Visualisation of exhaled breath metabolites reveals distinct diagnostic signatures for acute cardiorespiratory breathlessness
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   Abstract

Acute cardiorespiratory breathlessness accounts for 1 in 8 of all emergency hospitalisations. Early, non-invasive diagnostic testing is a clinical priority that allows rapid triage and treatment. Here, we sought to discover and replicate diagnostic breath volatile organic compound (VOC) biomarkers of acute cardiorespiratory disease and understand breath metabolite network enrichment in acute disease, with a view to gaining mechanistic insight of breath biochemical derangements. We collected and analysed exhaled breath samples from 277 participants presenting with acute cardiorespiratory exacerbations and aged matched healthy volunteers. Topological data analysis (TDA) phenotypes differentiated acute disease from health and acute cardiorespiratory exacerbation subtypes [acute heart failure, acute asthma, acute Chronic Obstructive Pulmonary Disease (COPD) and community-acquired pneumonia]. A multi-biomarker score (101 breath biomarkers) demonstrated good diagnostic sensitivity and specificity (≥ 80%) in both discovery and replication sets and was associated with all-cause mortality at 2 years. In addition, VOC biomarker scores differentiated metabolic subgroups of cardiorespiratory exacerbation. Louvain clustering of VOCs coupled with metabolite enrichment and similarity assessment revealed highly specific enrichment patterns in all acute disease subgroups, for example selective enrichment of correlated  C5-7 hydrocarbons and C3-5 carbonyls in heart failure and selective depletion of correlated aldehydes in acute asthma. This study identified breath VOCs that differentiate acute cardiorespiratory exacerbations and associated subtypes and metabolic clusters of disease-associated VOCs.
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One sentence summary
Exhaled VOCs can distinguish acute cardiorespiratory exacerbations and associated subtypes and map underlying metabolic clusters.
























1. Introduction


Breathlessness due to cardiorespiratory diseases accounts for more than 1 in 8 of all emergency admissions to hospital (1). Despite the same presenting symptom, the aetiology of acute breathlessness is highly varied, with diverse disease trajectories and therapeutic options. Diagnostic evaluation of acute breathlessness is heavily reliant on investigations such as blood-based biomarkers [e.g. C-reactive protein (CRP), B-type natriuretic peptide] and radiological procedures. These biomarkers have clinical utility primarily in patients with single pathologies, but have poor discriminatory power in patients with multifactorial presentations of acute breathlessness and are particularly challenging to interpret in the context of pre-admission treatment exposure (e.g. antibiotics for pneumonia and admission CRP values) (2).
Breathomics, the characterisation of volatile organic compounds (VOCs) in exhaled breath, enables the evaluation of diagnostic and prognostic biomarkers in acute breathlessness, directly from the lung as well as incorporating metabolites from the systemic circulation (3). The assessment of exhaled, low-molecular weight biochemicals, chemically classified as VOCs, has been presented as a new paradigm for the development of rapid, non-invasive diagnostic and prognostic biomarkers. However, the scarcity of robustly powered clinical studies, combined with a lack of standardisation in sample collection and analysis as well as data and chemometric processing, have delayed further translation of this technology to clinical settings.
Notwithstanding these challenges, the potential of breathomics is becoming increasingly recognised in research and therapeutic development in respiratory diseases. The emergence of powerful high-resolution mass spectrometry and multidimensional separation technologies such as comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GCxGC-MS), which provides visual readouts of breath-based biomarkers (4, 5), has facilitated research advances. Although chemometric analyses play a vital role in this field, the enhanced dimensionality of GCxGC-MS data enriches established chemometric and imaging-based characterisation methods for visualising, extracting and quantifying VOC markers from complex and previously unresolved matrices.
Herein, we present a real-world, prospective study of acutely unwell hospitalised patients presenting with breathlessness due to severe exacerbations of cardiorespiratory aetiology (asthma, COPD, heart failure or pneumonia) and healthy controls. By isolating and visualizing exhaled VOCs with GCxGC-MS, coupled with rigorous clinical phenotyping, exhaled breath metabolites were shown to have high diagnostic accuracy for severe cardiorespiratory exacerbations (including in the presence of diagnostic uncertainty) and to be dysregulated across several pertinent volatile classes in different clinical subtypes of cardiorespiratory exacerbation. This research provides pivotal evidence that shows how breath biomarker platforms may be used in acute care and demonstrates the potential for translation of this technology into a real-world clinical setting.









2. Results
2.1.  Participant demographics and clinical characteristics
As part of the East Midlands Breathomics Pathology Node (EMBER), exhaled breath from 277 participants recruited from acutely breathless hospitalised patients and matched healthy controls was sampled (Figure 1). Sample size calculations are detailed in (Methods section ‘sample size estimation’ and Table S1). Breath samples were analysed to identify dysregulation of metabolic classes in cardiorespiratory disease and investigate whether exhaled VOC profiles could predict acute cardiorespiratory exacerbations despite diagnostic uncertainty, and thus have a potential role in phenotyping acute cardiorespiratory breathlessness (Fig. S1).  Participants’ mean (SD) age was 60.8 ± (16.8) years, 51% were males, 30 patients required supplemental oxygen on admission and the mean admission modified early warning score (mEWS-2 score) was 2. The cohort was made up of patients presenting with the following exacerbation subtypes: acute severe asthma (n= 65), acute severe COPD (n= 58), acute severe heart failure (n=44), community acquired pneumonia (n=55), and healthy volunteers (n=55), recruited between May 2017 and December 2018. Participants’ demographic and clinical characteristics are summarised in (Table 1). Breath samples were collected using a ReCIVA device, adopting a standardised sampling and gated protocol that enriches alveolar volatiles (6), and analysed using thermal desorption (TD) coupled to comprehensive two-dimensional gas chromatography (GCxGC) with dual flame ionisation detection (FID) and mass spectrometry (MS).

Fig. 1. Study Consort diagram. 
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Legend: Consort diagram outlining the acute study recruitment and number of analysable                                  GCxGC-MS breath samples.


2.2. Unbiased discovery using TDA identifies breath markers of acute disease
Topological data analysis is an unsupervised machine-learning tool used for the analysis of large-scale, high-dimensional, complex datasets. It is highly sensitive to patterns that are often overlooked by other data reduction tools like Principal Component Analysis (PCA) (7).
TDA is a well-established data analytic technique for unbiased data driven discovery based phenotyping (7). TDA has proven to be a powerful tool, yielding critical insights in the prognostic phenotyping (8), cancer imaging biomarker stratification (9), disease classification using pathology biomarkers (10), omics based cancer phenotyping (11). Several publications have reported the use of TDA in the metabolomics field, for example, unbiased lipid phenotyping of lung epithelial lining fluid (12).
To achieve an unbiased discovery of exhaled VOCs predictive of the acute disease groups, patients were block randomised post-hoc into a discovery cohort of 139 participants (acute asthma n= 33, acute COPD n= 29, acute heart failure n=22, community acquired pneumonia n=28, healthy volunteers n=27), and a replication cohort of 138 participants (acute asthma n= 32, acute COPD n= 29, acute heart failure n=22, community acquired pneumonia n=27, healthy volunteers n=28). Randomisation allowed internal replication of diagnostic breath biomarkers, whilst adjusting for relevant confounders. Details of the randomisation and further clinical characteristics of the cohorts can be found in (tables S2-S3). Chemometric analysis and quantification of VOCs was performed blinded to clinical diagnosis by two analytical chemists (MW and RC), with biostatistical analyses linking subject identifier to chemometric biomarkers performed following data lock by an independent statistician (MR).
805 unique chromatographic features (peaks) were detected across the breath sample set using TD-
GCxGC-FID/MS, with 404 features detected on average in each sample. Topological data analysis (TDA) applied to these 805 chromatographic features yielded topologically distinct networks that distinguished underlying causes of acute breathlessness whilst anchoring to corresponding blood-based biomarkers in both the discovery and replication cohorts (Figure 2). Specifically, healthy volunteers and patients with acute heart failure formed distinct topological groupings in both discovery and replication populations. Respiratory admissions due to acute asthma, acute COPD and pneumonia formed a topological continuum albeit within distinct regions of a single network in the replication cohort; similar findings were observed in the discovery cohort, with the exception of acute asthma forming a distinct grouping.



















Fig. 2. Topological data analysis (TDA) representing the various acute disease groups annotated by blood biomarkers.
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Legend: Each circle or ‘node’ in the TDA graph represents a subject or group of subjects. Similar subjects are grouped together in the same node and the relative similarity of the subjects is represented by the proximity of the nodes. The size of each node is determined by the number of subjects within it. A: Visual mapping of the acute disease groups in the discovery cohort (n=139), based on the discriminatory 805 features and coloured by proportion of acute COPD exacerbations in each node. B: The network is colour coded by the average values of CRP in each node in the discovery cohort (n=139). Higher CRP values corresponded topologically with the COPD and pneumonia patients. C: The network is colour coded by the average values of BNP in each node in the discovery cohort (n=139). Higher BNP values corresponded topologically with the heart failure patients. D: The network is coloured by proportion of acute COPD exacerbations in each node in the replication cohort (n=138). In replication cohort, Pneumonia and COPD exacerbation subjects occupied polar ends of the same TDA network. E: The networks are coloured by the average values of CRP in each node. High CRP values corresponded topologically with the pneumonia subjects. F: The networks are coloured by the average values of BNP in each node. High BNP values corresponded topologically with the heart failure subjects.

2.3. Breath biomarker clinical prediction scores
To create a concatenated list of exhaled breath biomarkers suitable for diagnostic application, we applied a threshold of 80% feature-presence per patient group, below which features were removed to effectively reduce the number of features used in subsequent models with more than 20% of zero values for peak areas (fig. S2). We found that the zero-valued peak areas were randomly distributed across the disease groups in all but seven features. The exclusion of the seven features where there was some evidence that zero-valued peak areas were not randomly distributed across the disease groups did not alter the results of the regression models. 
Further filtering steps using least absolute shrinkage and selection operator (LASSO) and elastic net regression methods, followed by removal of 38 peaks that were considered to be chemical and material artefacts (e.g., siloxanes), generated a final panel of 101 exhaled breath volatiles (tables S4-S8). Therefore, the analysis plan permitted the identification of a rich and chemically diverse response in the VOC profile as opposed to only a handful of individual VOC markers and afforded the generation of biomarker scores. The data was examined for batch effects and was adjusted accordingly. Batch effects detected related to major instrument maintenance events, which occurred twice creating three groups. No contributions were observed based on the ReCIVA device used, operator, time of day, or volume of breath sample collected, most likely nullified by the simultaneous and consecutive recruitment across all cohorts throughout the study to reduce potential biases (fig. S3-4). 

The value of the generated acute disease VOC biomarker score was found to be higher in acute cardiorespiratory patients compared to healthy volunteers (Figure 3A). For the discovery cohort (n=139), the acute disease VOC biomarker score effectively differentiated participants with acute cardiorespiratory exacerbations from age-matched healthy controls with an area under the curve (AUC) of 1.00 (1.00-1.00) P < 0.0001, sensitivity 1.00 (1.00-1.00), specificity (1.00-1.00), positive predictive value (PPV) 1.00 (1.00-1.00), negative predictive value (NPV) (1.00-1.00). For the replication cohort (n=138), the same VOC biomarker score differentiated participants with acute disease from healthy controls with AUC 0.90 (0.83-0.96) P <0.0001, sensitivity   0.88 (0.82-0.94), specificity 0.79 (0.63-0.94), PPV of 0.95 (0.91-0.99), NPV of 0.51 (0.36-0.65) (Figure 3B). 

