective implements OnInit, OnDestroy {
148 154 i
Description new ComponentPortal(TemplateTooltipComponent)
149 155)i
150 156 tooltipRef.instance.contentTemplate = this.contentTemplate;
151 = tooltipRef.instance.hide.subscribe(() => this.hide());
[152 - tooltipRef.instance.show.subscribe(() => this.show());
157 |8 tooltipRef.instance.hide.pipe(takeUntil(this. destroy$)).subscribe(() => this.hide());
158 | tooltipRef.instance.show.pipe(takeUntil(this._destroy$)).subscribe(() => this.show());
You don't have write access to ndb-core. Want to create a fork? 153 159 ¥
e 154 160 }, this.delayShow);

7. Re-run the subject applications (+ test suite)

Once LeakPair has made its changes, you need to restart the application by following
the same commands as before.

RQ3: Do the patches by LeakPair break the functionality?

The subject should build and/or compile successfully after the changes. Also, if there
were any test scripts available, run them again now (in another terminal, as done
before). The count of passed/failing tests should remain unchanged.

8. Re-run Memlab

https://figshare.com/articles/dataset/LeakPair_An_automated_memory_leak_repair_tool_for_Single_Page_Applications/22106153?file=39370718

While the subject is still running, you can now run Memlab again with the same command
and scenario file.

9. Take note of memory footprints (after LeakPair changes)

RQ1: How effective is LeakPair?

Take note of the count of leaking objects and the final heap size this time. As
LeakPair bases its efficacy on the reduction in the count of leaking objects or the
heap size, at least one of them should show a noticeable reduction (in our
experiments, the count of leaking objects frequently showed a more significant
reduction).

RQ2: Are the patches by LeakPair acceptable?

As the review process is double-blinded, we plan to disclose the submitted PRs after
the final decision to preserve anonymity, since the PRs were all created by the
author's personal GitHub account (the status of the PRs at the time of submission, as
well as the answer to this RQ are presented in Section 5.2 in the paper).

