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T-HyperGNNSs: Hypergraph Neural Networks Via
Tensor Representations

Fuli Wang, Member, IEEE, Karelia Pena-Pena, Member, IEEE, Wei Qian, Gonzalo R. Arce, Life Fellow, IEEE

Abstract—Hypergraph neural networks (HyperGNNs) are a
family of deep neural networks designed to perform inference
on hypergraphs. HyperGNNs follow either a spectral or a spatial
approach, in which a convolution or message-passing operation
is conducted based on a hypergraph algebraic descriptor. While
many HyperGNNs have been proposed and achieved state-of-
the-art performance on broad applications, there have been
limited attempts at exploring high dimensional hypergraph
descriptors (tensors) and joint node interactions carried by
hyperedges. In this paper, we depart from hypergraph matrix
representations and present a new tensor-HyperGNN framework
(T-HyperGNN) with cross-node interactions. The T-HyperGNN
framework consists of T-spectral convolution, T-spatial convo-
lution, and T-message-passing HyperGNNs (T-MPHN). The T-
spectral convolution HyperGNN is defined under the t-product
algebra that closely connects to the spectral space. To im-
prove computational efficiency for large hypergraphs, we localize
the T-spectral convolution approach to formulate the T-spatial
convolution and further devise a novel tensor message-passing
algorithm for practical implementation by studying a compressed
adjacency tensor representation. Compared to the state-of-the-
art approaches, our T-HyperGNNs preserve intrinsic high-order
network structures without any hypergraph reduction and model
the joint effects of nodes through a cross-node interaction layer.
These advantages of our T-HyperGNNs are demonstrated in a
wide range of real-world hypergraph datasets.

Index Terms—Hypergraphs, neural networks, tensors, convo-
lution, message passing

I. INTRODUCTION

ACHINE learning on graphs has drawn much attention

in the last few years as graphs can represent non-
Euclidean relations in data. Graph neural networks (GNNs),
in particular, have shown promise in various domains, such as
social networks [1], [2], computer vision [3], [4], knowledge
graphs [5], [6], and anomaly detection [7]. These graph
structures modeled by GNNs, however, are assumed to be
pairwise relationships. In other words, each relational edge
connects exactly two entities as shown in Fig. 1(a). In real-
world applications where polyadic relationships among mul-
tiple objects are important, regular GNNs become insufficient
to capture all useful features [8]. For example, biomedical
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reactions often contain more than two substances [9], a co-
authorship network can involve more than two authors for each
paper [10], and traffic flows may be determined by more than
two locations [11]. This brings up the concept of a hypergraph,
a more general data abstraction in which each hyperedge binds
a group of nodes simultaneously (see Fig. 1 (b, c)).

Fig. 1. Robot collaboration network represented by (a) a simple graph and
(b) a hypergraph G; and (c) another hypergraph Go. In (a), each cooperation
relationship is denoted by a line connecting exactly two entities; whereas in
(b) and (c), each hyperedge denoted by a colored ellipse represents multi-robot
cooperation.

One convenient way to study hypergraphs is to map them
into regular graphs and adopt simple graph convolution to ap-
proximate high-order relationships. This approach of reducing
hypergraphs is called hypergraph expansion, which includes
clique expansion [12] and star expansion [13], among several
others [14]. Since the graph convolution operation is originally
derived in the spectral domain [12], we call them spectral
HyperGNNs. Despite the simplicity, these methods could
cause topological distortion and difficulty in downstream tasks
since the mapping from a hypergraph to its corresponding
simple graph is not one-to-one [15], [16]. For example, if we
consider the clique expansion that connects any two nodes in a
hyperedge, it is easy to verify that hypergraphs G; in Fig. 1 (b)
and G5 in Fig. 1 (c) have the same pairwise connections, which
is the simple graph in Fig. 1 (a). Other types of HyperGNNs,
such as HNHN [13] and HyperSAGE [17], defined by a two-
stage spatial message-passing rule that gathers information
from the neighboring nodes of each central node, utilize more
advanced deep learning architectures but are still limited to
matrix-based hypergraph representations. In addition, neither
the spectral nor the spatial HyperGNNs use higher-order
interactions among nodes while decomposing hypergraph in-
formation mainly through matrix representations.

Recently, approaches that do not require the use of hy-
pergraph expansions have been proposed to fully exploit
polyadic relationships. In particular, tensor-tensor multiplica-
tions (t-products) [18] were introduced to better understand
hypergraph operations such as signal shifting and spectral
filtering, thus offering powerful tools to formulate spectral
convolutions [19], [20]. Given these tensor representations
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and operations, several intriguing questions naturally arise:
(1) Can we efficiently describe hypergraph structures in a
high-dimensional space without information loss? (2) Can we
model node interactions to represent their joint effects within
a hyperedge? (3) Is it possible to generalize common graph
neural network architectures, such as spectral convolution,
spatial convolution, and message passing under the tensorial
setting? To address these questions, instead of collapsing hy-
pergraphs to simple graphs and representing reduced graphs in
matrix forms, we study the hypergraph representation learning
by a tensor-based framework. For simplicity, We call this
new framework T-HyperGNNs. The contribution of this paper
includes the following main aspects:

o We design HyperGNNs via tensor representations to
make use of higher-dimensional data in hypergraph rep-
resentation learning. We encode hypergraph structures in
adjacency tensors and model mutual interaction among
nodes via cross-node interaction tensors, which allow a
HyperGNN to learn higher-order functions beyond node-
wise summation.

« From hypergraph tensor representations and cross-node
interaction tensors, we formulate T-spectral convolutions
under the t-product scheme that connects to loss-free
hypergraph Fourier transforms [20]. Since the T-spectral
convolution is a global operation, we localize the T-
spectral convolution to form the T-spatial convolution.

« To address the scalability and inductivity of tensor-based
convolutions, we further propose tensor message-passing
hypergraph neural networks (T-MPHNs) by storing and
computing the adjacency tensor in a compressed manner
(which is referred to as the compressed adjacency tensor).

o The proposed T-HyperGNNs show promising perfor-
mance in comparison to state-of-the-art benchmarks over
a wide range of datasets. The T-MPHN, in particular,
is capable of processing large hypergraphs with efficient
space and computational complexity comparable to ma-
trix representation-based HyperGNNSs.

The rest of this paper is organized as follows. We introduce
the necessary background and related work in Section II. We
then define the cross-node interaction tensor and T-spectral
convolution in Section III. To tackle the complexity of T-
spectral convolution, in Section IV, we first localize the T-
spectral convolution to form T-spatial convolution, and then
propose an inductive and scalable tensor message passing
neural network (T-MPHN). Connections between our three
methods and other existing HyperGNNs are illustrated in
Section V. The numerical experiments are summarized in
Section VI. And a brief conclusion is given in Section VII.

II. BACKGROUND AND RELATED WORK
A. Hypergraph and Algebraic Descriptors

A hypergraph G is defined as a pair of two sets G = (V, £),
where V = {v1,vs,...,ux} denotes the set of N nodes (or
vertices) and £ = {eq, ea,...,ex } is the set of K hyperedges
whose elements e (kK = 1,2, ..., K) are nonempty subsets of
V. The maximum cardinality of edges, or m.c.e(G), is denoted
by M, which defines the order of a hypergraph. Apart from

the hypergraph structure, there are also features x, € R
associated with each node v € )V, which are used as row
vectors to construct the feature matrix X € RY*P of a
hypergraph.