To evaluate the impact of potential confounders on our model classification, we re-ran our statistical models, adjusting for the following factors: (i) smoking status (current, ex-smoker or never smoker); (ii) time between hospital admission and the acquisition of the breath samples, as this time period is often the period within which acute treatments are delivered; (iii) the modified early warning score 2 (mEWS-2), which is a composite acuity score combining  respiratory rate, oxygen saturations, systolic blood pressure, heart rate, degree of consciousness, confusion and body temperature for each patient; and (iv) prior exposure to either antibiotics or steroids for cardiorespiratory illness in the fortnight prior to the index admission. We observed improved diagnostic accuracy in the replication cohort [AUC 1.00 (1.00-1.00), P <0.0001] when considering these adjustments, which would be expected with the inclusion of acuity markers for the classification of acute illness.
Following a clinical adjudication process (Methods: section ‘clinical adjudication’), each patient was assigned a degree of clinical diagnostic uncertainty using a 100-mm visual analogue scale (VAS) at the point of clinical triage (Figure 3C). Diagnostic uncertainty was defined as patients with values higher than or equal to the upper quartile of 20 mm on the VAS. The acute disease VOC biomarker score was able to identify acute disease with an AUC 0.96 (0.92-0.99) P <0.0001, sensitivity 0.90 (0.82-0.97), specificity 0.92 (0.85-0.99), PPV 0.93 (0.86-0.99), NPV 0.89 (0.81-0.97) (Figure 3D). 
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Description automatically generated]Fig. 3. Diagnostic accuracy of an acute VOC biomarker score


Legend: A Scatter plot demonstrating significant difference between breath VOC biomarker score values in acute cardiorespiratory patients compared to healthy volunteers. The black horizontal line within the scatter plot represents the median value of the biomarker score. Mann Whitney test *P < 0.0001. B: Receiver operating characteristic (ROC) curve of participants in the discovery [black line - AUC 1.00 (1.00-1.00)] and replication [blue line - AUC 0.89 (0.82-0.95)] cohorts P < 0.0001. C: Histogram showing the number of patients with higher diagnostic uncertainty (blue bars with values > upper quartile value of 20 mm). D: ROC curve assessing the discriminatory power of exhaled breath VOCs in participants with higher diagnostic uncertainty. AUC 0.96 (0.92- .99) P < 0.0001









2.4. Exhaled breath biomarker disease-specific scores correlate with blood-based biomarkers and admission observations
As previously described, VOC biomarker scores were generated for each of the acute disease subgroups and healthy subjects without cardiorespiratory breathlessness. There was a weak but positive correlation in the combined discovery and replication cohorts (n=277) between the VOC subgroup scores for pneumonia and CRP (n=277, r=0.33, P <0.0001) and acute heart failure and Brain Natriuretic Peptide (BNP) (n=277, r=0.33, P <0.0001), in addition to a negative correlation between the healthy-state VOC score and CRP and BNP (n=277, r= -0.15, P <0.0001, and -0.21, P <0.0001 respectively) (Figure 4A). Correlations were also identified between the acute disease VOC score and vital observations carried out during triage (Figure 4B). 

   The acute disease VOC score was also associated with 2-year all-cause mortality, but not with the risk of 60-day readmission (fig. S5).
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Description automatically generated]Fig. 4. Correlation of VOC biomarker score with blood biomarkers and disease acuity. 
Legend: A: Pearson’s correlation of disease-specific VOC scores and blood-based biomarkers. Pearson correlation demonstrating the positive and negative correlations between breath VOC scores and blood-based biomarkers. *P < 0.05. B: Pearson’s correlation of disease-specific VOC scores and admission observations. Pearson correlation between the VOC biomarker score and admission vital signs. VAS: Visual Analogue Scale (100 mm), participants were asked to rate their breathlessness on a 100 mm VAS on admission.







2.5. Diagnostic accuracy of breath biomarker scores in cardiorespiratory disease subgroups
A multinomial regression model using elastic net regularization was fitted to the matrix of 101 breath biomarkers with the 10-fold cross validation repeated 1,000 times. Linear combinations of the most stable features from the multinomial regression model fitted to the 101 biomarkers formed a set of scores for predicting probability of belonging to the different disease groups (acute asthma, acute COPD, pneumonia, heart failure or healthy volunteers). 
The overall classification accuracy for the statistical model generated from 101 breath biomarkers was assessed by comparing the balanced accuracy of model trained using the true class labels versus the balanced accuracy of the same model tested using randomly shuffled class labels. This process was repeated 1,000 times. The balanced accuracy is reported in (fig. S6A) the acute disease biomarker score in the discovery cohort, (fig. S6B) the acute disease biomarker score in the replication cohort and (fig. S6C) the multinomial biomarker scores for the five subgroups acute asthma, acute COPD, heart failure, pneumonia, and healthy volunteers. NB: replication was not evaluated in the subgroups as the study was not powered to do this.
 For the pooled cohort (n = 277), the overall classification accuracy using all five biomarker scores was 0.72, 95% CI (0.67 - 0.77). The balanced accuracy for acute asthma was 0.83, for acute COPD 0.78, for heart failure 0.80, for community acquired pneumonia 0.79, and for healthy controls was 0.93 (fig S5). 
Further comparative ROC analyses were performed based upon the observed separation of asthma from pneumonia/COPD acute groups, and heart failure from other acute exacerbation groups in the discovery and replication TDA analyses. The diagnostic AUC accuracy of the asthma biomarker score against pooled Pneumonia and COPD cohorts was AUC: 0.70 (0.62-0.78) P <0.0001, sensitivity 0.72 (0.64-0.83), specificity 0.64 (0.55-0.73), positive predictive value (PPV) 0.54 (0.43-0.64), negative predictive value (NPV) 0.80 (0.72-0.88). Receiver operating curve (ROC) analysis to assess the diagnostic value of the heart failure biomarker score against other acute disease groups was AUC: 0.78 (0.70-0.86) P <0.0001, sensitivity 0.77 (0.64-0.89), specificity 0.71 (0.64-0.78), PPV 0.40 (0.29-0.50), NPV 0.92 (0.88-0.97) (fig. S7).
The median values of the exhaled breath VOC scores and their distribution across disease subgroups are detailed in (fig. S8). Figure S9 is a Venn diagram demonstrating the distribution of the final panel of 101 exhaled breath biomarkers across the different disease groups.

[bookmark: _Hlk103813737]We also ran our models adjusting for the following factors: (i) smoking status (current, ex-smoker or never smoker; (ii) time between hospital admission and the acquisition of the breath samples, as this time period is often the period within which acute treatments are delivered; (iii) the modified early warning score 2 (mEWS-2), which is a composite acuity score combining  respiratory rate, oxygen saturations, systolic blood pressure, heart rate, level of consciousness and confusion for each patient; and (iv) prior exposure to either antibiotics or steroids for cardiorespiratory illness in the fortnight prior to the index admission. We observed only marginally improved diagnostic accuracy; acute asthma - AUC 0.88 (0.831,0.933), P <0.0001, COPD - AUC 0.86, (0.808,0.918), P <0.0001, heart failure - AUC 0.91 (0.849,0.969) P <0.0001, community acquired pneumonia – AUC 0.91 (0.863,0.953), P <0.0001, and healthy controls AUC 1.0, suggesting limited confounding influence of disease acuity on our biomarker scores (Auxiliary supp table 1). Replication was not performed in the subgroups, as the EMBER study was not powered for disease subgroup diagnostic accuracy.




2.6. Chemical classification of predictive markers in disease groups
Chemical identification of the 101-biomarker panel involved comparison with an authentic reference compound in accordance with the Metabolomics Standard Initiative (MSI) Level 1 criteria for metabolite identification. The most common chemical classes associated with acute breathlessness in this study included straight-chain and methyl-branched hydrocarbons (30%), ketones (10%), aldehydes (8%) and terpenes (13%), followed by sulphur-containing VOCs (7%), alcohols (6%), aromatics (5%), esters (3%), nitrogen-containing VOCs (3%), ethers (2%), halogen-compounds(1%), and an assortment of other less prevalent and less relevant classes such as acrylates (12%) (Table S9).

2.7. Metabolite set enrichment and chemical similarity analysis
Unlike functional indications, which are reliant on mapping metabolites with known, well-annotated metabolic pathways, metabolic changes indicative of response can be derived independently. To derive clues of responsive indication, the panel of 101 features was assessed for co-varying clusters (i.e., metabolite sets).
Metabolite sets were derived based on Ward hierarchical cluster analysis using the ChemRICH method reported previously (13) (Figure 5A & figure S10), and broader communities were derived from Louvain cluster analysis (Figure 5B and tables S10-S13) to help interpret the correlation graphs .   Overall, twenty metabolite sets were identified using ChemRICH, eleven of which were enriched during acute cardiorespiratory exacerbations. The seven metabolite sets that were upregulated consisted of predominantly acyclic and branched hydrocarbons (sets 3, 5, 7 and 9 in figure S10). The results from the analysis herein demonstrated enriched, co-expression of hydrocarbons with high chemical similarity providing primary evidence of exhaled VOCs indicative of disease response measured in vivo. This is clearly seen in Figure 5A, with the metabolite sets (inner tree) labelled by broader chemical classifications (outer ring); C5-7, C8-10 and C11-16 form clusters based on carbon number also exhibiting the highest change during acute exacerbation. Owing to the increased separation power afforded by GCxGC-MS, it was possible to map the VOC signatures back to the multidimensional chromatograms for the visualisation of exhaled breath metabolites which revealed distinct diagnostic signatures for acute cardio-respiratory breathlessness (Figure 5C). 
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Description automatically generated]Fig. 5. VOC biomarker chemical enrichment in acute cardiorespiratory exacerbations
Legend: A: Circular correlation tree generated based on metabolite set enrichment and chemical similarity analysis of 101 breath volatiles associated with acute breathlessness. Branches depict metabolite sets derived using the ChemRICH; bar graphs portray -log10(p) and log2(fold change) values of 101 features extracted using LASSO regression (table S4) in acute breathlessness compared with control group. The arcs represent the Louvain clusters, derived from the correlation graph (green for upregulated, red for not significant, blue for downregulated according to K-S test result). Chemical names are coloured based on their chemical classification and coloured regions used to summarise broader chemical groups. B: Correlation graph showing metabolite communities identified using Louvain clustering, with the identity and location of the cluster enriched in heart failure projected onto the circular dendrogram. C: i) Example GCxGC chromatogram showing complex profile of breath metabolites; ii) 3D render of chromatogram showing visualisation of breath markers; and iii) phenotypic differences based on features included in the breath biomarker scores (table S9) (yellow, asthma; red, pneumonia; magenta, COPD; cyan, heart failure). Created in part using the iTOL online https://itol.embl.de/. 


3. Discussion
In this pragmatic, acute-care study, we evaluated the validity of breath biomarker profiling in high- acuity patients presenting with acute cardiorespiratory breathlessness. Using GCxGC-MS, we observed that robust and validated sampling of alveolar breath coupled with GCxGC-MS biomarker characterisation demonstrated high diagnostic accuracy for acute cardiorespiratory exacerbations.
We have also identified putative biomarker scores from subsets of breath VOC biomarkers that classify cardiorespiratory exacerbation subtypes and warrant validation in appropriately powered replication studies. Furthermore, we have identified several classes of VOCs that are highly correlated and selectively enriched or supressed in acute disease (including subgroups) compared to health, providing potential insights into broad dysregulation of the metabolome in acute cardiorespiratory exacerbations.
The analytical methods described herein were underpinned by robust biomarker development protocols using TD-GCxGC-FID/MS, integral to the standardisation and integration of breath analysis in large translational studies (5, 14). Several potential confounders including batch variation were addressed in detail. Furthermore, biomarker quantification of the 101 VOCs followed the recommendations of the MSI, with 58 compounds identified against pure and traceable standards (level I), 21 putative identities based on mass spectral and retention index library matches (level 2), and 22 classified on mass spectral data (15). Markers that appeared to localise to individual cardiorespiratory conditions could be readily visualised using TDA. 

The identification of hydrocarbons and carbonyls as the major chemical classes was consistent with current mechanistic understanding, postulated as chemical endpoints of lipid peroxidation resulting from oxidative stress during inflammation. Aldehydes such as nonanal, decanal and hexanal were predictive for asthma; ketones included 2-pentanone (asthma), cyclohexanone (pneumonia) and 2,3- butanedione (COPD) which were all previously reported (4, 16-20). Individual hydrocarbons such as 2,4- and 2,2-dimethylpentane, 2-methylbutane, 4-methyldecane, 5-methylnonane and isoprene have been previously reported as predictive for pneumonia and heart failure (18, 21). Sulphur-containing VOCs, such as 3-methylthiophene, allyl methyl sulphide and carbonyl sulphide (found to be predictive of COPD) are associated with bacterial metabolism, postulated to originate from the gut (22) and on occasions as a result of radiation injury (23); however, 2,3-butanedione, also predictive of COPD, has been identified as a metabolic product of bacterial isolates from patients with cystic fibrosis (CF) (22) and postulated to be an important metabolite in monitoring lung infection in CF, COPD and pneumonia.   We acknowledge that the biological origin of most VOCs within our biomarker signature has yet to be fully elucidated. Future studies combining carbon labelling of glucose with in vitro headspace analysis of primary cells will be required to more precisely establish the molecular origins of VOCs identified in this report.
Not all compounds were considered to be endogenous VOCs, with 27 possibly attributed to potential cosmetics. Eleven of the features predictive of the control group were assigned as either possible fragrances (e.g. alpha isomethyl ionone) or waxy long-chain chemicals used in cosmetics as emollients and surfactants (e.g. stearyl vinyl ether and isopropyl myristate). These may have been captured in the breath sample because of the proximity of the sorbent tubes to the patients’ faces. It should be noted that a frequent problem with ascribing the origin of VOCs is that those compounds often identified in cosmetics are natural products, therefore there is uncertainty about the precise origin of these makers. The downregulation in acute disease of several of these markers may be indicative of them being biomarkers as opposed to exogenous confounders from cosmetics. 

