
T-HyperGNNs: Hypergraph Neural Networks Via Tensor
Representations
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY 4.0

SUBMISSION DATE / POSTED DATE

31-01-2023 / 05-02-2023

CITATION

Wang, Fuli; Pena-Pena, Karelia; Qia, Wei; Arce, Gonzalo (2023): T-HyperGNNs: Hypergraph Neural
Networks Via Tensor Representations. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.21984797.v1

DOI

10.36227/techrxiv.21984797.v1

https://www.techrxiv.org
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.36227/techrxiv.21984797.v1


JOURNAL OF IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEM, VOL. 14, NO. 8, AUGUST 2021 1

Supplementary Material: T-HyperGNNs:
Hypergraph Neural Networks Via Tensor

Representations
Fuli Wang, Member, IEEE, Karelia Pena-Pena, Member, IEEE, Wei Qian, Gonzalo R. Arce, Life Fellow, IEEE

APPENDIX A
DEFINITION OF T-PRODUCT

Definition 3 (Tensor T-product [18]): The T-product of two
3rd order tensors X 2 RN1⇥N2⇥N3 and Y 2 RN2⇥N4⇥N3 is
the tensor Z 2 RN1⇥N4⇥N3 computed as

Z = X ⇤ Y = fold(bcirc(X ) · unfold(Y)) (27)

= fold

0

BBB@

2

6664

X
(1)

X
(N3) · · · X

(2)

X
(2)

X
(1) · · · X

(3)

...
...

. . .
...

X
(N3) X

(N3�1) · · · X
(1)

3

7775
·

2

6664

Y
(1)

Y
(2)

...
Y

(N3)

3

7775

1

CCCA
,

(28)

where the operator bcirc(X ) converts the set of frontal
slices of the tensor X into a block circulant matrix and
unfold(Y) stacks vertically the set of frontal slices of Y
into a N2N3 ⇥ N4 matrix. The operator fold(·) reverses
this process, fold(unfold(X )) = X . Since circulant matrices
are diagonalized by the discrete Fourier transform, the T-
product can be computed efficiently in the Fourier domain as
explained in detail in [18]. Using MATLAB notation, let X̂ :=
fft(X , [], 3) denote the tensor obtained by applying the fast
Fourier transform (FFT) along each tubal scalar of X . Thus,
the T-product of X 2 RN1⇥N2⇥N3 and Y 2 RN2⇥N4⇥N3 can
be alternatively computed as

Z = X ⇤ Y := ifft({X̂(k)
Ŷ

(k)}N3
k=1, [], 3), (29)

where ifft is the inverse FFT. The T-product can be easily
extended to high-order tensors in a recursive manner[36]. For
the M th-order tensors X 2 RN1⇥N2⇥N3⇥···⇥NM and Y 2
RN2⇥L⇥N3⇥···⇥NM , their T-product Z 2 RN1⇥L⇥N3⇥···⇥NM

is computed recursively as

Z = X ⇤ Y = fold(bcirc(X ) · unfold(Y)) (30)

= fold

0

BBB@

2

6664

X (1) X (NM ) · · · X (2)

X (2) X (1) · · · X (3)

...
...

. . .
...

X (NM ) X (NM�1) · · · X (1)

3

7775
⇤

2

6664

Y(1)

Y(2)

...
Y(NM )

3

7775

1

CCCA
,

(31)

where X (k) and Y(k) are (M � 1)-order tensors formed from
flattening the M th order, and it can be done recursively to the
following (M � 1)th, (M � 2)th, and so on. Each of these
successive flatten operations thus involves a T-product of one
order less until the base case of the 3rd-order tensors.

APPENDIX B
SYMMETRIZATION OF TENSORS.

In order to obtain symmetric block circulant matrices in
the t-product, we need to symmetrize the adjacency tensor
and the hypergraph signal tensor. Therefore, we define a
symmetrization operator sym(A) that generates a symmetric
version As 2 RN⇥N⇥(2N+1) of A 2 RN⇥N⇥N , by adding a
matrix of zeros 0N⇥N as the first frontal slice, dividing by 2,
and reflecting the frontal slices of A along the third dimension
as

As = sym(A) = fold

0

BBBBBBB@

2

66666664

0N⇥N
1
2A

(1)

1
2A

(2)

...
1
2A

(2)

1
2A

(1)

3

77777775

1

CCCCCCCA

. (32)

Now, if we let Ns = 2N + 1, for a higher-order tensor
A 2 RNM

, its symmetric version is a M th-order tensor
As 2 RN⇥N⇥Ns⇥···⇥Ns obtained by recursively appending
a (M � 1)th-order tensor of zeros O 2 RN(M�1)

at the front,
dividing by 2, and reflecting the (M �1)th-order tensors A(l)

along the last dimension as

As = sym(A) = fold

0

BBBBBBB@

2

66666664

O
1
2sym(A

(1))
1
2sym(A

(2))
...