A hypergraph structure G can be encoded in either a matrix
or a tensor form. We refer to these algebraic descriptors as
S. In matrix representation, a hypergraph is described as a
vertex-to-hyperedge incidence matrix H € RV*X_ As shown
in Fig. 2 (c), entries of the incidence matrix are h,; = 1 if
node v,, lies in hyperedge e, and h,; = 0, otherwise. While
the incidence matrix representation is straightforward, it is a
rectangular operator without a dimension-preserving property.
Another matrix descriptor known as the adjacency matrix of
a hypergraph is defined as A = HH”, which projects out the
hyperedge dimension but leads to clique expansion (see Fig. 2
(b)) that causes distortion of hypergraph structures [15], [16].

€3

vy 0
Vs Y
Existing HyperGNNs " \ / \y 2 0
5 vz |0 1
\ 113/ v, 0 0 1
e vy vs 0 0|1
3 vy
(b) Clique Expansion (c) Incidence Matrix
(spectral approach) (spatial approach)
Vs
(a) Hypergraph €1l Q21 = A1z = Q22 = G171 = G212 = Ggp1 = 2/6
Our Approach €3! G345 = A3s54 = (435 = Q453 = G534 = A543 = 3/6

(d) Adjacency Tensor

Fig. 2. (a) A hypergraph with (b) its clique expansion that is used in spectral
HyperGNNs, (c) incidence matrix is utilized in spatial HyperGNNSs, and (d)
adjacency tensor, where nonzero entries of the adjacency tensor are specified
on the right-hand side.

In this work, we use tensor-based descriptors to propose
a novel tensor-hypergraph neural network (T-HyperGNN)
framework. Given a hypergraph G = (V,€) with N nodes
of M order (that is, m.c.e(G) = M), its adjacency tensor
is defined as an M*P-order N-dimensional tensor A € RV".
Specifically, for any hyperedge ex, = {vi,,Vky, ...y Vg, € €

with ¢ = |ex| < M, the tensor’s corresponding entries are
given by
c
Apyps..om = av (1)
with

2.

T2, Te>1, D55 ri=M

o =

M
(M) o
1,72, 5 Tc

where the indices p1, po, ..., pas for adjacency entries are cho-
sen from all possible ways of {ki, ko, ..., k.}’s permutations
with at least one appearance for each element of the hyperedge
set, and « is the sum of multinomial coefficients with the
additional constraint rq,79,...,7. #* 0. In addition, other
entries not associated with any hyperedge are all zeros. The
example below demonstrates this definition. We will revisit
and explain this definition in Section IV when we define the
compressed adjacency tensor.

Example 2.1: Given the hypergraph in Fig. 2 (a), its three
hyperedges ej, ea, e3 are represented by the adjacency cube in
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Fig. 2 (d) with nonzero entries specified on the right-hand
side. For e; that contains nodes v; and wvo, the adjacency
indices are assigned according to their length-3 permuta-
tions {(121),(112),(211), (122),(212),(221)}, where 1 and
2 appear for at least once. Then, the values of adjacency
coefficients are computed as 2/6, where the numerator ¢ = 2 is
the degree of e, and the denominator o« = 6 is the number of
index permutations. For the other two hyperedges es, e3 with
¢ = lez| = |eg| = M = 3, the indices of their corresponding
adjacency entries are direct permutations of their node indices
(e.g., {(345),(354), (435), (453), (534), (543)} for edge e3).
And the numerical value is computed by the quotient of
hyperedge cardinality and the number of index permutations,
giving the coefficient value 3/6.

B. Problem Definition

Formally, given a descriptor S of a hypergraph and the
associated node features in X, the goal of HyperGNNSs is
to identify a representation map P(-) between the feature
X and the target representation t = ®(X,S,{W}) that
incorporates the hypergraph structure, where {W} contains
the weight parameters learned by the model. To learn the
representation map, we consider a cost function J(-) and a
training set 7 = {(x1,t1), ..., (X7)), t}7|) } With the observed
training targets t = (t1,--- ,t7|). The learned map is then
O(X,S,W*) with

W* = argmin J(®(X, S, W), t). 3)
w

The cost function can be chosen based on downstream tasks
(e.g., node classification [21]).

C. Related Work

The research of HyperGNNs can be briefly categorized
into two main approaches: 1) spectral methods that define
convolution in the spectral space and 2) spatial methods
that aggregate neighboring messages and combine with self-
embedding for each node.

Matrix-based Spectral HyperGNNSs. The earliest attempt
to build HyperGNNSs includes HGNN [12] and HCHA [22],
which can be considered as spectral HyperGNNs built on
the adjacency matrix A of a hypergraph. From the adjacency
matrix, the hypergraph Laplacian is defined to construct the
hypergraph spectral space that is formed by the eigende-
composition of the Laplacian. After applying spectral filters,
the spectral convolution is formulated as Z = A" XW,
where A" ¢ RN*N j5 a normalized adjacency matrix,
X € RV*D j5 the feature matrix, and W € RP*D" is a
learnable filter weight matrix. Although A is a squared matrix,
it is geometrically equivalent to the clique expansion, in which
a hypergraph is reduced to a simple graph by connecting any
two nodes that are in a hyperedge. For instance, the simple
graph in Fig. 2 (b) is the clique expansion of the hypergraph
in Fig. 2 (a). With such reduction, the small edge e; contained
in eg is ignored. Thus the hypergraph expansion is not a
one-to-one mapping, which could cause node-level and edge-
level ambiguities [16]. Other methods such as HyperGCN [10]

and LEGCN [23] are developed following similar ideas with
different variants of matrix descriptors.

Matrix-based Spatial HyperGNNSs. In contrast to spectral
HyperGNNs, spatial HyperGNNs focus on the local connec-
tivity of each node without going to the spectral domain. By
defining the incident-edge set of node v as £, = {e € E|v €
e}, UniGNN [24] proposes a spatial message-passing process
with two steps:

{xe = (bl({xu}uee) 7 4)

Zy, = 3 (Xm {Xe}'eGEu)

where ¢; and ¢ are two permutation-invariant functions
for node-to-edge and edge-to-node aggregations, respectively.
Specifically, the first step aggregates information from all
nodes that are in each incident edge, thus forming a node-to-
edge propagation. The edge embedding x. is then combined
with the target node embedding x, and passes through ¢o
to produce a new node embedding z,. Such node-edge-
node embedding scheme remains to be matrix-based since
it is a generalization of Z = H(H”X), where H is the
incidence matrix. In addition to UniGNN, current methods
including HNHN [13], HyperSAGE [17], and AllSet [15] are
all under such node-edge-node propagation paradigm, but with
more advanced architectures such as an attention mechanism.
Compared to spectral HyperGNNSs, spatial message-passing
does not require the construction of a hypergraph algebraic
descriptor and can be applied to previously unseen nodes
during testing. However, it remains unclear if an appropriate
higher-order descriptor (i.e., a tensor) can be employed to
accommodate hypergraph structures.