Co-expression and enrichment analysis of the Louvain clusters on the correlation graph revealed a set of highly correlated metabolites significantly enriched in specific disease groups. Comparison of the Louvain clusters with the metabolite sets identified using the method previously described (13) demonstrated strong overlap. The metabolites enriched in heart failure were a cluster of highly correlated C5-7 hydrocarbons and C3-5 carbonyls with high chemical similarity (based on Tanimoto coefficients as determined in (fig. S10). The cluster included 2,4- and 2,2-dimethylpentane, 2- methylbutane, 2-methyl-1,3-butadiene (isoprene), 3-methylpentane, hexane and cyclohexane. These hydrocarbons (2,4- and 2,2-dimethylpentane, 2-methylbutane, and isoprene) have been individually reported and associated with heart failure and pneumonia (17, 20). However, the analysis herein captured the collective response and demonstrated enriched, co-expression of these hydrocarbons.
The analysis also revealed a separate set of highly correlated aldehydes (nonanal, decanal, undecanal, and a methyldecanal isomer), found to be potentially depleted in acute exacerbations of asthma compared with acute exacerbations of COPD and pneumonia. Depletion of VOCs during in vitro experiments has been reported as a consequence of metabolic activity by immune cells (24-26), but the association herein is tentative and should be interpreted with caution due to the correlation between inhaled air and exhaled air concentrations of these compounds (median Spearman rank = 0.60), also previously observed (27).

Our study has some limitations. Although internally replicated, the results presented here for acute VOC biomarker scores and cardiorespiratory exacerbation subtype biomarker scores are limited by the lack of external replication and internal replication respectively. The single centre design of this study may have introduced non-pathogenic biases related to diet, environment and lifestyle that might be absent in a multi-center study. The cardiorespiratory exacerbation disease subgroups pre-selected in this study were chosen as the commonest reported causes of cardiorespiratory breathlessness (28, 29) and there was a relatively high degree of clinical certainty in the diagnostic labels. For these findings to be generalisable, the identified markers will need to be validated in unselected cardiorespiratory populations and patients presenting with mixed acute pathologies.

[bookmark: _Hlk101873923]In conclusion, we have conducted an acute care volatile breath biomarker study using robust clinical and analytical technology and have identified biomarkers with high combined diagnostic sensitivity and specify in acute cardiorespiratory disease. In addition, we have used methods enabling robust biomarker identification and mechanistic association. Future clinical studies in acute cardiorespiratory patients at initial presentation and triage using near patient sensor platforms capable of detecting the volatiles identified in this report are warranted to maximise the clinical impact of our discovery biomarker approach.












4. Materials and Methods
4.1.  Study design
The study design, eligibility criteria and methodology have been described in detail previously (30). This is a prospective, real-world, observational study (ClinicalTrials.gov Identifier NCT03672994), carried out in a tertiary cardiorespiratory centre in Leicester, United Kingdom. Participants were recruited year-round from May 2017 through to December 2018.
Patients with self-reported acute breathlessness, requiring admission and/or a change in baseline treatment, presenting within University Hospitals of Leicester (UHL) were approached for study participation. Following triage and senior clinical assessment, if a primary clinical diagnosis of (i) acute decompensation of heart failure, (ii) exacerbation of asthma/COPD, or (iii) adult community acquired pneumonia was suspected by the triage nurse/attending clinician at triage, members of the research team would evaluate patients against predefined eligibility criteria for study participation.
A total of 277 participants were included in the final analysis. Sample size attrition from the recruited 455 participants is detailed in (Figure 1). This was mainly due to the delayed deployment of GCxGC-MS and analytical QC/QA. These decisions were made objectively during the discovery phase of the program, prioritising the optimisation of a robust sampling and analysis pathway. Sample size calculations were informed based on estimation for adequate sensitivity and or specificity as detailed in (table S1).
The 277 subjects were randomised post-hoc to Discovery and Replication cohorts in a 1:1 ratio through block random assignment. Randomisation was stratified based on (i) adjudicated clinical diagnosis, (ii) time to breath-testing from the point of hospital admission, and (iii) clinical diagnostic uncertainty score. The R package randomizr was used to perform block random assignment.
After block randomisation there were 139 and 138 subjects in the discovery and replication sets respectively.

Inclusion and exclusion criteria and study objectives are outlined in detail in ‘study design’ and ‘study objectives’ sections of the Supplementary material. Informed consent was obtained in all participants within 24 hours of hospitalisation. Age- and/or home environment-matched healthy volunteers were recruited. Where environment-matched controls were unsuitable, healthy volunteers were recruited from local recruitment databases and via advertising. Healthy volunteers were defined as participants with no prior history of asthma, COPD, heart failure and had not been admitted to hospital with community acquired pneumonia within 6 weeks of the baseline study visit. The diagnostic accuracy of the reported exhaled breath VOCs was tested following the Standards for reporting of Diagnostic Accuracy Studies guidelines (31) (table S14). Statistical procedures presented here were carried out as complete case analysis with no imputations. Transparent Reporting of multivariate prediction model for Individual Prognosis or Diagnosis (TRIPOD) was followed for multivariate prediction models (32, 33) (table S15).


The trial was conducted in accordance with the ethics and principles of the deceleration of Helsinki and Good Clinical Practice Guidelines. All patients provided written consent. The National Research Ethics Service Committee East Midlands has approved the study protocol (REC number: 16/LO/1747). Integrated Research Approval System (IRAS) 198921. 

4.2.  Clinical adjudication
A clinical adjudication process was introduced to precisely define and quantify the diagnostic labels in the study, addressing any potential misclassification. A panel of two senior clinical adjudicators (SS & NG) reviewed all available case notes and imaging and determined the primary diagnosis for each case by discussion to reach a concordance. The degree of diagnostic uncertainty was marked on a 100-mm visual analogue scale (VAS scale), blinded to given diagnosis and blood biomarkers.
The process was implemented with emphasis on mirroring an acute triage pathway, where all pathology data required to support the diagnosis e.g. CRP, BNP are not available at the initial clinical review. The degree of diagnostic uncertainty obtained from the clinical adjudication process was factored into the block randomisation and subjects with higher diagnostic uncertainty (≥upper quartile = 20mm) were assessed separately as previously described (Figure 3C-D).

4.3.  Breath collection and analysis 
4.3.1. Collection of breath samples
Exhaled breath collection was attempted in all consented participants using a CE marked breath sampling device ’Respiration Collector for In Vitro Analysis’ RECIVA (Owlstone Nanotech Ltd), in combination with a dedicated clean air supply unit (34). Breath sampling was well tolerated by all participants (6).
4.3.2. Sample storage and preparation
Samples were dry purged on arrival for two minutes using nitrogen (chemically pure grade with inline trap, BOC) at a flow rate of 50 mL min-1 and then stored in refrigeration at 2 °C until analysis. Before analysis, samples were left to reach room temperature before being spiked with a 0.6 μL aliquot of 20 μg mL-1 standard solution containing deuterated toluene and octane, into a flow of nitrogen at a flow rate of 100 mL min-1 for 2 min, purging the excess solvent.
4.3.3. Exhaled Breath analysis
Breath samples were analysed by thermal desorption with comprehensive two-dimensional gas chromatography (GCxGC) using flow modulation and coupled to dual flame ionisation detection and mass spectrometry (MS). Dual detection, with the use of MS and flame ionisation detection (FID), utilises the excess flow from the flow-based modulator suited for volatile analyses, providing both quantitative and qualitative results.
Analysis by GC×GC was optimised and conducted as described previously (5), using an Agilent 7890A gas chromatogram, fitted with a CFT flow modulator and 5799B mass spectrometer with a high efficiency EI ion source (Agilent Technologies Ltd). The instrument was coupled to a TD-100xr thermal desorption auto-sampler (Markes International Ltd). Samples were analysed in trays; typically, six per tray along with a reference mixture containing n-alkanes and aromatics run every tray and a reference indoor air VOC mixture run every four trays. Data was acquired in MassHunter GC-MS Acquisition B.07.04.2260 (Agilent) and processed (i.e. baseline correction, alignment, feature extraction) with a workflow previously developed and optimised, using GC Image™ v2.8 suite (GC Image, LLC.) and Python (14). The sorbent tubes used were Tenax/TA with Carbograph 1TD (Hydrophobic, Markes International Ltd) with matching cold trap. Chromatographic features arising from analytical artefacts were removed from the peak table. (e.g. ubiquitous siloxanes). For purposes of quality control, samples were analysed in accordance with a previously published workflow and a detailed sample history, metadata and experimental data were recorded at every stage of the collection and analysis using the open-access LabPipe toolkit (5, 35). 
4.3.4. Chemical speciation of identified breath biomarkers
The chemical nature of volatile metabolites exhaled in breath comprises a diverse mixture of non- novel, low-molecular weight compounds. Thus, for most features, chemical identification involved comparison with an authentic reference compound in accordance with the Metabolomics Standard Initiative (MSI) Level 1 criteria for metabolite identification outlined in table S9. Identification was based on a minimum of two independent and orthogonal identifiers including primary and secondary retention time, mass spectral similarity match and calculated retention index. When an authentic reference compound was unavailable, chemical identification was compliant with MSI Level 2 for putative annotations. The highly structured chromatographic data and group-type separation afforded by GCxGC, alongside a well-characterised chromatographic space from analysing an extensive library of authentic compounds, gave increased confidence in the tentative assignments made. The orthogonal separation of GCxGC also meant chemical identification of unknown metabolites could be made, at minimum, in compliance with MSI Level 3 for putative chemical classification. 
4.3.5. Sample analysis quality control/quality assurance (QC/QA) procedures
For purposes of quality control, samples were analysed in accordance with a previously published workflow  and a detailed sample history, metadata and experimental data were recorded at every stage of the collection and analysis using the open-access LabPipe toolkit (35). The chromatographic       method was optimised for peak shape, sensitivity and separation; quality control charts of the internal standards were used to track the stability of the TD-GCxGC-FID/MS analysis, and instrument performance was evaluated following the assessment of the variation of retention times, peak area and shapes of VOCs in two standard reference mixtures every six samples (5). Before being conditioned and sent to clinic, the number of heat cycles and weight for each tube was recorded to monitor tube age and integrity. For each conditioning cycle, all tubes were given a batch number and a batch blank was analysed to monitor contamination from the beginning of the sample preparation process. Furthermore, all batches were given an expiry of two weeks to ensure routine monitoring. 
To minimise the influence of biological and analytical confounders (e.g. circadian rhythm, sample stability), potential effects due to the operator, date of analysis, time of day collected, storage time before dry purging, sample storage time after dry purging and collection volume were assessed and where necessary accounted for in the batch correction. In addition to the routine analysis of reference standards, used to monitor retention shift and instrument response, the TD-GCxGC analytical system underwent a programmed heat cycle between each sample to reduce potential issues arising from sample carry-over, and a TD-trap blank and empty sorbent tube were analysed  every six samples to monitor the instrument baseline signal.
4.3.6 Topological data analysis in the discovery and replication sets 
In topological data analysis, the x-y coordinate position of a particular patient within a TDA cluster cannot be directly compared between discovery and replication TDA graphs, as the graphs represent a simple 2-dimensional projection of a higher dimensional structure. Prior to performing TDA, each feature was 𝑙𝑜𝑔(𝑥 + 1) transformed. TDA parameters were set as: number of hypercubes=20, where the number of hypercubes refers to the number of overlapping intervals of the projection. 
The distance between data points was measured using the Euclidean distance. The first two linear discriminant functions (LD1) and (LD2) were used as the projection. Clustering on the overlapping intervals on the projection was done using agglomerative (bottom up) hierarchical clustering with complete linkage. TDA was performed using Kepler Mapper 1.4.0 (36) with Python 3.5. 
Herein, we computed the equivalence between topological data shapes generated using 805 volatile features extracted from the GCxGC-MS peak data, in both the discovery and replication cohorts.
4.3.7 Breath biomarker score generation
Feature selection was implemented via Lasso and Elastic-Net Regularized Generalized Linear Models (GLMNET) using the glmnet package in R. After removing features present in <80% of all samples from the (𝑥 + 1) transformed discovery GCxGC-MS peak data a 735-feature matrix was obtained. A multinomial regression model using LASSO regularization was fitted to the 735-feature matrix in the discovery set using 10-fold cross validation, with the dependent variable in the model being clinical diagnosis (acute asthma, acute COPD, pneumonia, heart failure, or healthy volunteers). The 10-fold cross validation was repeated 100 times; features that had a non-zero regression coefficient in more than 80 of the cross-validation runs were considered as being stable candidate features predictive of the outcome (clinical diagnosis), and this resulted in 278 stable candidate features. For validation, predictors were calculated using the Predict Function of (GLMNET).
A multinomial regression model using elastic net regularization was fitted to the 278 features with the dependent variable in the model being clinical diagnosis. Following the chemometric inspection detailed above and the lasso and elastic regression analysis, a final set of 101 exhaled breath volatile compounds was generated.
A multinomial regression model using elastic net regularization was fitted to the matrix of 101 breath biomarkers with the 10-fold cross validation repeated 100 times. The R package glmnetUtils was used to determine the optimal value of αthe elastic net penalty, the best value for α was 0 (Ridge regression). Ridge regression with a logit link function (binary logistic regression) was fitted to the 101 breath relevant features; the dependent variable was ‘acute disease’, as a binary outcome. The linear predictor from the combination of the most stable features was used to as a score to predict acute disease. Linear combinations of the most stable features from the multinomial regression model fitted to the 101 biomarkers formed a set of scores for predicting probability of belonging to the different disease groups (acute Asthma, acute COPD, pneumonia, heart failure or healthy volunteers). Sensitivity analysis for the interactive elastic net regression approach and justification of the optimal α values are provided in (figs. S11-S12 and tables S6-S8). 
Figure S13 is a graphical probability distribution of the final 101 exhaled breath features in the GCxGC-MS peak data. The features largely follow a similar distribution. Some features             contained a mixture of zero and non-zero values, which have arisen owing to the measurement being below the instrument’s lower limit of detection. Constant features (all zero values) were removed prior to fitting the main model.
4.3.8 Breath biomarker co-expression and feature enrichment analysis
It was of interest to investigate if within the final set of 101 features, sets of ‘co expressed’ features   existed, i.e. sets containing features that are correlated. Considering sets of co-expressed features has value in terms of reducing the dimensions of a problem and mitigating the multiple testing problem through the use of enrichment scores. Co-expression and feature enrichment analysis are described in the (Supplementary material section ‘co-expression and feature enrichment analysis’). Metabolite sets were derived based on Ward hierarchical cluster analysis using the ChemRICH method reported by (13), and broader communities were derived from Louvain cluster analysis to help interpret the correlation graphs (Supplementary material section ‘co-expression and feature enrichment analysis’). Covariation among metabolites lacks evidential value on its own, therefore, set-level significance was established using the Kolmogorov-Smirnov test (K-S test) as described using the ChemRICH method (13), Tanimoto coefficients were calculated to asses intra-set chemical similarity using Metabox (37), and the frequency of occurrence in the published literature and relevant databases considered (KEGG, ChEBI, Human Metabolome Database, Human Breathomics Database and microbial VOC database). Chemical similarity is of interest because compounds derived from similar pathways may also share common structural features or chemical groups. This combined data-driven and chemistry-driven approach has been shown to improve enrichment analysis (13, 38), and allowed further interpretation of core findings herein (fig. S10).