1
2sym(A

(2))
1
2sym(A

(1))

3

77777775

1

CCCCCCCA

. (33)

When applied to the hypergraph signal tensor and the weight
tensor, we obtain Xs and Ws, respectively. Notice that this
operation is reversible.

APPENDIX C
DEFINITION OF NORMALIZED ADJACENCY TENSOR

The normalized adjacency matrix of a graph generally can
be defined in non-symmetric or symmetric manner. Similar to
the matrix setting, we define the normalized adjacency tensor
in two ways.

Definition 4 (Normalized adjacency tensor [37]): For a
hypergraph G without any isolated vertex, the non-symmetric



JOURNAL OF IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEM, VOL. 14, NO. 8, AUGUST 2021 2

normalized adjacency tensor Anorm 2 RNM

of the hyper-
graph is a stochastic tensor defined as: for any hyperedge
ek = {vk1 , vk2 , ..., vkc} 2 V(H) of cardinality c  M ,

ãp1p2...pM =
c

↵

1

d(vp1)
, (34)

where ↵ and the indices are defined in Eq. (1), and d(vp1)
is the degree of vertex p1. Alternatively, the normalized
adjacency tensor can also be defined by multiplying M -
th square root along each mode, i.e., for any hyperedge
ek = {vk1 , vk2 , ..., vkc} 2 V(H) of cardinality c  M ,

ãp1p2...pM =
c

↵

MY

j=1

1
M
p
d(vpj )

. (35)

These two normalized adjacency tensors have the same eigen-
values [37], so for notation simplicity, we refer to the definition
in Eq. (34) as normalized adjacency tensors and use the
notation Anorm to denote the normalized adjacency tensors
(and Lnorm as the normalized Laplacian tensors).

APPENDIX D
POOF OF PROPOSITION 1 AND 2.

Proof. As pointed out in Eq. (13), from a node-wise perspec-
tive, the aggregation or shifting in the T-spatial convolution
Y := (Anorm

s ⇤ Xs)(1) is equivalent to summing up all
the connected cross-node interactions, which only involves in
neighbors of the target node. By Proposition 1 and Eq. (13), we
know that the T-spatial convolution only aggregates neighbor-
ing information for each node, which means that no matter
what is the ordering of nodes, the output of the T-spatial
convolution is the same for each node. In other words, even
without the ordering of nodes, the T-spatial convolution can
be performed by the two-step message-passing rule showed
in Eq. (22) and Eq. (23), which confirms that the T-spatial
convolution is permutation invariant. ⇤

APPENDIX E
PROOF OF THEOREM.4.1

Proof. The proof is directly inspired by the Stirling numbers
of the second kind [38], which states the number of ways
to partition a set of N labelled objects into k nonempty
unlabelled subsets. Denote the Striling numbers of the second
kind as S(N, k), the explicit formula is given by

S(N, k) =
1

k!

kX

i=0

(�1)i
✓
k

i

◆
(k � i)N . (36)

In the definition of the adjacency tensor, we have a set of M
labelled modes, and would like to partition it into |e| nonempty
labelled subsets, so from the Stirling numbers of the second
kind, we obtain

↵ = S(M, |e|)⇥ k! =

|e|X

i=0

(�1)i
✓
|e|
i

◆
(|e|� i)M . (37)

⇤

APPENDIX F
PROOF OF THEOREM 4.2

Proof. From the shifting operation in the T-spatial convo-
lution (Eq. (13)), we can see there are three steps associated.
First, considering the sparsity of the adjacency tensor, it is
clear that only nonzero values of aiji3···iM will be added, this
is equivalent to finding the M th-order neighborhood of a node
as we defined in Def. 2. Then for different hyperedges, we
have different adjacency values that can be computed based
on Theorem 4.1. Thirdly, the cross-node product xjdi3···iM is
defined through the CNI in the message passing (see Eq. (21)).
All three steps together finish the proof. ⇤

APPENDIX G
TENSOR TRANSPOSE

The transpose of a tensor, under the t-algebra, can be defined
following the symmetrization above. Similarly, the transpose
is defined recursively with the three-order tensor as the base
case. The transpose of a three-order tensor A 2 RN1⇥N2⇥N3 ,
denoted by AT 2 RN2⇥N1⇥N3 , is obtained by transposing
each of the frontal slices of A, and then reversing the order
of the transposed frontal slices from 2 through N3. For a
M th-order tensor A 2 RN1⇥N2⇥···⇥NM , its transpose AT 2
RN2⇥N1⇥···⇥NM is obtained by recursively transposing each
sub-order tensor A(m) for m = 1, 2, ...,M and then reversing
the order of the A(m)’s from m = 2 to m = M , i.e.,

AT = fold

0

BBBB@

2

66664

A(1)T

A(M)T

...
A(2)T

3

77775

1

CCCCA
. (38)

As a result, A = AT if A is a symmetrized tensor.