In summary, spectral HyperGNNs require a dimension-
preserving hypergraph descriptor in order to define the spectral
space, and current methods are mostly focused on matrix
representations that correspond to hypergraph reductions. On
the other hand, spatial HyperGNNs with the node-edge-node
aggregation process stem from spectral convolution but are
implemented in a two-step manner to adopt deep learning
techniques. The following issues remain unsolved for these
existing HyperGNN:Ss. First, they are based on matrix descrip-
tors with possible information loss. For example, the adjacency
matrix A corresponds to a clique-expanded simple graph,
which could not encode all intrinsic higher-order structures.
Second, they do not take into account possible high-order
feature interactions among multiple nodes. Indeed, the salient
characteristic of hypergraphs compared to simple graphs is
that hyperedges depict joint effects of a group of nodes.
Lastly, spectral and spatial HyperGNNs are studied separately
in the literature, while a more unified study connecting both
approaches would be desirable.

To overcome the aforementioned issues, we propose the
tensorial descriptor of the hypergraph structure and further
construct the hypergraph signal tensor by modeling cross-node
interactions. Using these two tensors, we design hypergraph
spectral convolution under the t-algebra framework and then
localize the spectral convolution to form spatial convolution
that only propagates to neighbors of each node. Spatial
message-passing HyperGNNs (T-MPHNSs) are then built upon
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the compressed adjacency tensor to address tensor complexity
for developing computationally efficient algorithms.

D. Tensor Notations and Operations

For ease of presentation, we first describe the notation
for 3'0 order tensors as 3"d order tensors are the base
case of higher-order tensors. For a 3'd order tensor, indices
i€ {1,2,..,.N1},j € {1,2,..,Na},k € {1,2,..., N3} are
used to specify the height, width, and depth-direction of the
cube in Fig. 3(a). Breaking down a 3'¢ order tensor along
the third mode, we obtain frontal slices in Fig. 3(b). The k!
frontal slice is A) = A(:,:, k) € RN1*N2X1 When it comes

Ny

N3 Ns

Ny

(a) A 372 order tensor (b) Frontal slices of the 37 order tensor

Fig. 3. (a) Third-order tensor A € RN1XN2xNs. (b) N3 frontal slices
AR = A(:,:, k) € RN1xNax1,

to M*"-order tensors A € RV we can view the last (M —2)
orders as flattened frontal slice indices along the third order,
that is, A € RN1XN2XN3 with N} = N3Ny - - Ny

ITII. T-SPECTRAL CONVOLUTION ON HYPERGRAPHS

In this section, we introduce the hypergraph interaction
tensor by modeling cross-node interactions. Then based on the
hypergraph adjacency tensor and the hypergraph interaction
tensor, we propose the hypergraph T-spectral convolution using
t-products.

A. Modeling Cross-node Interactions

To begin with, we present a cross-node interaction (CNI)
tensor to model higher-order interactions among nodes. The
CNI is designed as the (M — 1)-time outer product of features
along each feature dimension. Given the feature (or signal)
matrix X € RV*P ag the input, with N being the number of
nodes in a hypergraph and D being the dimension of features
for each node, the d-th dimensional interaction among all
nodes (d =1,---,D) is given by

ONI([x]a) = [Xao [X|ao---o[x]la € RNV¥IXNTTZ 1 s

(M-1) times

where o denotes the outer product (also known as elementary
tensor product), and [x]; € RY represents the d-th dimen-
sional feature vector of all N nodes. For example, given
M = 3, CNI([x]s) = [xlax]} € RN Here we
unsqueeze the outer-product tensor to generate the additional
second mode for the dimension index of different features.
Then by computing CNI([x]4) for all D features and stacking
them together along the second-order dimension, we obtain
an M*'™"-order interaction tensor X € RNXDxN™™2 pe
resulting interaction tensor can be viewed as a collection of
D tensors, each depicting node interactions at one feature
dimension. The formulation of the cross-node interaction

tensor has the following unique properties: 1) Interactions
capture features that cannot be decomposed into sums of
subfunctions of node features; 2) Interactions are applied
across different linked nodes, as opposed to different features;
3) The order of interactions grows naturally with increasing
order of complexity of the hypergraph.

Although widely used in many applications such as recom-
mendation systems (e.g., Deep & Cross Network (DCN) [25],
eXtreme Deep Factorization Machine (xDeepFM) [26]), in-
teractions are mostly defined to be cross-channel or cross-
attribute for a node. Cross-channel interactions are also well-
known in high dimensional regression [27]. Here we design
the interactions to be cross-node (as opposed to cross-channel)
based on the intrinsic node interactions depicted in hyperedges,
which could contain additional information across linked
nodes beyond linear summations of individual nodes.

B. Hypergraph T-spectral Convolution

The hypergraph T-spectral convolution is inspired by the
tensor operations in the hypergraph signal processing frame-
work known as t-HGSP [20], where the hypergraph spec-
trum is defined via t-product decompositions [19]. With
the adjacency tensor A and the cross-node interaction ten-
sor X, we first enlarge them to their symmetric version
A, € RNXNXNIT™D a0 &, € RV*DXN™ 0 where
Ny = (2N + 1) according to the symmetrization operation
in Appendix B. The motivation of symmetrizing tensors is
to obtain a symmetric block circulant matrix like beirc(Ay)
(to be introduced in Eq. (9)) so as to allow proper alignment
of the adjacency tensor and the CNI feature tensor. After
the symmetrization, to further ensure bounded spectra of the
adjacency tensor, we normalize adjacency entries of A by
scaling them using the degrees of relevant nodes to generate
A7er™ Since the symmetrization and the normalization are
both known operations for tensors, for brevity, we leave
their detailed description to Appendix B and Appendix C,
respectively. The T-spectral convolution is then formulated
as

Z, = AZOTm * X x W, (6)

where W, € RPXD'xNM™ iq 4 learnable weight tensor with
DD’ weights parameterized in the first frontal slice and all
the remaining frontal slices being zeros. The multiplication
operation * denotes the tensor t-product [20]. Specifically, for
the 3"! order case (M = 3), given A, € RVXNxNe apd
X, € RNXDxNs e have

A x X (N
= fold(bcirc(As) - unfold( X)) (8)
ro AL A®@ A®@ AWM T 0 T
A 0 A AB) A@| |Ix®
AR A 0 Ad AG)] [x®
= fold .
AR AB) A@ L 0o AM| |x®
A A@  ABG) A 0 xX @
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where the operator bcirc(A;) converts the set of Nj
frontal slice matrices (in RY*N) of the tensor .Aj
into a block circulant matrix. Specifically, the first
row of bcirc(Ag) is the frontal slices of A, ie.,
0,AW A® AN AN AR AM] and the next
row is simply the one-step cyclic shifting of the previous row.
The operation unfold(Xs) stacks vertically the set of N; frontal
slice matrices (in RV*P) of X into a N,N x D matrix. The
operator fold() is the reverse of the unfold() process so that
fold(unfold(As)) = As. The t-product of higher order tensors
is more involved with recursive computation with 3™ order
base cases. To maintain presentation brevity here, the details
of this known t-product procedure are relegated to Appendix A
for technical completeness.