4.3.6. Statistical procedures
Statistical analysis was performed using R [3.6.1 and 4.0.0, R Core Team (2019)]. This research used the SPECTRE High Performance Computing Facility at the University of Leicester. Baseline data and figures were presented as mean ± (SD), and median (IQ range). Data was analysed using (ANOVA) to assess the differences between groups for normally or approximately normally distributed variables and Kruskal-Wallis for non-normally distributed variables. Pearson chi-squared and Fisher’s exact were used to assess the differences in categorical variables. All P values are two sided and significant at the 0.05 level, unless reported otherwise.
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Study tables: 
	
	Total number
	Healthy controls
	Acute asthma
	Acute COPD
	Pneumonia
	Heart failure
	p value

	Total number of participants
(n=)
	277
	55
	65
	58
	55
	44
	

	Demographics
	
	
	
	
	
	
	

	Age *, years
	60.8 ± (16.8)
	63.05 ± (11.78)
	44.3 ± (17.93)
	69.82 ± (8.16)
	60.67 ± (16.50)
	70.72 ± (11.04)
	.124

	Gender
Male (n=) (%)
	143
(51%)
	26 (47%)
	25 (38%)
	33 (56%)
	27 (49%)
	32 (72%)
	
.008 ¥

	Body Mass Index (BMI)*a
	29.5 ± (7.3)
	28.2 ± (4.5)
	31.5 ± (9.0)
	27.5 ± (7.7)
	29.2 ± (6.9)
	31.5 ± (6.5)
	.767

	Smoking Current smoker (n=) (%)
	53
(19%)
	
4 (7%)
	
13 (20%)
	
21 (36%)
	
11 (20%)
	
4 (9%)
	

.001 ¥

	Vital signs
	
	
	
	
	
	
	

	Temperature (Celsius)*
	36.7 ± (0.6)
	36.1 ± (0.4)
	36.8 ± (0.5)
	36.7 ± (0.5)
	37.1 ± (0.7)
	36.5 ± (0.3)
	.000

	Heart rate (beats/min)*
	87.2 ±
(18.5)
	68.1 ±
(9.54)
	99.6 ±
(17.2)
	92.9 ±
(15.6)
	90.3 ±
(15.4)
	81.3 ±
(15.6)
	.005

	Respiratory rate (breaths/min) *
	18.9 ± (4.2)
	13.0 ± (1.8)
	20.5 ± (3.4)
	21 ±
(2.5)
	20.4 ± (4.6)
	19.1 ± (1.8)
	.000

	Oxygen saturations (%) *
	95.8 ± (3.0)
	97.7 ± (1.3)
	96.1 ± (2.5)
	94.0 ± (2.9)
	94.5 ± (0.5)
	96.5 ± (1.9)
	.001

	Systolic Blood Pressure
(mmHg)*
	131.5 ±
(19.2)
	134 ±
(15.7)
	133 ±
(17.7)
	133 ±
(20.5)
	126 ±
(19.4)
	128 ±
(22.2)
	.515

	Total mEWS-2 score ^b
	1 (0-3)
	0 (0-1)
	2 (1-3.5)
	3 (1-5)
	2 (1-3)
	1 (0-2)
	.000

	Breath sampling
	
	
	
	
	
	
	

	Time from admission to breath sampling (hours)^
	16
(3.0–
23.0)
	
1 (1-1)
	16 (9.2–
22.7)
	18 (12.5-
23.0)
	18 (11.0-
23.0)
	23 (19.0-
26.0)
	
.000

	Symptoms assessment
	
	
	
	
	
	
	

	Breathlessness VAS
score (mm)*c
	58.1 ±
(31.6)
	6.2 ±
(9.3)
	76.6 ±
(14.2)
	71.6 ±
(19.2)
	67.8 ±
(22.1)
	67.9 ±
(20.0)
	.000**

	Cough VAS score (mm)
*c
	43.3 ± (33.2)
	8.7 ± (14.3)
	64.5 ± (26.7)
	57.8 ± ( 27.0)
	53.6 ± (30.6)
	24.3 ± (25.2)
	.000**

	Wheeze VAS score (mm)
*c
	41.8 ±
(34.9)
	3.4 ±
(6.4)
	66.2 ±
(24.5)
	60.3 ±
(29.0)
	45.1 ±
(34.8)
	28.1 ±
(28.6)
	.000**

	eMRCd score (n=) (%)
	
	
	
	
	
	
	

	1
	17
(6%)
	
	1 (1.5%)
	8 (13%)
	7 (12%)
	1 (2%)
	.000¥

	2
	6 (2%)
	
	0 (0%)
	0 (0%)
	5 (9%)
	1 (2%)
	.000¥

	3
	15
(5%)
	
	6 (10%)
	0 (0%)
	7 (12%)
	2 (4.5%)
	.000¥

	4
	50
(18%)
	
	16 (25%)
	11
(19%)
	6
(11%)
	17
(38.5%)
	.000¥

	5a
	112
(40%)
	
	38 (51%)
	32
(55%)
	22
(41%)
	20 (46%)
	.000¥

	5b
	21
(7%)
	
	3 (4.5%)
	7 (13%)
	8 (15%)
	3 (7%)
	.000¥

	Exposure to antibiotics and steroids within 2 weeks of hospital
admission
	
	
	
	
	
	
	

	Antibiotics (n=) (%)
	61
	n=0 (0%)
	n=24 (36.9%)
	n=23 (39.6%)
	n=10 (18.2%)
	n=4 (9.0%)
	.002¥

	Steroids (n=) (%)
	57
	n=0 (0%)
	n=28 (43.0%)
	n=24 (41.3%)
	n=3 (5.4%)
	n=2 (4.5%)
	.000¥

	Morbidity and mortality
measures
	
	
	
	
	
	
	

	Length of hospital stay (days) ^
	3 (2-6)
	
	2.0
(1.0-3.0)
	4.0
(2.0-6.0)
	4.0
(2.0-5.0)
	7.0
(4.0-11)
	.000**

	30-60 days hospital
readmission (n=)
	29
	
	7
	9
	6
	7
	.461¥

	1-year all-cause mortality
	12
	0
	1
	5
	1
	5
	.078¥

	Laboratory parameters
	
	
	
	
	
	
	

	C-reactive protein (CRP) (mg/L)^
	11
(5.0-
34.2)
	
5 (5-5)
	10.0
(5.0-
23.0)
	12.0
(5.0-
20.7)
	108.0 (53.5-
245.3)
	11.0 (5.0-
22.0)
	
.000**

	Blood Eosinophil count 109/L^
	0.13
(0.06-
0.24)
	0.17
(0.09-
0.24)
	0.18
(0.06-
0.42)
	0.13
(0.06-
0.24)
	0.08 (0.04-
0.14)
	0.13
(0.08-
0.23)
	
.000**

	
Troponin T (ng/l)^
	3.3
(1.0-
11.4)
	2.05 (1.0-
2.7)
	1.55
(1.0-3.4)
	3.75
(2.6-
10.9)
	4.3 (2.18-
11.3)
	20.2
(13.4-
59.6)
	
.000**

	Brain natriuretic peptide (BNP) (ng/l)^
	40.5
(20.6-
98.9)
	28.40
(17.60-
39.88)
	20.4
(12.1-
40.0)
	56.3
(24.3-
95.0)
	56.3 (27.4-
132.1)
	611.8
(172.1-
1259.1)
	
.000**

	Questionnaires
	
	
	
	
	
	
	

	Asthma Quality of Life Questionnaire (AQLQ)
total*
	
65
	
	117.3 ± (37.3)
	
	
	
	

	COPD Assessment test (CAT) *
	58
	
	
	26.7 ± (7.3)
	
	
	

	COPD Decaf score *
	58
	
	
	1.7 ± (0.8)
	
	
	

	CURB65 score^
	55
	
	
	
	2 (1-3)
	
	

	NYHA score^
	44
	
	
	
	
	2 (1-3)
	



Table 1. Demographics and clinical characteristics of study participants. Continuous variables are presented as mean ± standard deviation. Categorical variables are presented as numbers (%).
a The body mass index (BMI) is the weight in kilograms divided by the square of the height in meters.
b Modified Early warning score - 2 (MEWS-2) is a guide widely used by medical services to determine the degree of illness of a patient based on their vital signs including respiratory rate, oxygen saturations, temperature, blood pressure, and heart rate. Vital signs collected at the point of admission for acute disease groups.
c Participants were asked to determine their degree of breathlessness, cough and wheeze on a 100mm visual analogue scale (VAS) on admission. Higher scores indicate worse symptoms.
d Extended Medical research Council (eMRC) scale is a validated measure of perceived respiratory disability, scored from 1 to 5b. Higher scores indicate worse disability.
* Data is expressed as mean (SD) or n (%) ± (SD), ^ Data expressed as median (IQ range), ** Kruskal-Wallis test comparing non-parametric data, ¥ Pearson Chi Squared and Fisher’s Exact test.
ANOVA was used to assess the differences between groups for normally distributed continuous variables and Kruskal-Wallis for non-parametric continuous variables. Pearson chi-squared and Fisher’s exact were used to assess the differences in categorical variables. The results were considered statistically significant at p-values <0.05.
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Materials and methods

1. Study design
This clinical study was a prospective, real-world, observational study, carried out in a tertiary cardiorespiratory centre in Leicester, United Kingdom. Participants were recruited year-round from May 2017 through December 2018.
Recruitment started in February 2017 and, following analytical method development and optimisation of a robust sample pathway for achieving continual deployment, collection and analysis of sorbent tubes to-and-from clinic, the analysis of samples by GCxGC-MS was set up and brought online later that year in August 2017. The denominator for the entire study was 455 participants and for the GCxGC-MS study presented here was 363 participants, with a 76% GCxGC-MS completion rate.