APPENDIX H
DEVIATION OF HYPERGRAPH SPECTRAL CONVOLUTION

In the main body, we introduced the T-spectral convolution
directly and ignored the relationship between convolutions and
the hypergraph Fourier space, in which the convolution theo-
rem [39] is originally defined. Since designing various spectral
filters such as polynomial[29], [30], [40], and ARMA[41], [42]
leads to different approaches, which widens the design space
of convolutional hypergraph neural networks. Here, in this
appendix, we show how the T-spectral convolution is derived
from the spectral space.

A. Construct Spectral Space
The eigendecomposition of hypergraph Laplacian serves

as the basis of hypergraph spectral space. We define the
hypergraph Laplacian as a difference operator.

Definition 5 (Laplacian Tensor): Given a hypergraph G with
N nodes and m.c.e(G) = M , the Laplacian tensor is defined
as the

L = D �A 2 RNM

, (39)

where A is the adjacency tensor and D is a super-
diagonal degree tensor with degree of node vi on the



JOURNAL OF IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEM, VOL. 14, NO. 8, AUGUST 2021 3

corresponding diagonal entry di···i. Particularly, di···i =PN
j1,j2,...,jM�1=1 aij1j2...jM�1 . To ensure a bounded spectrum

of the Laplacian tensor, the normalized hypergraph Laplacian
tensor is furthered defined as

Lnorm = I �Anorm, (40)

where I is a super-diagonal identity tensor with all diagonal
entries as 1, and Anorm is the normalized adjacency tensor.

Moving on now to consider the decomposition of the Lapla-
cian tensor, we carefully choose the T-eigendecomposition that
offers better insights perfectly analogous to the characteristics
of the eigendecomposition in the traditional graph spectral
convolution theorem [30]. Given the normalized Laplacian ten-
sor Lnorm 2 RNM

of an M th order hypergraph, we first mod-
ify it to its symmetric version Lnorm

s 2 RN⇥N⇥(2N+1)(M�2)

according to the symmetries operation in Appendix B. For
notation simplicity, we let Ns = (2N +1). It follows that the
T-eigendecomposition of Lnorm

s is expressed as

Lnorm
s = V ⇤⇤ ⇤ VT , (41)

where V 2 RN⇥N⇥N(M�2)
s is an orthogonal tensor[36],

and ⇤ 2 RN⇥N⇥N(M�2)
s is a f-diagonal tensor whose

frontal slices are diagonal matrices[36]. A visualization of T-
eigendecomposition for a 3rd-order Laplacian tensor is shown
in Fig. 8. The diagonal components in ⇤ are in a decreasing

Fig. 8. Visual illustration of the T-eigemdecomposition for a 3rd-order
Laplacian Tensor.

order [36], which generalizes the concept of frequency of
graphs to hypergraphs.

B. Hypergraph Spectral Convolution
Based on convolution theorem [39], the hypergraph spectral

convolution between two hypergraph signals is then defined as
the element-wise product of their Fourier transforms.

Definition 6 (Hypergraph convolution): The hypergraph
spectral convolution ?G between a filter Hs 2 RN⇥1⇥N(M�2)

s

and a hypergraph signal Xs 2 RN⇥1⇥N(M�2)
s is defined as

Hs ?G Xs = V ⇤ ((VT ⇤Hs)� (VT ⇤ Xs)), (42)

where ⇤ is the T-product defined in Appendix A, � is
the element-wise Hadamard product, and V is the decom-
posed orthogonal tensor for Lnorm

s . Let Ĥs = UT ⇤ Hs 2
RN⇥1⇥N(M�2)

s be the Fourier transform of the filer Hs, then
the hypergraph convolution is equivalent to

Hs ?G Xs = V ⇤ (Ĥs � (VT ⇤ Xs)) (43)

= V ⇤ (diag(Ĥs) ⇤ VT ⇤ Xs), (44)

where diag(Ĥs) =

2

64
ĥ1 · · · 0

. . .
0 · · · ĥN

3

75 2 RN⇥N⇥N(M�2)
s , and

ĥi 2 R1⇥1⇥N(M�2)
s ’s are tuples of Ĥs. The Fourier trans-

formed filter Ĥ itself can be viewed as a non-parametric
spectral filter. However, a filter created in this non-parametric
manner has little to no dependence on the graph’s structure
and might not satisfy many of the convolution’s desired
properties. Such filters, for instance, may propagate to any
node arbitrarily. A general and natural practice is to apply
filtering on frequency components of the Laplace, leading to
hypergraph spectral convolution.