The reason for constructing the T-spectral convolution as
we defined above in Eq. (6) is partly due to the connection
between the t-product and the Fourier transform [28]. Since
circulant matrices are diagonalized by the discrete Fourier
transform, as shown in Algorithm 1, the t-product above can be
efficiently computed by recursively applying the Fast Fourier
Transform to both tensors, followed by conducting regular
matrix product between flattened tensors and eventually per-
forming Inverse Fast Fourier Transform. The derivation of the

Algorithm 1 T-spectral Convolution

Input: Input: Shifting Operator A7°"™ € RNVXNXN B
hypergraph signal tensor X, € RN XDXNM ™ yeioht matrix
W e RP*D',
Output: New hypergraph signal Z, € RVXNx
for p=3,.... M do
Ago’r’m <_‘ﬁvt(Ag7,0T’m,, mode — p),
X, fi( Xy mode = p)

end for

for k=1,2,... NM™2 go

Zo— AT k) - X (s k) - W

N(M—2)

(10)

end for
for p=»M,...,3 do

Zs + ifft(Zs, mode = p)
end for

T-spectral convolution is drawn from the t-eigendecomposition
of the Laplacian tensor, and we include the technical details
in Appendix H. After constructing the spectral space from
the t-eigendecomposition of the Laplacian tensor, a filtering
function is applied to the frequency of the hypergraph, i.e., the
eigen-tuples of the Laplacian tensor. When the filtering func-
tion is defined as the commonly-used first-order Chebyshev
polynomial [29], [30], the T-spectral convolution in Eq. (6) is
obtained.

C. Complexity Analysis

As the order and the number of nodes of a hypergraph
increase, the time and space complexity of the T-spectral con-
volution becomes a major concern. Indeed, the computation in
a one step t-convolution of the tensors A, * Xs * W; in Eq. (6)
can be shown to be O(DN?M), which is practically difficult

given any moderate M. Even though the computation of the
t-product could be reduced to O(DN™) using Algorithm 1,
it is still not sufficiently fast in large hypergraph learning. In
addition, considering the space complexity of a M'"-order
hypergraph, the memory allocated for the adjacency tensor is
O(NM), Since tensor-based convolutions require that the full
hypergraph adjacency tensor is known during model training
process, a direct implementation is usually not feasible for
large hypergraphs. We address these limitations in the next
section.

IV. T-SPATIAL HYPERGRAPH NEURAL NETWORKS

To scale up the T-spectral convolution, two improvements
are proposed in this section. First, we localize the T-spectral
convolution to form a T-spatial convolution that only prop-
agates to connected neighbors of each nodes. Second, to
alleviate the space complexity of tensors, we introduce the
compressed adjacency tensor that takes little memory us-
age. Based on the compressed adjacency tensor, a two-step
message-passing framework is proposed, within which the T-
spatial convolution is subsumed.

A. T-spatial Convolution

In the vertex domain, convolution is viewed as a weighted
sum of neighboring information. As a result, the main idea
of developing spatial convolution is to localize the spectral
convolution, that is, only connected nodes are propagated
through during a shifting operation.

To this end, recall that A" € RNXNxN@™2 4o ihe
(normalized) adjacency tensor defined from Eq. (1), and X €
RNxDxNM=2 4 ihe CNI signal tensor as defined in Eq. (5)
from the feature matrix X. Here, we view the last (M — 2)
orders of these tensors as indices along the third order so
that matrices A®*) € RV*N and X*) ¢ RN*P represent
the frontal slices (k = 1,2,---, N™~2) of A"°™™ and X,
respectively. After applying the 3'%-order symmetrization to
Ame™™ and X according to Eq. (32) in Appendix B, the T-
spatial convolution is defined as

Zg = (AT + X,) VW, (11)

where A7 and X, are the corresponding symmetrized
tensors, (A" x X,)(1) is the first frontal slice of the shifted
hypergraph signal A"+ X, and W € RD*D " is a learnable
weigh matrix. In this sense, the form of T-spatial convolution
defined above can be viewed as a localized version of a T-
spectral convolution as it keeps only the first frontal slice of
the form of Eq. (6).

Also, note that (A7 X,)() can be computed as the sum
of the corresponding frontal-slice products between A™°"™
and X, that is,

)

N1V172
Y o= (AP X)W = Y0 ABX ),
k=1

12)

Equivalently, for an individual node v; with 1 < ¢ < N and
1 <d <D, we compute y;q := [Y]; q as

N N N
yid:E E E Qijigeing Tidis i

j=11d3=1

13)

ivr=1
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where Ljdiz--ipy — LjdTizd " Lipgd-

For example, in the 3'¢ order case with M = 3,
the first frontal slice of the shifted signal is computed
as Zsz AM®MXK) - which is equivalent to computing
Z;V:l Y k—1 QijkTjdZrq for each node v; (i = 1,---,N).
Then if three different nodes v;,v;, vy, are in the same hy-
peredge, we have a;j; 7# 0 and the interaction with the
neighboring nodes v; and vy, are used to compute the shifted
signal for v;; otherwise, a;;, = 0 and the respective interaction
term makes no contribution for the shifted signal.

In general, by the adjacency tensor definition and its sparse
nature, the entries a;j;,...,, are the indicators to determine
whether a corresponding set of nodes is connected to the target
node v; through a hyperedge. Therefore, Eq. (13) implies that
only the features/signals from neighboring nodes contribute
to computing the shifted signal of the target node under the
T-spatial convolution, which can lead to efficient computing
algorithms to be introduced in the next subsections.

In addition, the outcome of the T-spatial convolution does
not depend on the node ordering for adjacency tensor genera-
tion. On the other hand, the other frontal slices of AZ°"™ % X
(except the first one) would involve more than the neighbors
of a target node and may not be computed without prior node
ordering information. Therefore, these frontal slices apart from
the first one are not included in the T-spatial convolution.

These two desirable properties of the T-spatial convolution
discussed above are summarized in the following propositions.

Proposition 4.1: The T-spatial convolution is localized that
propagates only through neighbors of each target node.

Proposition 4.2: The T-spatial convolution is permutation
invariant on the ordering of the nodes.

Proof. See Appendix D for the proof of Proposition 4.1
and 4.2. |

B. Compressed Adjacency Tensor Representation

If the use of the T-spatial convolution had to require
complete construction and loading of large tensors, the time
and space complexity would remain too large for most appli-
cations. In the following, to avoid direct tensor constructions,
we decompose the adjacency tensor into two tables: the
adjacency value table and the neighborhood table. These two
tables will play an important role in formulating a T-spatial
message passing algorithmic framework called T-MPHN in
Section IV-C. Since the T-MPHN algorithm is designed from
the T-spatial convolution based on the adjacency tensor and the
cross-node interaction tensor, it remains to be a tensor-based
approach. Nonetheless, T-"MPHN can be shown to require
much less computing time than that of using the T-spatial con-
volution by taking advantage of the sparsity of the adjacency
tensor to store adjacency values and node connectivity in a
compressed manner.

Returning to the hypergraph adjacency tensor introduced
in Section II-A, from Example 2.1, we can see that the
construction of the adjacency tensor can be divided into
two sequential steps: 1) Spanning every edge into M*"-order
hyperedge; 2) Permutating indices of each spanned M **-order
hyperedges.

Step 1. Spanning every edge e € £ into M* -order hy-
peredges: Since hyperedges with |e| = M are in M*-order
already, only hyperedges with |e| < M need to be spanned.

Definition 1 (M*"-order Hyperedge): Given a hypergraph
G(V, &) with the order M, for any hyperedge e € &, its M*"-
order hyperedge set e is given by

M {e}, if |e| = M,
e =
span™M (e), if |e| < M.

Here span™(e) is the set of M'-order sub-hyperedges
spanned from e with |e| < M:

(14)

span™ (e) = {¢/ |unique(¢’) = ¢, |¢/| = M}, (15)

where unique(e’) = e means the distinct elements in e
is the same as e, and |e’| is the number of (possibly non-
unique) elements in €’. It is not hard to see that the size
of the sub-hyperedge set |span™(e)| is exactly the total
number of combinations for choosing (M — |e|) elements with
replacement from the set e:

spant(0) = (el (01 - [e) = (1 7)) a0

For example, given the hypergraph of Fig. 2 (c), the edge ey
with |e;| = 2 < M = 3 can be spanned to two 3'¢ order
sub-hyperedges €}, = (v1,vq,v1) and e}, = (v1,v2,v2) as
shown in Fig. 4.