(Fig. S1) is a visual abstract representing the proposed breath testing and diagnostic pipeline.
Traceable and verifiable quality control and quality assurance (QC/QA) procedures have been applied throughout the breath sampling and analysis steps. These are detailed in section 4. The number of breath samples fulfilling all QC/QA criteria is outlined in (fig. S2).


Inclusion criteria

(i) Able to give informed consent for participation in the study.
(ii) Male or Female, aged 16 years or above (adult cohort) and 5-15 years for paediatric  patients attending the acute care paediatric pathway.
(iii) Capable [in the opinion of the study clinical research investigator(s)] of providing serial  breath samples.
(iv) Diagnosed with acute breathlessness as one of the primary indicator reasons by the clinical acute care team. This is not a requirement for healthy subjects or matched controls.
(v) One of the indicator provisional diagnoses (acute asthma exacerbation, acute COPD exacerbation, heart failure exacerbation, and community acquired pneumonia) following  senior review by the clinical acute care team. This is not a requirement for healthy subjects or matched controls
(vi) Able (in the Investigators’ opinion) and willing to comply with all study requirements.
(vii) Willing to allow his or her General Practitioner and consultant, if appropriate, to be     notified of participation in the study.
(viii) Ability to understand English.

Exclusion criteria

(i) Female participants who are known to be pregnant, lactating or planning pregnancy  during the course of the study.
(ii) Current participation in a clinical trial of an investigative medicinal product (IMP) or within 3  months or 5.5 half-lives of the IMP whichever is longer.
(iii) Active or clinically suspected pulmonary tuberculosis
(iv) In the opinion of the treating physician, breath sampling during the acute admission     would be clinically unsafe or inappropriate due to the patient’s condition or poor prognosis. Examples include malignancy or autoimmune disease with anticipated survival of under 1 year, and chronic renal replacement therapy.
(v) Unable or unwilling to give informed consent
(vi) Any other significant disease or disorder which, in the opinion of the Investigator, may either put the participants at risk because of participation in the study, or may influence the result of the study, or the participant’s ability to participate in the study.

Study objectives

The primary and secondary objective of the EMBER study are summarised below.

Primary objective

· To evaluate the sensitivity, specificity, positive and negative predictive values of exhaled breath VOC biomarkers to differentiate acute breathlessness in cardiorespiratory patients.

Secondary objectives

· To replicate selected breath VOC biomarkers identified in acute breathlessness.

· To discover and replicate breath VOC biomarkers that differentiate the common cardiorespiratory conditions that cause acute breathlessness, specifically: (1) acute heart failure, (2) community-acquired pneumonia, (3) adult exacerbations of asthma and chronic obstructive pulmonary disease (COPD) and age-matched adults that do not have cardiorespiratory disease or breathlessness.

· To quantify the level of clinical uncertainty in the primary diagnosis using a 100 mm visual analogue scale (VAS) and independent clinical adjudication of case notes blinded to the following blood biomarkers: (1) CRP, (2) BNP, (3) troponin-I and (4) blood eosinophils but not clinical history and acute presentation nor chest X-ray imaging. Potential discriminatory breath VOC biomarkers will be adjusted for clinical uncertainly in statistical models.



Statistical analysis

0.1. Sample size estimation

Based on a total sample size of n=277 post-hoc sample size calculations were performed. We assumed an 80% acute disease prevalence for recruitment and 1:5 patients recruited were non- breathless healthy controls. We were powered to identify a breath biomarker VOC score of acute cardiorespiratory exacerbations demonstrating combined diagnostic accuracy (sensitivity and specificity) of  80%, with a precision of 95% and maximal marginal error of ±15% in discovery and replication cohorts (table S1).

Data collection was stopped when a minimum of 55 participants were recruited to each disease group. Details on participants’ clinical characteristics and comorbidities are outlined in (tables S2-3).

0.2. Sensitivity analyses - Impact of zero valued peak areas and removal of features present in < 80% of participants on classification accuracy

We ruled out features not present in >80% of samples to effectively reduce the number of features used in subsequent models with more than 20% of 0s (imputed values). In extreme cases where the feature contained nearly all 0s there is no useful information, the feature is essentially constant and can reasonably be excluded. We found that the 0s were randomly distributed across the disease groups in all but 7 features. The exclusion of the 7 features where there was some evidence that 0s were not randomly distributed across the disease groups did not alter the results of the regression models. 

We fit the LASSO to the full feature matrix (805 x features), then fit the LASSO to the feature matrix with the 7 features (table S4). There appeared to be no substantial change in the performance of the model after excluding the 7 features. Removal of the 7 features did not result in a substantial improvement in model performance.

We considered the effect on model performance after removing all features present in less than 80% of samples (table S5). By removing all features present in less than 80% of samples (the approach we have adopted in this manuscript) we saw an improvement in model performance. For example, the miss- classification error decreased from approximately 60% to approximately 19%.
Tables S4-S5 were produced using output from assess.glmnet from the glmnet package in R. 

0.3. Elastic net regression sensitivity analyses

The solution to the elastic net is (𝛽0̂,̂), where:
(𝛽0̂,̂)=(𝛽0̂,𝛽̂)∈ℝ𝑝+1[12𝑛Σ(𝑦𝑖−𝛽0−𝑥𝑖𝑇𝛽)2𝑛𝑖=1+𝜆(1−𝛼2‖𝛽‖22+𝛼‖𝛽‖1)]

The hyper-parameters (λ) and (α) control the overall penalty and the elastic net penalty respectively. We do not as a rule chose a value for λ; instead a default set of values (0 to 100) is used for λ. We can choose a value for α in the range 0 to 1. If we set α=0, then we have Ridge regression (the elastic net becomes Ridge regression), if we set α=1, then we have the LASSO (the elastic net becomes the LASSO). Setting α to close to 1 (but not equal to 1), will provide a sparse solution, setting alpha close to 0 (but not equal to 0) will provide a far less sparse solution. By sparse we mean the number of variables with regression coefficients that are shrunk to 0. Note for α=0 we cannot achieve a sparse solution, the regression coefficients are shrunk but will never be set to 0. 

Breath collection and analysis

0.4. Breath collection

Breath collection was carried out using a CE marked breath sampling device ’Respiration Collector for In Vitro Analysis’ RECIVA (Owlstone Nanotech Ltd), which aims to standardise the collection of alveolar breath by providing the patient with a VOC-clean air supply; controlling the flow, volume and fraction of breath collected, while directly sampling the exhaled VOCs onto the sorbent tubes. The ReCIVA settings mode was set to ‘lower airways only’, the continuous monitoring of the CO2 and partial pressure allowed targeting the VOC-enriched alveolar fraction of breath. The collection volume, flow rate and maximum sampling time were set to 1 L, 250 mL min-1, and 900 seconds respectively. 
At the time of sampling, the room air and air supply were also sampled as environmental controls. This involved attaching a sorbent tube to a handheld personal pump (Escort Elf, Sigma Aldrich, Dorset, UK) and having the sampling end either open to the room air or attached to the ReCIVA air supply line via a T-piece. 1 L of air was collected in total at a flow rate of 0.5 L min-1 for 2 min. Sorbent tubes were immediately capped (brass caps, Markes International Ltd) and placed in a refrigerator at 4 °C before being dispatched to the laboratory within 72h. 
To minimise background variation, sample collection was completed, when possible, in the same treatment room attached to the admissions ward. Unwell patients and those requiring supplemental oxygen, however, had their samples collected by their bedside.

0.5. Analysis of room air and air supply samples
Two separate elastic net regression models were fitted to peak tables for room air and air supply samples, both peak tables where 𝑙𝑜𝑔𝑒(𝑥 + 1) transformed and adjusted for batch effects (collection date) using Parametric Empirical Bayes Adjustment (PEBA). The independent variables were the final set of 101 features and the dependent variable was clinical diagnosis (acute asthma, acute COPD, pneumonia, heart failure or healthy volunteers). After repeating 10-fold cross validation 100 times for each of the two models, only two features were found to have stable non-zero regression coefficients. These features were for air supply, a component of the pneumonia score and for room air, a component of the healthy score, highlighting the robustness of the selected feature separation models.


Mitigating the adverse impact of batch effects in biomarker pattern detection
Batch effect is a common issue in omics data analysis. The existence of batch effects makes it challenging to compare data collected and analysed at different processing times. (Figures S3-4).

We sought to investigate the following factors as possible contributing batch variation factors:

I.	Batch_ID - date of sample collection:
(1) Batch 1 – August 2017 - October 2017
(2) Batch 2 – November 2017 - March 2018
(3) Batch 3 – April 2018 – December 2018

II.	Operator: (N: 1-6) – indicating members of the study team operating the RECIVA over the entire course of the sampling program

III.	Time of the day sample was collected (circadian rhythm):
(1) 1 = between 9-11am
(2) 2 = between 11am-1pm
(3) 3 = between 1-3pm
(4) 4 = between 3-5pm

IV.	Time sample stored wet
(1) 1 = 0-2 days
(2) 2 = 2-5 days
(3) 3 = 5-10 days
(4) 4 = 10-20 days
(5) 5 = 20-42 days
(6) 6 = over 42 days

V.	Time stored dry (following dry purging)
(1) 1 = 0-2 days
(2) 2 = 2-5 days
(3) 3 = 5-10 days
(4) 4 = 10-20 days
(5) 5 = 20-42 days
(6) 6 = over 42 days

Wet storage refers to the time sorbent tubes were stored (at 4C) prior to dry purging (typically <48 hours) and dry storage refers to the time the sorbent tubes were stored (at 4C) after dry purging (up to 6 weeks). 
Samples were dry purged to remove excessive moisture, which condenses in the sorbent tube during sample collection. The presence of excessive moisture during thermal desorption can cause inaccuracies in sample injection due to the rapid expansion of vapour, disrupting the carefully controlled gas flows. Dry purging the sorbent tubes removes the condensed moisture, up to 5 mg in weight. Every endeavour was made to dry purge samples within 48 hours of collection to reduce potential detrimental effects of the initial high water load on the sorbent material and adsorbed VOCs such as hydrolysis.

VI. 	Volume of breath collected (over 80% threshold): 

(1)  1 = 100% 1357 
(2)  2 = 90-99% 1358 
(3)  3 = 80-89% 

The % refers to the % of acquired breath using the ReCIVA sampler onto the TD tube of the target breath volume of 1 Litre. This was a pragmatic real world acute study in acutely ill patients (who sometimes could not be sampled for long enough to acquire ≥ 0.8 L of breath). To reduce the risk of reduced data quality we excluded patient sample that were less than the target collection of 0.8 L (see consort diagram Fig S1, n=28). The selection of ≥ 0.8 L as a minimum threshold ensured sufficient pre-concentration of exhaled compounds. Because the collection of breath VOCs on sorbent tubes is a pre-concentration technique, use of a threshold avoids artificial skewing as a result of scaling breath profiles with insufficient volume. The threshold used was consistent with the recommended threshold of the manufacturer, Owlstone Medical.

Figure S3 is a visualization of the GCxGC-MS peak table comprising all 805 features using t Stochastic Nearest Neighbour Embedding (tSNE) [5]. Clustering due to ‘date of collection’ was seen (top left plot). No obvious clustering seemed to be present for the remaining factors. The effect collection date was adjusted for by applying Parametric Empirical Bayesian Adjustment (PEBA). The  ComBat function from the SVA package for Bioconductor was used to perform PEBA. The results of this adjustment are shown in figure S4. It can be seen that the clustering due to collection date is no longer apparent. The batch effect adjusted peak table was used in all subsequent feature selection models.

0.6. Quality control and quality assurance systems
Traceable and verifiable quality control and quality assurance (QC/QA) procedures have been applied throughout the breath sampling and analysis steps. This ensured efficient prevention of any anticipated defects and high deliverable standards.
To eliminate any samples from the final analysis that were of poor quality four criteria were used to selected for high quality breath samples. These were:
1) ≥800 mL of breath collected from the patient to ensure sufficient pre-concentration of trace
VOCs present in breath.
2) The concentration of isoprene and acetone in the air supply were ≤ 3 standard deviations of the mean air supply concentration. This ensured that no breath samples were mis-assigned as air supply samples.
3) The concentration of isoprene and acetone in breath were ≥10 and ≥ 5 standard deviations, respectively, above the concentrations measured in the patient air supply. This ensured that the samples were not mis-assigned air supply samples, and that breath had been collected onto the sorbent tubes
4) The chromatogram, on visual review, was not distorted by an abundance of exogenous compounds (i.e. overloaded peaks).