Definition 7 (Hypergraph Spectral Convolution): Given
the frequency representation ⇤ of a hypergraph, parameterize
the filter h : R ! R as h(⇤), then the hypergraph spectral
convolution is defined as

Hs ?G Xs = V ⇤ h(⇤) ⇤ VT ⇤ Xs (45)
= h(Lnorm

s ) ⇤ Xs (46)

with the frequency response h(⇤) =

2

64
h(�1) · · · 0

. . .
0 · · · h(�N )

3

75.

By constructing hypergraph spectral convolution via a fre-
quency filter, the resulting convolution commutes with the
Laplacian tensor, which is localized in space. [40]. In this way,
different filters h(⇤) can be designed according to specific
tasks.

C. Connection to Spectral T-HGCN
The formulation of our T-spectral convolution is indeed

derived from a recursive polynomial parametrization of fre-
quencies, in particular, Chebyshev polynomial. The reason to
use recursive polynomial has two folds: 1) recursive formu-
lation is computationally efficient; 2) such recursion can be
naturally modeled by cascading layers of neural networks,
which is especially appropriate for developing hypergraph con-
volutional neural network. Recall that the recursive Chebyshev
polynomial of order k is Tk(x) = 2xTk�1(x)�Tk�2(x), with
T0 = 1, T1 = x. A spectral filter thus can be designed as

h✓(⇤) =
K�1X

k=0

Tk(⇤̃), (47)

where ✓k is the filter weight for the kth order of the Chebyshev
polynomial, and Tk(⇤̃) 2 RN⇥N⇥NM�2

s is the Chebyshev
polynomial of order k evaluated at ⇤̃ = 2/�max⇤ � INs .
�max is the maximum value of eigentuples of Lnorm, and
INs 2 RN⇥N⇥N(M�2)

s is the symmetric identity tensor. It
was proved in [37] that the normalized adjacency tensor
Lnorm is with the largest eigenvalue �max = 2, such that
⇤̂ = ⇤ � INs has eigenvalues within the range [�1, 1].
Applying the truncated order K expansion of the Chebyshev
polynomial to the spectral convolution in Eq. (45), we then
obtain

Hs ?G Xs =
KX

k=0

✓kV ⇤ Tk(⇤̂) ⇤ VT ⇤ Xs. (48)



JOURNAL OF IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEM, VOL. 14, NO. 8, AUGUST 2021 4

Since orders higher than 1 can be performed by stacking neural
network layers, we follow GCN [29] and restrict the order of
the Chebyshev polynomial to K = 1, leading to the spectral
convolution

Hs ?G Xs = ✓0Xs + ✓1V ⇤ (⇤� INs) ⇤ VT ⇤ Xs (49)
= ✓0Xs + ✓1(Lnorm � INs) ⇤ Xs (50)
= ✓0Xs � ✓1Anorm

s ⇤ Xs. (51)

Unifying the two parameters ✓0 and ✓1 as w = ✓0 = �✓1, the
convolution is further simplified as

Hs ?G Xs = w(INs +Anorm
s ) ⇤ Xs. (52)

where the (INs +Anorm) can be treated as an adjusted hyper-
graph adjacency tensor with self loop of each node. Depending
how important are the self features for the downstream task,
one can also remove the self loop as Hs?GXs = wAnorm

s ⇤Xs,
which can be interpreted as inferring central nodes using their
own neighbors, and the operation Anorm

s ⇤ Xs is in deed a
hypergraph signal shifting. When the hypergraph signal is
in D-dimension, i.e., Xs 2 RN⇥D⇥N(M�2)

s , and the desired
convoluted hypergraph signal Ys is in d0-dimension, i.e., Ys 2
RN⇥D0⇥N(M�2)

, the weights will be characterized by a bank
of DD0 parameters instead of a single value w. In this way, the
spectral convoltution is given by Ys = Anorm

s ⇤Xs⇤Ws, where
Ws 2 RD⇥D0⇥N(M�2)

s is the weight tensor with DD0 weights
parameterized in the first frontal slice and the remaining frontal
slices from 2 throughout 2N+1 are all zeros, which is exactly
the T-spectral construction in Eq. (6).


	T-HyperGNNs: Hypergraph Neural Networks Via Tensor Representations