N ~
e — € —_ e

V1 Uy 121 . 121 v, Uy

Fig. 4. Spanning the hyperedge e in Fig. 2(a) with |e1| =2 < M = 3 to
M _order sub-hyperedges.

Step 2. Permutating M*™"-order hyperedges: After obtain-
ing M*"-order hyperedges e for every e € &, we per-
mutate elements contained in e (denoted by a sequence
permutation function 7(-)), which in turn specifies the set
of permuted index sequences corresponding to the adjacency
entries associated with hyperedge e. Specifically, given any

(p1,p2,- - »par) € m(eM), the entry value in Eq. (1) can be
equivalently written as
le]
Apipo-py = Wv a7

where the cardinality of permutated M®"-order hyperedge
|T(eM)] = « is given in Eq. (2). As we can see from
Eq. (17), two types of information are associated with nonzero
adjacency entries: the adjacency value corresponding to the
hyperedge e, and the indices capturing node connectivity. We
then introduce two lookup tables to encode the information of
the adjacency tensor: the adjacency value table and the node
neighborhood table. These tables represent the compressed
adjacency tensor, and an illustrative example is shown in
Fig. 5.

For the adjacency value table, we first discover that they can
be computed efficiently as a function of the edge cardinality
le| and the order M of the hypergraph.
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Theorem 4.1: Given an adjacency tensor of a hypergraph,
the adjacency value a. associated with a hyperedge e is a
function of (|e|, M):

ol
a ?
where ‘
if 1€ -\ M
a =30 (") el - iy (13)
i=0
Proof. The proof is given in Appendix E. (]

Given Theorem 4.1, the adjacency value table is easily
constructed, in which the first column lists the cardinalities
of hyperedges ranging from 2 (the minimum) to M (the
maximum), and the second column refers to the corresponding
adjacency value a.’s computed from Eq. (18). Note that
the computation of the adjacency values a.’s does not rely
on specific hyperedges, and hyperedges sharing the same
cardinalities have the same adjacency values. So the adjacency
table as shown in Fig. 5 (c) is typically very short.

Next for the node neighborhood table, we introduce the
concept of M*"-order neighborhood of a node.

V2 €3: Q345 = G354 = Qy35 = G453 = Asz4 = g3 = 3/6 =1/2 |

(a) A hypergraph (b) Nonzero adjacency tensor entries

ﬂ Compress

v N3 (v)
le|] ae vy | {n(vy,v2), m(v2, v2)}{ B
2 13 vy | {{r(vy,v2), (v, v} B
3 12 v3 {t )} A (vs, v5)}}

Vs {r(vs, vs)}

Vs {m(v3, 1)}

(c) The adjacency value table (d) The neighborhood table

Fig. 5. (a) A hypergraph; (b) The nonzero adjacency tensor entries for the
hypergraph (a); (c) the adjacency value table; (d) the neighborhood table.
The parentheses in the neighborhood table represent the nodes forming a
hyperedge with the target node in the first column.

Definition 2 (M*"-order Neighborhood of a Node): Given
a hypergraph G = (V, £) with order M, for any node v € V,
its M*"-order incidence edge set is

EM@w):={eM|ec & vee}, (19)

where e is the M'"-order hyperedge set defined in Eq. (14).
Then we can define the M'"-order neighborhood of v that

basically excludes one target node v in each hyperedge from
EM (v):

NM(w) = {x(eM(—v)) [e” € EM(v)},  (20)

where eM (—v) deletes exactly one node of v from each M-
order hyperedge in e, and 7 (-) represents permutation of the
remaining nodes.

Consider node v; in Fig. 2(c) as an example. The 3¢ order
incidence edge set for vy is E3(v1) = {span3(e1),{ea}} =
{{(Ul, V2, ’Ul), (1]1, V2, ’UQ)}, {(’Ul, V2, Ug)}}. Cor-
respondingly, the M _order neighborhood is
N3(w) = {{r(ve,v1),m(v2,v2)}, {m(va,v3)}}. Note
that hyperedge (v1,vs,v1) in span®(e;) of E3(v;) contains
repeated v;’s since it results from the edge spanning, and the
subsequent node deletion for generating V"™ (v;) should only
remove one node of vy.

From the M*"-order neighborhood definition, the neighbor-
hood table (see, e.g., Fig. 5(c)) is constructed with every node
as the first column and their M*"-order neighborhood N"M (v)
as the second column, so that it represents the hyperedge con-
nectivity information carrying indices of nonzero adjacency
entries. By specifying any target node v; from the first column
of the neighborhood table, we can quickly search for nonzero
adjacency entries required in computing the shifted signal
corresponding to v; in Eq. (13). For example, as shown in
Fig. 5, the nonzero adjacency entries for v; with its index
fixed at the first mode are a;.. = {aj21,a112, @122, G123, 4132},
which is consistent with the permutations in N3 (v;) from the
neighborhood table. The neighborhood table together with the
adjacency value table therefore forms the compressed sparse
adjacency tensor to provide an efficient representation for
higher-order hypergraph.

C. Inductive Learning with T-MPHN

With the compressed adjacency tensor representation, we
propose the algorithm called the tensor message-passing hy-
pergraph neural network (T-MPHN) in this subsection. Given
any node v € V, let x,, € RP be the input feature asso-
ciated with node v. Given any ordered sequence of nodes
U= (Ul, U,y * - ,’LL]V[_l), define

CNIXU = Xu, O] Xuo IOXERNO) Xupr—1

uel @

to be the Hadamard (element-wise) product of their node
features along each feature dimension d (1 < d < D).

From the node-wise perspective, we then use the M '"-order
neighborhood N (v) defined from Eq. (19) and Eq. (20) to
compute the neighborhood embedding mp (., of node v

My () = AGGREGATE(acmen o)),

(22)

where AGGREGATE denotes permutation invariant aggre-
gation functions such as summation and average, a. is the
adjacency value computed by Theorem 4.1, and

AGGREGATE  (CNIx,)

(23)
{Uen()|r()em(eM(—v))} uelU

mem (v) =
is the edge embedding for M*"-order hyperedge set ¢ by
aggregating cross-node interactions of each permutated se-
quence of neighborhood nodes from 7 (e (—wv)). As the edge
embeddings from Eq. (23) are aggregated for all hyperedges
of a node with weights by adjacency values a., the two-
step process proposed in Eq. (22) essentially aggregates all
the cross-node interactions generated by the ordered node
sequences from A/M (v) to infer the neighborhood embedding.
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Using the hypergraph example of Fig. 2 for illustration, con-
sider the case of D =1 such that z; = x,, (¢ =1,2,--- , N).
Then if we set node vy in Fig. 2(c) as the target node and
let AGGREGATE be the summation operation, we obtain
me:{.(vl) = ($1.’E2 + Tox1 + $%), meg(vl) = ($21'3 + .’L‘glﬂg)
by looking up the neighborhood table in Fig. 5(c). Since
the coefficients a., = 1/3 and a., = 1/2 can be directly
retrieved from the adjacency value table in Fig. 5(b), the
neighborhood embedding of v; in the example is computed
by mprs(,,) = %(xlxg + xoxy + 23) + %(.TQZ&: + x372).