0.7. Chemical speciation of identified breath biomarkers
To confirm the chemical identity of the concatenated list of 101 exhaled breath peaks, standard reference compounds, where available, were purchased and analysed. This included a C8- C20 saturated alkanes certified reference material (Sigma Aldrich, Dorset, UK), an aromatics calibration standard (NJDEP EPH 10/08 Rev.2, Thames Restek, Saunderton, UK), a multi-component indoor air standard (Sigma Aldrich, Dorset, UK), two terpene reference mixtures (Spex Centriprep, Emerald Scientific, San Luis Obispo, US), and individual standards from Sigma Aldrich (Merck Life Sciences), Greyhound Chromatography, Scientific Lab Supplies, Alfa Chemicals and Santa Cruz Biotechnology.

Table S9 lists the chemical assignment of the selected predictive markers from the regression model detailing chemical name, CAS registry number, KEGG, Human Metabolome Database and ChEBI identifiers and MSI-compliant metabolite identification level, concentration range and fold change (expressed as log2) between acute and control groups, and compound contribution towards disease-specific biomarker risk scores (†adjusted p-value <0.05).

0.8. Breath biomarker score classification accuracy
The overall classification accuracy for the statistical model generated from 101 breath biomarkers was assessed by comparing the balanced accuracy of model trained using the true class labels versus the balanced accuracy of the same model tested using randomly shuffled class labels. This process was repeated 1,000 times. The balanced accuracy is reported in (Fig. S6) for (A) the acute disease biomarker score in the discovery cohort, (B) the acute disease biomarker score in the replication cohort and (C) the multinomial biomarker scores for the five subgroups acute asthma, acute COPD, heart failure, pneumonia and healthy volunteers. NB: replication was not evaluated in the subgroups as the study was not powered to do this.
Receiver operating curve (ROC) analysis to assess the diagnostic value of the heart failure biomarker score against other acute disease groups was AUC: 0.78 (0.70-0.86) P <0.0001, sensitivity 0.77 (0.64-0.89), specificity 0.71 (0.64-0.78), PPV 0.40 (0.29-0.50), NPV 0.92 (0.88-0.97) (fig. S7). 
The median values of the exhaled breath VOC scores and their distribution across disease subgroups are detailed in (fig. S8). Figure S9 is a Venn diagram demonstrating the distribution of the final panel of 101 exhaled breath biomarkers across the different disease groups.

0.9. Co-expression and feature enrichment analysis

Graph construction and Louvain cluster analysis
Subjects from both the Discovery and Replication sets were combined into a data matrix MD comprising the 101 features that were obtained from previous regression analysis, with healthy 1483 subjects excluded. The Spearman rank correlation matrix was calculated for the data matrix MD.

A scale free graph g was constructed by generating the adjacency matrixMAdj=|Ĉ|β.

Where Ĉ is the sample correlation matrix ofMD, and β≥1.

The pickSoftThreshold function from the WGCNA package in R was used to estimateβ. The igraph 1487 package in R was used to construct g usingMAdj, g is a weighted and unsigned graph. The graph g 1488 will be referred to as the “correlation graph”.

Louvain clustering was then performed on the correlation graph and 8 feature sets were obtained (fig. S10).

The 8 feature sets obtained from Louvain clustering on correlation graph were used in an enrichment analysis. Instead of considering individual features and how they might distinguish different disease groups, sets of features are considered, the idea being that features in combination may have better discriminatory capability. The Bioconductor (version 3.12) packages GSVA and limma were used to perform enrichment analysis. Feature set 3 was found to be enriched in Asthma and HF, feature set 5 was found to be enriched in HF alone, see (tables S10-S13). The enriched feature sets 3 and 5 did not demonstrate improved diagnostic accuracy over the scores obtained from regression analysis (fig. S10).



0.10. The approach taken to modelling the multinomial response was as follows:

1) Remove features that were present in less than 80% of the total samples.
2) Fit the elastic net model (α =1, LASSO) to the remaining features, with a view to candidate biomarker variable reduction.
3) Obtain the active set (features with non-zero coefficients) from step 2.
4) Fit an elastic net model to the active set from step 2 with α determined by performing 10-fold cross-validation on the active set from step 2; here α was found to be 0.5 approximately, simulated range from 0.6-0.7 (fig. S11).
5) Obtain the active set from step 4, fit an elastic net model with α determined by performing 10-fold cross-validation on the active set from step 4; here α was found to be 0 approximately, simulated range  0-0.15 (fig. S12).

We then examined the model performance as we iterated the regressions across iterations 1-3

From tables S6-S8, we see that the misclassification error decreases from approximately 20% at iteration 1 to approximately 7% at iteration 3. The logic behind iterations 1-3 is to fit the LASSO initially to remove the gross noise and reduce the dimensions of the problem. Once the noise has been removed the remaining features may be more likely to contain useful information, so we fit an elastic net model with a less harsh penalization, but still we still try to reduce the number of features. The last iteration fitting the Ridge model performs shrinkage but does not set coefficients to 0. There may be situations where LASSO followed by Ordinary Least Square (OLS) is not possible, i.e. features in the active set from the LASSO are correlated (multi-collinearity). In this case, LASSO followed by Ridge regression would be a valid approach.

In applying the LASSO initially and then again to the active set a single hyper-parameter λ is estimated by cross-validation (for the initial LASSO and then for the subsequent LASSO on the active set) using the default grid 0-100 for λ. To estimate the optimal α using glmnetutils or ensr sequential application of a penalized model is performed.

0.11. Probability distributions of breath features
The features in the GCxGC peak table fell into 3 broad categories: (1) constant features (all samples had a value of zero), (2) features that contained a mixture of zero and non-zero values, and (3) features that contained all non-zero values. The zero values arose because the measurement was below the instrument’s lower limit of detection. Constant features were removed prior to fitting the main model.

Graphical distribution of the final 101 features, mainly falling into type 2 and 3 categories, is illustrated in (fig. S13). For certain features the spike in the 0 values can be clearly seen. Based on these observations a reasonable choice for a theoretical model for the probability distribution of a feature from a GCxGC-MS peak table might be the Zero Modified Log Normal distribution. 























Supplementary Figures and legends:
[bookmark: _GoBack][image: R:\EMBER\Shared\STM_03_10_22\Figures\OS\Figure S1.tif]
Figure S1. A visual abstract representing the proposed breath testing and diagnostic pipeline. 
Acutely breathless patients with cardiorespiratory disease exacerbations are currently triaged on admission by means of clinical assessment, digital pathology, and blood biomarkers. Lower airway-derived breath volatile organic compound (VOC) biomarkers, visualised using state of the art GCxGC mass spectrometry, undergo a process of chemometric and translational modelling. The resultant breath metabolic signatures provide accurate disease classification in acute cardiorespiratory patients, with co-location of specific VOC profiles and VOC classes with individual exacerbation subgroups. Breath biomarker score generated using Elastic Net Regression were used to evaluate the diagnostic accuracy of breath VOCs in acute cardiorespiratory disease. Created in part with BioRender.com.  
[image: \\uol.le.ac.uk\root\Research\EMBER\Shared\STM_03_10_22\Figures\OS\Figure S2.tif]Figure S2. Exhaled breath features flow chart. Flow chart demonstrating the removal of exhaled breath features from 805 to 101 breath GCxGC biomarkers for risk score generation. An iterative elastic net (eNET) modelling approach (across three iterations) was adopted as the feature selection methods of choice owing to the high variables to subject ratio and the potential correlations among the candidate features. The attrition of the misclassification errors is demonstrated in the left-hand panel. 
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Figure S3. A 2-dimensional visualization of the high dimensional peak table before adjustment for batch effects. Clustering by date of collection ‘Batch_ID’ in the first panel can be clearly seen, compared to other variables (operators, time of collection, time of wet and dry storage, and collection volume) where no batch effects are apparent.
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Figure S4. A 2-dimensional visualization of the high dimensional peak table after adjustment for date of collection ‘Batch_ID’. Clustering is no longer visible following parametric empirical Bayesian adjustment. The  visualization for Figures S3 and S4 were produced using t-distributed stochastic neighbour embedding (t-SNE). 
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   Figure S5. Kaplan-Meier survival analysis.
A: Kaplan-Meier survival analysis for all-cause 2-year mortality, classified by acute disease VOC score median value, showing a significant difference between the groups. P value of 0.009 (log – rank test (Mantel-Cox) for equality f survivor function). B: Kaplan-Meier survival analysis for all-cause 2-year mortality, classified by disease groups, P value of 0.04 (log – rank test (Mantel-Cox) for equality f survivor function). C: Total number of patients readmitted classified by their acute disease VOC score median value, showing no significant difference in the readmission rate based on the underlying VOC score p-value of 0.79 (log – rank test (Mantel-Cox) for equality f survivor function).
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Figure S6. Balanced accuracy predictive performance A: Predictive performance via the balanced accuracy of model for breathlessness. This model was trained using true class labels (green curve) and balanced accuracy of model for breathlessness trained using randomly shuffled class labels (red curve) in Discovery. Averaged balanced accuracy for model trained using true class labels in Discovery was 96%. The average balanced accuracy for the model trained on the true class labels is significantly different in Discovery (permutation test (x1000 times), p<0.00001) from the average balanced accuracy for the model trained on the randomly shuffled labels. B: Predictive performance via the balanced accuracy of model for breathlessness trained using true class labels (green curve) and randomly shuffled class labels (red curve) in Replication. Averaged balanced accuracy for model trained using true class labels in Replication was 75%. The average balanced accuracy for the model trained on the true class labels is significantly different in Replication (permutation test (x1000 times), p<0.00001) from the model trained on the randomly shuffled labels. C: The overall classification accuracy for the statistical model using all five biomarker scores from the final set of 101 exhaled breath features was assessed by comparing the balanced accuracy of model trained using the true class labels versus the balanced accuracy of the same model tested using randomly shuffled class labels. This process was repeated 1000 times. The overall classification accuracy using all five biomarker scores was 75%,95% CI (66-77%).
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Figure S7. Comparative ROC analysis of the diagnostic accuracy of disease VOC score.  A: Comparative ROC analysis demonstrating the diagnostic value of asthma VOC score against the predominantly infection-driven acute disease groups (pneumonia and COPD) in the pooled (discovery and replication) cohorts. B: Comparative ROC analysis demonstrating the diagnostic value of heart failure VOC score against other acute disease subgroups (asthma, COPD and pneumonia) in the pooled cohorts.
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Figure S8. The difference between VOC biomarker scores. Violin plots demonstrating significant differences between VOC biomarker scores values across the different disease sub-groups. * Kruskal-Wallis test comparing non-parametric data. * Significant p-value <0.0001
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Figure S9. Distribution of the final breath biomarkers across the different disease groups. Venn diagram demonstrating the final panel of 101 exhaled breath biomarkers and their distribution across disease groups
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Figure S10. Chemical classification clusters.  A: Correlation graphs showing how the breath metabolites (panel of 101) are correlated within each of the casual subgroups, coloured based on Louvain clusters to highlight differences across the networks. Visual differences highlighted include the green Louvain cluster, being highly compact in the control group and dispersed in the acute groups. B: Output of the ChemRICH analysis, showing metabolite sets (circles) significantly enriched during acute breathlessness (size indicative of fold change; red = upregulated; blue =downregulated). The upregulated metabolite sets with high chemical similarity (based on Tanimoto coefficient) consisted predominantly of acyclic and branched hydrocarbons, belonging to the green Louvain cluster (indicated by outer ring colour). The quantitative output of the ChemRICH analysis complements the visual differences in the graph networks.
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Figure S11. 10-fold cross-validation estimates for α at step 4. Plot shows each of the λ (log10 scale) and α where z = (cvm - min(cvm)) / sd(cvm). The colour scale is set to have low values (values near the minimum mean cross validation error, cvm) dark green. Values further from the minimum are lighter green, then white, then purple. A red cross identifies the minimum mean cross-validation error. λ is the overall penalty, α is the elastic net penalty.
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Figure S12. 10-fold cross-validation estimates for α at step 5. Plot shows each of the λ (log10 scale) and α where z = (cvm - min(cvm)) / sd(cvm). The colour scale is set to have low values (values near the minimum mean cross validation error, cvm) dark green. Values further from the minimum are lighter green, then white, then purple. A red cross identifies the minimum mean cross- validation error. λ is the overall penalty, α is the elastic net penalty. 
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Figure S13. Graphical probability distribution of the final 101 exhaled breath features in the GCxGC-MS peak data. The features largely follow a similar distribution.  Some features   contained a mixture of zero and non-zero values, which have arisen owing to the measurement being below the instrument’s lower limit of detection. Constant features (all zero values) were removed prior to fitting the main model.
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Supplementary Tables: 


	
	Precision
	Marginal Error
	Prevalence of Acute Breathlessness
	Sample Size Required

	Sensitivity (70%)
	95%
	10%
	80%
	100

	Specificity (70%)
	95%
	10%
	80%
	403

	Sensitivity (70%)
	95%
	15%
	80%
	45

	Specificity (70%)
	95%
	15%
	80%
	180

	Sensitivity (70%)
	95%
	20%
	80%
	25

	Specificity (70%)
	95%
	20%
	80%
	100

	Sensitivity (80%
	95%
	10%
	80%
	77

	Specificity (80%)
	95%
	10%
	80%
	307

	Sensitivity
(80%)
	95%
	15%
	80%
	34

	Specificity (80%
	95%
	15%
	80%
	137

	Sensitivity (80%)
	95%
	20%
	80%
	19

	Specificity (80%)
	95%
	20%
	80%
	77




Table S1. Sample size estimation. Breath biomarker VOC score of acute cardiorespiratory exacerbations demonstrating combined diagnostic accuracy (sensitivity and specificity) of  80%, with a precision of 95% and maximal marginal error of ±15% in discovery and replication cohorts.  





