As we see from the above example, the neighboring aggre-
gation first finds the connected nodes to a target node, and then
sums up their cross-node interactions within corresponding
hyperedges, which follows the same procedure as the shifting
operation in the T-spatial convolution. Therefore, we summa-
rize the connection between the T-spatial convolution and the
t-message passing in the following theorem.

Theorem 4.2: Given any node v; € V, its shifted signal
[Y)i. = (i1, yi2-+ ,yip)T by Eq. (13) is equivalent to the
neighborhood embedding my/a(,,) computed by Eq. (22) up
to a tensor normalization factor.

Proof. See Appendix F for proof. ]

In particular, if the adjacency tensor is normalized by
scaling the entries with the degrees of relevant nodes (see
Eq. (34) in Appendix C) and the AGGREGATE operations are
defined to be average and summation in Eq. (22) and Eq. (23),
respective, then the neighborhood embedding becomes exactly
the same as the shifted signal, that is, mprar(,,) = [Y];..

Algorithm 2 T-MPHN Forward Propagation

Input: Hypergraph G(V,&); node features {x,|v € V};
number of layers L; hypergraph order M; the adjacency
value table; the neighborhood table, linear layers MLP(Z),I =
1,2, ..., L; aggregation function AGGREGATE; combine op-
eration COMBINE; nonlinear activation o.
Output: Node embeddings z,, Vv € V.

xSf” + MLP(x,),Vv € V;

for(=1,....,L do

for v €V do
for e ¢ EM(v) do

Qi <~ AGGREGATE (CNIxy V)
{Uen() | x()em(eM (—v))} uetd
end for

m

0 0
Myn ) < AGGREGATE(acm, )

(24)

x(  o(MLP® (COMBINE(x{! ", m{{, )
(25)

Xg)l) — Xg;l)/HX?()l)”Q (26)

end for
end for
Zy — XE,L),V’U eV

Based on the computing scheme proposed above for the
shifted signals, we next describe the T-MPHN algorithm,
which is summarized in Algorithm 2. Let {x,|v € V} be
the input node features. To begin with, we first initialize

these node feature with one linear layer of regular multilayer
perceptron (MLP) and project them into a latent space to
obtain the initial hidden embedding features {XS,O) v € V}.
This step is particularly helpful when the input features have
very high dimensions (e.g., one-hot-encoding features) to
avoid potential gradient vanishing issues.

The T-MPHN algorithm then performs multi-layer opera-
tions as follows. Given the current layer [ ({ = 1,---, L), let
{xg_l) |v € V} be the hidden embedding features from the
previous layer, and let X(=1) = (x\7V ... x{)T be the
corresponding design matrix. For a given target node v € V,
we first perform the efficient two-step aggregations to generate
shifted hidden features m/(\l/)M(v) as shown in Eq. (24), where

m(elj\)l(v) are computed by the aggregation scheme of Eq. (23)

using the previous embedding features in X1,
Subsequently, the step in Eq. (25) essentially integrates the
. . . -1 .
pro;))osed T-spatial convolution by concatenating X with
mf\lf 2 () 1O obtain an augmented node-specific vector followed

by one regular linear layer (MLP®) operation. Indeed, by
Theorem 4.2, this step can be equivalently viewed as a
weighted linear combination between the transformed hidden
features X (-1 by a simple linear layer and the T-spatial
convolution from the CNI signals of X (=1 by the convolution
operation of Eq. (11).

Lastly, the resulting hidden features of node v are fed into a
nonlinear (e.g., RELU) activation followed by a normalization
step in Eq. (26) to generate xg,l), which is used as the node’s
new hidden embedding features for the next layer [ + 1. The
process described above is repeated for L layers and finally
leads to the output node embeddings z, for all v € V from
the T-MPHN algorithm.

D. Design Variations of T-"MPHN

Under the T-MPHN framework proposed above, it is con-
ceivable that several variations may be formulated for practical
use. We next illustrate some examples of its variations. Com-
prehensive investigation of other possible variations will be
left to future work.

In the aggregation of Eq. (22), one can set the hypergraph
order M as a fixed value so that any hyperedge with more than
M nodes will be uniformly down-sampled to M degree. This
down-sampling strategy is especially useful for datasets with
only a few extremely large edges but many small-sized edges.
Furthermore, the order M of the hypergraph at different layers
can be set to be different: this variation is motivated by noting
that the [-th layer of HyperGNNs aggregates information
from the [-th hop neighbors. As the aggregation propagates
to neighbors that are multiple hops away from the central
target node, less neighboring nodes may be considered. By
decreasing the order M as the layer [ goes deep, the model
performance can often be improved, and we will provide
further discussion in Sec. VL.

In addition to M, one may also change the aggregation
function. If a dataset contains “hub” nodes that lie in many
hyperedges, a normalization strategy is to set the edge AG-
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GREGATE function in Eq. (22) to be the mean function. That
is,
0 1

M) = G Qe
eMeEM (v)

>

{uer(-) |
m()em(eM (—v))}
where d, is the degree of node v that counts the number
of edges that v lies in. Other AGGREGATE functions such
as max-pooling and LSTM [31] may also be considered in
accordance to a study’s learning task.

CNIx(1) )
(ueuX“ ) ’

E. Complexity Analysis

Unlike the T-spectral convolution that requires the use of
the entire sparse adjacency tensor, the T-MPHN algorithm
employs the compressed adjacency tensor to design an efficient
aggregation scheme for hypergraph to avoid excessive space
and time complexity. Let d,, = max,¢cy d, be the maximum
degree of all nodes and let DU~ be the dimension of the
embedding features generated from the previous layer [ — 1.
Suppose M is fixed (which is typically much smaller than N).
Then since the adjacency value table and the neighborhood
table are both stored in dictionary format, the space complexity
of T-MPHN is O(Nd,,) and the time complexity for each
layer [ is O(Nd,, DU!~Y). Therefore, rather than having the
polynomial order of N for the T-spectral convolution as
shown in Section III-C, both the space and time complexities
of T-MPHN are only linearly increasing with N, which is
practically comparable to the state-of-the-art HyperGNNs such
as UniGCN [24] and HNHN [13].

V. CONNECTION TO RELATED WORK

Here we first point out certain connections between the three
proposed HyperGNNs: T-spectral convolutional HyperGNN,
T-spatial convolutional HyperGNN, and T-MPHN. Then we
show the relationship between our work and other closely
related work under some special cases.

Connection between T-spectral and T-spatial convolu-
tions. As shown in Section IV, the T-spatial convolution is
obtained by localizing (or taking the first frontal slice of)
the T-spectral convolution. Alternatively, a connection can be
viewed from Eq. (10) in Algorithm 1: under the hypergraph
order M = 2, the pre-Fourier transform and the post-Inverse
Fourier transform in Algorithm 1 can be omitted since they
are applied only to orders higher than 2; the computation of
T-spectral convolution then becomes the T-spatial convolution
of Eq. (11). Therefore, if a hypergraph is reduced to a simple
graph (M = 2), the T-spectral convolution is the same as the
T-spatial convolution.

Connection between T-spatial convolution and T-MPHN.
In Theorem 4.2, we shown that the neighborhood embedding
my () is equivalent to the shifted signal [Y]; in the T-
spatial convolution. Aside from the algorithmic perspective,
the difference of the T-spatial convolution and the T-MPHN
also lies in the way of combining the neighborhood embedding
m () and the central node embedding x,,. In the former
approach, if a self-loop-added adjacency tensor is used, the

combining operation is restricted to summation; in the T-
MPHN, the combining operation is more flexible, and we
choose to use concatenation in the experiment.

Connection between T-MPHN and other related work.
As tensor is a generalization of matrix, certain matrix-based
HyperGNNs built on hypergraph expansions are naturally
subsumed in our work. For example, after applying clique
expansion to a hypergraph G, we obtained a uniform order-2
hypergraph, and from the definition of the adjacency tensor
with M = 2, adjacency coefficients are a;; = 1 for each edge
e = (1, 7), which reduces the adjacency tensor to the adjacency
matrix. For the hypergraph signal that is defined as the (M —1)
times outer product of the original signal X € RN*DP_ it
automatically becomes the same as the original signal with
M = 2. Furthermore, using our definition of neighborhood
with M = 2, the adjacency matrix-based neighboring aggre-
gation rule can be written as myr2(y,) = - 2¢ m2(y,) Me2(v;)
and mez(,,) = Zu@?(wi) X,,, wWhich are simplified from the
two aggregation steps in Eq. (22) and Eq. (23).

VI. EXPERIMENTS

The proposed T-HyperGNNs including the T-spectral con-
volution (T-spectral), the T-spatial convolution (T-spatial), and
the T-Message-passing (T-MPHN) are evaluated in this sec-
tion. In the first experiment, we consider transductive learning
in which all nodes are involved in modeling during the training
process (except for true labels of testing sets). An ablation
study is conducted to show the effectiveness of using the
adjacency tensor and the cross-node interaction tensor. To
demonstrate the scalability and conductivity of the T-MPHN,
an inductive setting is applied to a 3D object recognition
problem, in which the newly-added unseen nodes are evaluated
during the testing process. We use the accuracy rate to be
the metric. For each reported accuracy rate, 10 random data
splits and 5 different parameter initialization (a total of 50
repetitions) are performed to compute the mean and the
standard deviation of the accuracy rates. We use the Adam
optimizer with a learning rate and the weight decay choosing
from {0.01,0.001} and {0.005,0.0005}, and tune the hidden
dimensions over {64, 128,256,512} for all methods.

A. Transductive Node classification

The task for tranductive node classification is to predict
the label associated with each node by taking the hypergraph
structure and node features as input. In this experiment, we
consider a transductive setting [31], in which the hypergraph
structure is assumed to be the same during the training
and testing processes. That is, we assume the testing node
connections are known during model training.

Datasets. We use five standard hypergraph datasets in the
academic network, which include two co-citation datasets
(Cora and DBLP) and three co-authorship datasets (Cora, Cite-
Seer and PubMed). The hypergraph structure is obtained by
viewing each paper as a node and each co-citation or co-author
relationship as a hyperedge. The node features associated with
each paper are the bag-of-words representations summarized
from the abstract of each paper, and node labels are classes
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of papers (e.g., algorithm, computing, etc). The raw datasets
[10] are further downsampled to smaller hypergraphs such
that the T-spectral and the T-spatial convolution HyeprGNNs
can be applied to compare with the proposed T-MPHN. The
descriptive statistics of these five hypergraphs are summarized
in Table L.

TABLE I

SUMMARY STATISTICS OF THE ACADEMIC NETWORK DATASETS
Statistic Cocitation Coauthorship
Cora  Citescer PubMed Cora DBLP

V] 83 87 89 59 65

€] 42 50 40 40 29
Feature Dimension D 1433 3703 500 1433 1425

Number of Classes 7 6 3 7 6

Setup and Benchmarks. To classify the labels of testing
nodes, we feed the whole hypergraph structure and node
features to the model. The training, validation and testing data
are set to be 50%, 25%, and 25% for each complete dataset,
respectively. Following the convention of HyperGNNs, we set
the number of layers for all HyperGNNs to be 2 to avoid
over-smoothing except for the T-spectral HyperGNN. For the
T-spectral HyperGNN, we use only one layer because it is
considered as a global approach that propagates to all nodes
within just one-step T-spectral convolution. In this experiment,
we choose regular multi-layer perceptron (MLP), HGNN [12],
HyperGCN [10], and HNHN [13] as our benchmarks since
these methods are originally designed for transductive settings.
Here HGNN and HyperGCN utilize hypergraph reduction
approaches to define the hypergraph adjacency matrix and
Laplacian matrix such that spectral convolutions can be built
up, whereas HNHN formulates a two-stage spatial propagation
rule using the incidence matrix.

Results and Discussion. The testing results of the five
academic networks are summarized in Table II. Overall,
the tensor-based approaches achieve satisfactory performance
compared to all the benchmarks, indicating the importance
of effectively utilizing high-order tensor representation for
learning hypergraphs. In particular, the T-spectral HyperGNN
constructed with the t-product shows the best results on all
these data examples except for the PubMed dataset. This
observation coincides with our theoretical anticipation that the
T-spectral model is the most robust approach as it contains
the richest high-order information. Built on the localized T-
spectral convolution, the T-spatial approach with only the first
frontal slice of the t-product unsurprisingly shows somewhat
reduced accuracy rates compared to the T-spectral approach,
but still achieves competitive results to the benchmarks. The T-
MPHN, on the other hand, maintains very competitive results
across all the datasets compared to the T-spectral approach
(e.g., for the PubMed dataset, the average accuracy rate is
even 7.68% higher than that of the T-spectral approach).
Comparing these two proposed approaches, we tend to view
the T-MPHN as the more capable one to model various
datasets and tasks; such capability is partially attributable
to the concatenation of the neighborhood embedding and
the central node embedding (that is, Concat([x,, mprm (,,)])),

which forms a “skip-connection” between the input and the
output of an aggregation step (see, e.g., GraphSAGE [31]).

In addition, it is worthwhile to note that the three proposed
HyperGNNs themselves already demonstrate an ablation study
among the full t-product, the simplified t-product (with only
the first frontal slice), and the node-wise message passing with
concatenation. Through the comparison between the T-spectral
and the T-spatial approaches, we can see that the full t-product
captures more information than only its first frontal slice; from
the T-spatial approach to the T-MPHN, we can further see
that such information loss can be partially compensated from
the concatenation of the neighborhood embedding and the
central node embedding. To gain additional insights into the
model architecture of the T-MPHN, we conduct an ablation
study in the next subsection to examine the adjacency value
computation and the cross-node interaction.

B. Ablation Study for T-MPHN

On the same academic networks, an ablation study is
designed by “turning off” the adjacency values in Eq. (18) and
the cross-node interactions in Eq. (21) separately and testing
their corresponding performance. We consider three modeling
scenarios: 1) the full T-MPHN model; 2) the T-MPHN model
with the cross-node interaction but not the adjacency values;
3) the T-MPHN model with the adjacency values but not
the cross-node interactions. In the second scenario, when the
adjacency values are “turned off”, we fill in all ones instead. In
the third scenario, when the cross-node interaction is “turned
off”, we replace the Hadamard product of node features with
their summation. The results of the ablation study are shown
in Fig. 6. We can observe that the performance of the two

model

Full T-MPHN
No Adj Values

No interactions

accuracy

Citeseer

PubMed
dataset

Cora-CA DBLP-CA

Fig. 6. Averaged accuracy of T-MPHN and its corrupted variations on the
five academic networks for the ablation study.

corrupted T-MPHNs is worsened compared to the full T-
MPHN, confirming its need of using the adjacency values and
the cross-node interaction operation.