	
	Discovery
	Replication
	p value

	Total number (n=)
	139
	138
	

	Acute asthma (n=)
	33
	32
	

	Acute COPD (n=)
	29
	29
	

	Pneumonia (n=)
	28
	27
	

	Heart failure (n=)
	22
	22
	

	Healthy volunteers (n=)
	27
	28
	

	Demographics
	
	
	

	Age (years) mean ± (SD)
	60.6 ± (16.9)
	61.0 ± (16.8)
	.846

	Gender Male (n=) (%)
	65 (46%)
	78 (56%)
	.104¥

	Height (meters)*
	1.66 ± (0.13)
	1.68 ± (0.16)
	.215

	Weight (kilograms)*
	82.5 ± (21.1)
	85.7± (25.6)
	.260

	Body Mass Index (BMI)*
	29.5 ± (6.7)
	29.6 ± (7.9)
	.896

	Breathlessness
	
	
	

	Breathlessness VAS score (mm)*
	56.1 ± (32.3)
	60.2 ± (30.7)
	0.292

	V1 cough VAS score (mm)*
	41.6 ± (33.3)
	44.5 ± (33.2)
	0.479

	V1 wheeze VAS score (mm)*
	40.65± (35.1)
	43.1± (34.8)
	0.558

	Laboratory parameters
	
	
	

	C-Reactive Protein (mg/dl)
	10.0 (1.0-449.0)
	12.0 (1.0-321.0)
	0.740

	Blood eosinophil count 10ᶺ9/L
	0.13 (0.01-1.9)
	0.13 (0.01-2.15)
	0.825

	Troponin T (ng/l)
	3.4 (1.0-1658.4)
	3.15 (1.0-810.1)
	0.565

	BNP (ng/l)
	40.1 (1.0-1576.0)
	42.6 (1.0-2631.9)
	0.780


Table S2. Baseline demographics and clinical characteristics table. The table outlines the baseline demographics and clinical characteristics of the discovery and replication cohorts. VAS: Visual Analogue Scale (100mm), participants were asked to rate their breathlessness, cough and wheeze on a 100mm VAS on admission. ANOVA was used to assess the differences between groups for normally distributed continuous variables and Kruskal-Wallis for non-parametric continuous variables. Pearson chi-squared and Fisher’s exact were used to assess the differences in categorical variables. The results were considered statistically significant at p-values <0.05. * Data is expressed as mean (SD) or n (%) ± (SD).


















	Comorbidities
	Healthy controls N (%)
	Acute disease group N (%)

	Anxiety/Depression
	5 (9)
	26 (11.7)

	Diabetes Mellitus
	4 (7.2)
	45 (20)

	Essential hypertension
	16 (29)
	58 (26)

	Ischaemic heart disease
	4 (7.2)
	13 (5.8)

	Arthritis
	5 (9)
	12 (5.4)

	Thyroid disorder
	3 (5)
	15 (6.7)

	Chronic Obstructive pulmonary disease
	0 (0)
	58 (26)

	Asthma
	0 (0)
	65 (29)

	Heart failure
	0 (0)
	44 (19.8)

	Medications
	
	

	Inhaled therapies
	
	

	Salbutamol
	1 (1.8)
	153 (68)

	Inhaled corticosteroids/Long acting B-agonists (ICS/LABA)
	0 (0)
	53 (23)

	Lipid lowering agents
	
	

	Atorvastatin
	9 (16)
	57 (25.6)

	Simvastatin
	7 (12)
	23 (10)

	Gastroesophageal reflux disease (GORD) medications
	
	

	Lansoprazole
	9 (16)
	49 (22)

	Blood pressure lowering agents
	
	

	Amlodipine
	5 (9)
	25 (11.2)

	Lisinopril
	4 (7)
	11 (5)

	Ramipril
	8 (14)
	37 (16.6)

	Antidepressants
	
	

	Citalopram
	3 (5)
	13 (6)

	Sertraline
	3 (5)
	15 (6.7)

	Thyroid medications
	
	

	Levothyroxine
	5 (9)
	15 (6.7)

	Cardiac medications
	
	

	Aspirin
	5 (9)
	36 (16.2)

	Analgesics
	
	

	Paracetamol
	6 (10)
	103 (46)


Table S3. Comorbidities and medications table. The table demonstrates comorbidities and medications used by study participants, classified by disease and health. Values expressed as N (%). Table includes comorbidities occurring in >5% of participants and medications used by >5% of participants














	LASSO on full feature matrix
	
	LASSO on feature matrix with 7 features removed
	

	Multinomial Deviance
	3.00
	Multinomial Deviance
	2.93

	Miss-classification Error
	0..60
	Miss-classification Error
	0.59

	Mean Squared Error
	0.75
	Mean Squared Error
	0.74

	Mean Absolute Error
	1.54
	Mean Absolute Error
	1.52


Table S4. Model performance on full feature matrix and feature matrix with 7 features present



	LASSO on full feature
matrix
	
	LASSO on feature matrix with all features present in less
than 80% of samples removed
	

	Multinomial Deviance
	3.00
	Multinomial Deviance
	1.73

	Miss-classification
Error
	0.60
	Miss-classification Error
	0.19

	Mean Squared Error
	0.75
	Mean Squared Error
	0.44

	Mean Absolute Error
	1.54
	Mean Absolute Error
	1.10


Table S5. Model performance on full feature matrix and feature matrix with all features present in less than 80% of samples removed.


	Iteration 1
	

	Multinomial Deviance
	1.73

	Miss-classification Error
	0.19

	Mean Squared Error
	0.44

	Mean Absolute Error
	1.10


Table S6. LASSO on feature matrix with all features present in less than 80% (iteration 1 of the e-NET feature reduction approach) of samples removed


	Iteration 2
	

	Multinomial Deviance
	1.25

	Miss-classification Error
	0.10

	Mean Squared Error
	0.30

	Mean Absolute Error
	0.86


Table S7. Elastic net model to the active set from iteration 1 (α =0.5)


	Iteration 3
	

	Multinomial Deviance
	1.12

	Miss-classification Error
	0.07

	Mean Squared Error
	0.26

	Mean Absolute Error
	0.80


Table S8. Fit an elastic net model to the active set from iteration 2 (α=0)
	Chemical Name
	CAS-RN
	KEGG, C- / HMBD, H-
	ChEBI
	MSI Level
	conc. μg/m3
	Log2(FC)
	Acute risk score classification
	Louvain set

	Hydrocarbons
	

	2-methylbutane
	78-78-4
	-
	30362
	1
	0-186
	-0.032
	pneumonia
	3

	isoprene
	78-79-5
	C16521
	35194
	1
	7-1,494
	0.015
	heart failure
	3

	3-methylpentane
	96-14-0
	HMDB0061885
	88373
	1
	-
	0.056
	asthma
	3

	2,4-dimethylpentane
	108-08-7
	-
	-
	1
	0-15
	0.091
	pneumonia
	3

	2,2-dimethylpentane
	590-35-2
	-
	-
	2
	-
	0.284†
	pneumonia
	3

	hexane
	110-54-3
	C11271, HMDB0029600
	29021
	1
	0-781
	0.083†
	asthma, pneumonia, heart failure
	3

	octane
	111-65-9
	C01387, HMDB0001485
	17590
	1
	0-2
	-0.030
	pneumonia, COPD
	4

	2,6-dimethyloctane
	2051-30-1
	-
	-
	1
	0-1
	0.056
	pneumonia
	4

	nonane
	111-84-2
	C02445, HMDB0029595
	32892
	1
	0-3
	-0.062
	COPD
	4

	2-methylnonane
	871-83-0
	-
	-
	1
	0-3
	0.042
	asthma
	4

	5-methylnonane
	15869-85-9
	-
	-
	2
	-
	0.102
	heart failure
	4

	decane
	124-18-5
	-
	41808
	1
	0-8
	0.017
	asthma
	4

	4-methyldecane
	2847-72-5
	HMDB0037268
	88816
	1
	0-1
	0.049
	heart failure
	1

	undecane
	1120-21-4
	HMDB0031445
	46342
	1
	0-4
	0.036
	heart failure
	1

	4-methylundecane
	2980-69-0
	-
	-
	2
	-
	0.045
	COPD
	1

	unknown (branched C12)
	-
	-
	-
	3
	-
	0.277†
	COPD
	1

	unknown (branched C12)
	-
	-
	-
	3
	-
	0.049†
	heart failure, control
	6

	unknown (dimethylundecane isomer)
	-
	-
	-
	3
	-
	0.005
	pneumonia
	1

	3-methyltridecane
	6418-41-3
	-
	-
	2
	-
	0.102†
	control
	6

	tetradecane
	629-59-4
	HMDB0059907
	41253
	1
	0-1
	0.048†
	asthma, pneumonia
	6

	unknown (branched C14)
	-
	-
	-
	3
	-
	0.103†
	pneumonia, control
	6

	unknown (branched C14)
	-
	-
	-
	3
	-
	0.042
	pneumonia
	1

	unknown (branched C15)
	-
	-
	-
	3
	-
	0.046†
	heart failure
	6

	octadecane
	593-45-3
	HMDB0033721
	32926
	1
	-
	-0.061†
	control
	7

	1-nonene
	124-11-8
	C08452, HMDB0031270
	77443
	1
	0-4
	-0.050
	asthma
	4

	1-decene
	872-05-9
	-
	87315
	1
	0-29
	0.029
	pneumonia
	4

	cyclohexane
	110-82-7
	C11249, HMDB0029597
	29005
	1
	1-9
	0.132†
	COPD, control
	3

	cyclohexene
	110-83-8
	-
	36404
	1
	0-1
	0.096
	heart failure
	4

	unknown (cyclohexadiene isomer)
	-
	-
	-
	3
	-
	0.639†
	control
	5

	unknown (methylcyclopentadiene)
	-
	-
	-
	3
	-
	0.416†
	COPD, control
	4

	unknown (hexadecene isomer)
	-
	-
	-
	3
	-
	0.003
	control
	7

	unknown
	-
	-
	-
	3
	-
	0.010
	pneumonia, COPD
	1

	Ketones
	

	acetone
	67-64-1
	C00207, HMDB0001659
	15347
	1
	38-10,077
	0.062†
	heart failure, control
	5

	2,3-butanedione
	431-03-8
	C00741, HMDB0003407
	16583
	1
	0-113
	0.289†
	asthma, COPD
	3

	2-pentanone
	107-87-9
	C01949, HMDB0034235
	16472
	1
	0-6
	0.106†
	asthma
	5

	3-buten-2-one (methyl vinyl ketone)
	78-94-4
	C20701, HMDB0061873
	48058
	1
	0-52
	0.078†
	pneumonia
	3

	4-methyl-2-pentanone
	108-10-1
	C19263, HMDB0002939
	142806
	1
	0-3
	-0.126
	control
	2

	6-methyl-5-hepten-2-one
	110-93-0
	C07287, HMDB0035915
	16310
	1
	0-1
	0.115†
	COPD, control
	4

	cyclohexanone
	108-94-1
	C00414, HMDB0003315
	17854
	1
	0-2
	0.263†
	pneumonia, control
	6

	Aldehydes
	

	butanal
	123-72-8
	C01412, HMDB0003543
	15743
	1
	-
	-0.007
	heart failure
	4

	hexanal
	66-25-1
	C02373, HMDB0005994
	121338
	1
	0-1
	0.002
	asthma, pneumonia
	8

	nonanal
	124-19-6
	HMDB0059835
	84268
	1
	0-7
	0.004
	asthma
	8

	decanal
	112-31-2
	C12307, HMDB0011623
	31457
	1
	0-5
	-0.031
	asthma
	8

	unknown (methyldecanal isomer)
	-
	-
	-
	3
	-
	0.004
	asthma
	8

	undecanal
	112-44-7
	HMDB0030941
	46202
	1
	0-4
	-0.127†
	asthma
	8

	2-methyl-2-propenal (methacrolein)
	78-85-3
	HMDB0061874
	88384
	1
	0-2
	0.016
	pneumonia, heart failure
	3

	3-methylbenzaldehyde
	620-23-5
	C07209, HMDB0029637
	28476
	1
	-
	0.107
	asthma
	4

	tridecanal
	10486-19-8
	HMDB0030928
	89816
	2
	-
	-0.108†
	heart failure
	7

	Alcohols
	

	2-propanol
	67-63-0
	C01845, HMDB0000863
	17824
	1
	2-719
	-0.041†
	pneumonia, control
	5

	2-ethylhexanol
	104-76-7
	C02498, HMDB0031231
	16011
	1
	0-3
	-0.014
	asthma
	6

	1-decanol
	112-30-1
	C01633, HMDB0011624
	28903
	1
	0-5
	-0.013
	COPD
	8

	1-hexadecanol
	36653-82-4
	C00823, HMDB0003424
	16125
	1
	0-14
	-0.046
	asthma, pneumonia
	7

	Other oxygen-containing VOCs (OVOCs)
	

	ethyl acetate
	141-78-6
	C00849, HMDB0031217
	27750
	1
	1-40
	0.022
	heart failure
	3

	tetrahydrofuran
	109-99-9
	HMDB0000246
	26911
	1
	0-5
	-0.017
	asthma
	4

	1,4-dioxane
	123-91-1
	C14440
	47032
	1
	0-276
	0.105
	asthma
	3

	2-methyl-1,3-dioxolane
	497-26-7
	-
	-
	2
	-
	0.080
	asthma, COPD
	3

	1,3-dioxolane
	646-06-0
	-
	87597
	2
	-
	0.199†
	heart failure
	3

	Terpenes / Terpenoids
	

	limonene
	5989-27-5
	C06099, HMDB0003375
	15382
	1
	0-75
	0.062†
	COPD, heart failure
	2

	alpha-pinene
	7785-26-4
	C06308, HMDB0035658
	28660
	1
	0-53
	-0.066
	pneumonia, control
	2

	eucalyptol
	470-82-6
	C09844, HMDB0004472
	27961
	1
	0-16
	0.008
	asthma, COPD
	2

	menthone
	14073-97-3
	C00843, HMDB0035162
	15410
	1
	0-5
	-0.097
	pneumonia, COPD
	2

	menthol
	2216-51-5
	C00400, HMDB0003352
	15409
	1
	0-160
	0.023
	COPD
	2

	camphene
	79-92-5
	C06076, HMDB0059839
	3830
	1
	0-2
	-0.056
	COPD
	2

	p-mentha-1,4/8-diene
	99-85-4
	C09900, HMDB0038150
	10577
	2
	-
	-0.057
	asthma, pneumonia
	2

	3-carene
	13466-78-9
	C11382, HMDB0035619
	35661
	1
	0-2
	-0.032
	asthma, heart failure
	2

	beta myrcene
	123-35-3
	C06074, HMDB0038169
	17221
	1
	0-2
	-0.002
	heart failure
	2

	beta-phellandrene
	555-10-2
	C19818, HMDB0036081
	48741
	2
	-
	0.008
	asthma, pneumonia
	2

	geranylacetone
	3796-70-1
	C13297, HMDB0031846
	67206
	1
	1-6
	0.177†
	control
	8

	beta-bisabolene
	495-61-4
	C16775, HMDB0035992
	49249
	2
	-
	-0.198
	asthma
	7

	unknown (sesquiterpenoid)
	-
	-
	-
	3
	-
	-0.082
	asthma, pneumonia
	7

	unknown
	-
	-
	-
	3
	-
	0.231
	COPD
	8

	alpha isomethyl ionone
	-
	-
	-
	2
	-
	-0.030
	control
	7

	galaxolide
	1222-05-5
	-
	83784
	2
	-
	-0.113
	COPD
	7

	Aromatics
	

	xylene
	106-42-3
	C06756, HMDB0059924
	27417
	1
	0-5
	0.12†
	asthma, pneumonia, control
	4

	ethylbenzene
	100-41-4
	C07111, HMDB0059905
	16101
	1
	0-1
	0.15†
	heart failure
	4

	2,3-dimethylnaphthalene
	581-40-8
	-
	48615
	1
	-
	-0.05
	COPD, heart failure
	7

	unknown (C9, substituted benzene)
	-
	-
	-
	3
	-
	0.235†
	control
	4

	Sulphur-containing VOCs
	

	3-methyl thiophene
	616-44-4
	HMDB0033119
	89007
	1
	0-7
	0.040
	COPD
	3

	dimethyl sulphide
	75-18-3
	C00580, HMDB0002303
	17437
	1
	0-16
	-0.044
	control
	3

	allyl methyl sulphide
	10152-76-8
	HMDB0031653
	89856
	1
	0-4
	-0.230†
	COPD, control
	2

	carbonyl sulphide
	463-58-1
	C07331
	16573
	2
	-
	0.122†
	pneumonia, COPD
	3

	1-(methylthio)-1-propene
	10152-77-9
	HMDB0059843
	89721
	1
	0-1,126
	-0.186
	pneumonia
	2

	1-methylthio-propane
	3877-15-4
	HMDB0061871
	88383
	2
	-
	-0.044
	pneumonia
	2

	unknown (C4 thio-containing)
	-
	-
	-
	3
	-
	-0.007
	asthma
	2

	Nitrogen-containing VOCs
	

	4-cyanocyclohexene
	100-45-8
	-
	-
	1
	-
	-0.039
	asthma, pneumonia
	7

	methenamine
	100-97-0
	D00393,HMDB0029598
	6824
	2
	-
	0.014
	asthma, pneumonia
	7

	Halogenates
	

	dichloromethane
	75-09-2
	C02271, HMDB0031548
	15767
	1
	0-199
	-0.007
	pneumonia, COPD
	5

	Surfactants and emollients
	

	isopropyl myristate
	110-27-0
	D02296,HMDB0040392
	90027
	1
	0-76
	-0.189†
	control
	7

	stearyl vinyl ether
	930-02-9
	-
	-
	2
	-
	-0.235†
	asthma, control
	7

	N,N-dimethyl-1-nonanamine
	17373-27-2
	-
	-
	2
	-
	0.055†
	asthma, heart failure
	6

	N,N-dimethyl-1-dodecanamine
	112-18-5
	-
	-
	2
	-
	0.056
	COPD
	6

	unknown (alkenyl hexanoic acid ester)
	-
	-
	-
	3
	-
	-0.061
	control
	7

	unknown (alkenyl hexanoic acid ester)
	-
	-
	-
	3
	-
	-0.042
	control
	7

	unknown (alkenyl hexanoic acid ester)
	-
	-
	-
	3
	-
	-0.038
	COPD, heart failure
	7

	unknown (surfactant)
	-
	-
	-
	3
	-
	0.134
	asthma
	8

	unknown (emoillent)
	-
	-
	-
	3
	-
	-0.162
	asthma
	7

	unknown (eicosanol)
	-
	-
	-
	3
	-
	-0.165†
	control
	6

	unknown (emoillent)
	-
	-
	-
	3
	-
	-0.013
	asthma
	7

	2,2,4,4,6,8,8-heptamethylnonane
	4390-04-9
	-
	131383
	2
	-
	0.045†
	control
	6

	dodecyl acrylate
	2156-97-0
	-
	-
	2
	-
	-0.021
	pneumonia
	7

	decyl isobutyl ether
	-
	-
	-
	2
	-
	0.002
	heart failure
	8



Table S9. Chemical assignment table. The table outlines the assignment of selected predictive markers from the regression model detailing chemical name, CAS registry number, KEGG, Human Metabolome Database and ChEBI identifiers and MSI-compliant metabolite identification level, concentration range and fold change (expressed as log2) between acute and control groups, and compound contribution towards disease-specific biomarker risk scores (†adjusted p-value <0.05).





	
	logFC
	AveExpr
	t
	P. Value
	adj.P.Val
	B

	Set3
	0.133890616
	0.004263125
	2.879346419
	0.004319299
	0.034554392
	-2.142608513

	Set1
	-0.120196744
	0.011684816
	-1.854952871
	0.064743701
	0.258974804
	-4.369194843

	Set7
	0.061793373
	0.015703055
	1.157435072
	0.248165085
	0.544802368
	-5.347558772

	Set5
	-0.060241661
	-0.027387588
	-0.996694751
	0.31984657
	0.544802368
	-5.50959215

	Set6
	-0.044261401
	0.018231244
	-0.830155612
	0.407218311
	0.544802368
	-5.652155219

	Set2
	0.042555754
	0.007308014
	0.827706348
	0.408601776
	0.544802368
	-5.65405913

	Set4
	-0.035370385
	0.012747522
	-0.700755726
	0.484086974
	0.553242256
	-5.74507753

	Set8
	0.007185736
	0.005059851
	0.128594967
	0.897778335
	0.897778335
	-5.967968995


Table S10. Asthma enrichment analysis. The table demonstrates the results of the enrichment analysis performed in the asthma group using the 8 feature sets obtained from the Louvain clustering on the correlation graph (fig. S10).









	
	logFC
	AveExpr
	t
	P.Value
	adj.P.Val
	B

	Set3
	-0.090944102
	0.004263125
	-1.847462511
	0.065824888
	0.31930245
	-4.015728578

	Set5
	-0.101063794
	-0.027387588
	-1.579494626
	0.115447869
	0.31930245
	-4.359177814

	Set6
	0.081933094
	0.018231244
	1.451613602
	0.147823971
	0.31930245
	-4.504601143

	Set1
	0.096742783
	0.011684816
	1.410314835
	0.159651225
	0.31930245
	-4.548997592

	Set4
	0.058154903
	0.012747522
	1.08835486
	0.277454107
	0.443926572
	-4.851845137

	Set2
	-0.043701593
	0.007308014
	-0.802920566
	0.422759696
	0.489518896
	-5.055725798

	Set7
	0.044836139
	0.015703055
	0.793305124
	0.428329034
	0.489518896
	-5.061530212

	Set8
	0.002536665
	0.005059851
	0.042881813
	0.965828915
	0.965828915
	-5.299201629


Table S11. COPD enrichment analysis. Feature enrichment in COPD using 8 features sets obtained by Louvain clustering on the correlation graph





	
	logFC
	AveExpr
	t
	P.Value
	adj.P.Val
	B

	Set3
	-0.16062091
	0.004263125
	-2.841944019
	0.004842214
	0.032792407
	-2.229765975

	Set5
	0.195734539
	-0.027387588
	2.664418025
	0.008198102
	0.032792407
	-2.6741005

	Set2
	0.147456886
	0.007308014
	2.359677827
	0.019036076
	0.050762869
	-3.37356668

	Set1
	0.087558967
	0.011684816
	1.111758525
	0.267276909
	0.534553819
	-5.37643629

	Set6
	-0.054112112
	0.018231244
	-0.835023125
	0.404477256
	0.64716361
	-5.628009236

	Set7
	-0.040272554
	0.015703055
	-0.620631141
	0.535390206
	0.711290217
	-5.773994793

	Set4
	0.028289272
	0.012747522
	0.461124606
	0.645097706
	0.711290217
	-5.85478987

	Set8
	-0.025165368
	0.005059851
	-0.370531932
	0.711290217
	0.711290217
	-5.890086764


Table S12. Heart failure enrichment analysis. Feature enrichment in heart failure using 8 features sets obtained by Louvain clustering on the correlation graph.









	
	logFC
	AveExpr
	t
	P.Value
	adj.P.Val
	B

	Set2
	-0.092675555
	0.007308014
	-1.658089062
	0.098514794
	0.350018518
	-4.257598246

	Set3
	0.083374576
	0.004263125
	1.6493092
	0.100301314
	0.350018518
	-4.268325935

	Set6
	0.082784378
	0.018231244
	1.428260455
	0.154426336
	0.350018518
	-4.520076707

	Set5
	-0.08936284
	-0.027387588
	-1.36002492
	0.175009259
	0.350018518
	-4.590632855

	Set8
	0.029388432
	0.005059851
	0.483786536
	0.628947737
	0.86559581
	-5.192394684

	Set7
	-0.024708996
	0.015703055
	-0.425730243
	0.670659348
	0.86559581
	-5.212141706

	Set1
	0.017148026
	0.011684816
	0.243432731
	0.807863636
	0.86559581
	-5.257780971

	Set4
	0.009296591
	0.012747522
	0.169424129
	0.86559581
	0.86559581
	-5.269216827


Table S13. Pneumonia enrichment analysis. Feature enrichment in Pneumonia using 8 features sets obtained by Louvain clustering on the correlation graph.
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