C. Inductive 3D Object Recognition

In this experiment, we apply T-MPHN to one of the im-
portant tasks in computer vision: 3D object recognition. The
goal of 3D object recognition is to classify 3D objects into
different categories. To better adapt practical circumstances,
we assume the 3D object datasets are evolving in which
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TABLE II
AVERAGED TESTING ACCURACY (%, = STANDARD DEVIATION) ON FIVE ACADEMIC NETWORKS FOR TRANSDUCTIVE NODE CLASSIFICATION. THE TOP
THREE RESULTS ARE HIGHLIGHTED FOR EACH DATASET.

Method Cocitation Coauthorship
Cora Citeseer Pubmed Cora DBLP

MLP 48.23 +7.35 65.56 + 1.48 73.89 + 5.60 46.11 £ 8.35 76.15 + 7.26
HGNN 70.59 +1.22 73.89 + 8.98 82.22 +1.33 66.94 +6.51 93.08 +6.39
HyperGCN 35.29 +1.24 61.11 +1.53 76.11 +1.40 25.79 +6.43 25.38 +1.29
HNHN 69.41 + 9.04 74.44 + 9.69 77.22 +4.08 71.39 + 5.56 93.85 + 5.76
T-spectral 7159+ 343 78.33+8.03 86.67+1.18 75.29+5.59 96.10+3.16
T-spatial 69.17 + 7.58 76.11 £ 7.05 84.22 1 3.26 70.00 +6.01 94.62 £ 2.93
T-MPHN 70.83+559 77.22+6.44 93.33+4.48 72.78+4.44 95.38+2.10

unseen objects are added during testing. This setting is called
inductive learning [31], as opposed to the transductive setting
in the previous experiments. To create the inductive setting
from our static data, we follow HyperSAGE [17] to randomly
reserve 40% nodes as unseen nodes for testing, while 20%
and 40% nodes are used for regular training and validation,
respectively.

CNNs Extract Features
X € RNXP

Pictures From
360 Degrees

KNN Constructs Hypergraph G, K = 5

3D Objects

b GVCNN = B
F v /@) \
eatures I Vg

Concatenate l “ Vg

~ | e
MVCNN LA % /

\ V1o v/ v,

Features &= &

Fig. 7. The preprocessing steps for the 3D object recognition task.

Datasets. We employ two public datasets known as the
Princeton ModelNet40 dataset [32] and the National Taiwan
University (NTU) 3D model dataset [33]. On these two
datasets, each 3D object is viewed as a node, and the features
associated with each node are extracted using Group-View
Convolutional Neural Network (GVCNN) [34] and Multi-
View Convolutional Neural Network (MVCNN) [35] follow-
ing the experimental setting of [12]. The resulting feature
dimensions from the MVCNN and the GVCNN are 4096 and
2048, respectively, and we concatenate them to form the input
features for our study. To form the hypergraph structures for
these two datasets, we also follow the setup of [12] by using
the K-nearest neighbor algorithm with K' = 5 so that all
hyperedges of the constructed hypergraph have size 5. We
summarize the data preprocessing steps described above in
Fig. 7. The goal of the experiment is to predict the label
associated with each node (e.g., window, aircraft, shelf, etc).
The statistics of the two 3D object recognition datasets are
summarized in Table III.

TABLE III
SUMMARY STATISTICS OF 3D OBJECT RECOGNITION DATASETS
Statistic ModelNet40 NTU
V] 12311 2012
€] 24622 4024
Feature Dimension D 6144 6144
Number of Classes 40 67

Setup and Benchmarks. Since T-spectral and T-spatial
HyperGNNs are not applicable to inductive settings, we only
implement T-MPHN and compare its performance with the
benchmark inductive methods: MLP, HyperSAGE [17], and
UniSAGE [24]. The HyperSAGE defines the intra-edge and
inter-edge aggregations through a generalized mean function
M,=(=>", 2P)7, and we adopt p = 1 for its best results.
On the other hand, UniSAGE proposes a node-edge-node
propagation rule using mean and summation as the aggregation
functions at the first and the second layer, respectively. For all
models, we construct 2-layer neural networks.

Results. The average accuracy rates along with standard
deviations are reported in Table IV. It is apparent from the
table that the T-MPHN achieves consistently better results
than the other benchmark methods for both seen and unseen
nodes. A closer comparison between seen and unseen samples
shows that generalizing a trained model to unseen nodes is
not an easy task as all models show reduced accuracy rates.
For example, the HyperSAGE gives even lower accuracy than
that of the MLP for unseen nodes. By comparing the reduced
accuracy percentages from seen nodes to unseen nodes, we
also observe the desirable result that the T-MPHN shows the
smallest reduction among the four methods.

Effects of hyperparameters. While there are various hy-
perparameters tuned in the training process, the orders of hy-
pergraph at each layer of the T-MPHN can be flexibly treated
as hyperparameters. We find that decreasing hypergraph orders
(e.g., 5 — 3) are generally desirable in practice. This can be
viewed as a regularization of the over-smoothing problem. The
first layer spreading at the first-hop neighbors of target nodes
is naturally the most important one that requires a higher order,
while the second layer aggregating the second-hop neighbors
could use a lower order.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce tensor representations of hy-
pergraphs and derive hypergraph T-spectral convolution by
the tensor t-product. While hypergraph neural networks can
be built on the T-spectral convolution, the time and space
complexities are too large for some real-world applications.
To alleviate the time complexity, we localize the T-spectral
convolution to the T-spatial convolution by taking only the
first frontal slice of the T-spectral convolution. Furthermore,
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TABLE IV
ACCURACY (%, £ STANDARD DEVIATION) ON TWO 3D OBJECT RECOGNITION DATASETS. THE REDUCED PERCENT MEANS THE ACCURACY PERCENTAGE
REDUCTION FROM SEEN NODES TO UNSEEN NODES. THE BEST RESULTS ARE HIGHLIGHTED FOR EACH DATASET.

Method ModelNet40 NTU
Seen Unseen Reduced (%) Seen Unseen Reduced (%)
MLP 96.13 £ 2.17 88.42 & 1.41 8.72 94.51 +4.70 77.68 = 4.46 17.81
HyperSAGE 97.55 + 2.35 88.37 + 2.66 10.39 97.33 + 3.58 75.34 +1.04 22.59
UniSAGE 100.00 + 0.00 92.62 + 2.19 7.38 96.60 + 1.43 81.05 £ 0.82 16.10
T-MPHN 100.00 +£ 0.00 96.69 + 3.22 3.31 100.00 £ 0.00 86.34 +2.17 13.66

to avoid direct tensor usage and enable inductive learning,
we introduce the compressed adjacency tensor and propos-
ing the tensor-message passing hypergraph neural network
(T-MPHN), which can efficiently handle large hypergraphs
containing thousands of vertices as confirmed by the exten-
sive numerical experiment. The empirical results on the five
academic networks showed very competitive performance of
our proposed HyperGNNs in comparison to the other state-
of-the-art benchmarks. In addition, we show the effectiveness
of tensor representations and high-order interaction as the key
components of T-"MPHN by an ablation study. Some promising
extensions of our proposal include adding attention learning
module [22] with probabilistic models and establishing the
underlying equivalency with hypergraph denoising problem,
and we leave these interesting topics to future studies.
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