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Automated workflows for running lsaBGC 

To automate the application of these programs, we had initially developed three workflow 
programs called lsaBGC-AutoProcess.py, lsaBGC-AutoExpansion.py, and lsaBGC-AutoAnalyze.py. 
lsaBGC-AutoProcess.py is a preliminary workflow which does not execute any of the aforementioned 
core programs of the suite. It functions to take in a listing of genomic assemblies and perform gene-
calling and basic annotation using Prokka(1), annotate BGCs using antiSMASH(2), and finally run 
OrthoFinder2(3) for de novo delineation of homolog groups. It runs antiSMASH and OrthoFinder2 using 
the same Prokka output to ensure locus tag identifiers are able to be matched between the output of the 
two former programs (Fig. S1a). lsaBGC-AutoExpansion.py is a wrapper of lsaBGC-Expansion.py which 
performs additional GCF instance identification in draft assemblies across all GCFs identified for a taxa. 
It is recommended that users run lsaBGC-AutoExpansion.py instead of lsaBGC-Expansion.py 
individually because the workflow additionally features a critical consolidation step in which BGC 
instances identified as potentially belonging to multiple GCFs are re-assessed and assigned to only the 
single best fitting GCF (Fig. S1c). Finally, lsaBGC-AutoAnalyze.py is a major workflow which runs the 
analytical core programs across each GCF and creates a few consolidated reports after completion. This 
workflow starts by computing pairwise whole-genome similarity metrics using either CompareM(4) or 
FastANI(5) and then runs lsaBGC-See.py, lsaBGC-PopGene.py, lsaBGC-RelativeDivergence.py and, 
optionally, lsaBGC-DiscoVary.py for each GCF. At the end of the workflow, it generates consolidated 
report tables and visualizations from GCF-specific results for lsaBGC-PopGene.py and lsaBGC-
RelativeDivergence.py. These workflows, similar to the core programs, are documented on the Github 
wiki. 

Updates to lsaBGC since release 1.0 

Changes to lsaBGC since its initial release have primarily focused on simplifying usage of the suite 
through development of lsaBGC-Ready.py and lsaBGC-Easy.py. Analytical changes have mostly been 
minimal but include: (i) updated formatting of result files from the lsaBGC-AutoAnalyze.py workflow, 
(ii) changing how gaps are accounted for in calculating the Beta-RD statistic from codon-alignments, (iii) 
an adjustment to key-word searches used to prevent lsaBGC-DiscoVary from calling variants upon genes 
for which annotation suggests are MGEs, (iv) using MAGUS(6) in place of MAFFT(7) for protein 
alignment, to allow for better scalability, (v) introducing a more stringent requirement for homolog 
groups regarded as part of the protocore of BGC predictions by antiSMASH(2), and (vi) use of 
hierarchical orthogrouping by OrthoFinder. Incorporation of GToTree(8) also provided the opportunity to 
efficiently and more easily estimate expected similarities between genomes using protein alignments of 
single copy genes used by the software to construct phylogenies. As such, we have removed support for 
inferring Beta-RD using ANI or AAI between genomes. We have also added support for GECCO(9) and 
DeepBGC(10) predictions of BGCs. Finally, we have begun to introduce code to enable application of 
lsaBGC to fungi and plants but are still testing these functionalities. 

Assessment of hybrid genomic assemblies constructed for S. epidermidis LK1136 and S. 
warneri LK413 

We chose to investigate staphyloxanthin production in S. epidermidis and S. warneri because they are 
Staphylococcus species commonly isolated from skin. Specifically, the former species S. epidermidis, is 
the most abundant staphylococcal species on skin and the latter species, S. warneri, featured two distinct 
staphyloxanthin encoding GCFs. For the S. epidermidis LK1136 hybrid ONT and Illumina genome 
assembly, we found that the isolate featured eight plasmids, including a 225 kb mega-plasmid (Table 
S7b). All eight plasmids were regarded as circularized; however, the chromosome was not. For the S. 
warneri LK413 hybrid genome assembly, we found that the isolate featured three plasmids, of which two 
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were circularized (Table S7b). The chromosome for this isolate was circularized and regarded as 
complete. The incomplete scaffold in S. warneri was found to feature staphyloxanthin encoding GCF-6 
and to validate it represented a plasmid, we used the BLASTn(11) to NCBI’s nt analysis performed in 
GAEMR(https://software.broadinstitute.org/software/gaemr/) to confirm that all reported alignments were 
to Staphylococcus plasmid sequences. Additionally, this scaffold featured a slightly elevated coverage, 
~3X greater than the chromosome.  

Designation of species belonging to Mammaliicoccus 
The Staphylococcus_A genus designation in GTDB R202 was largely concordant with the recent 
reclassification of five species from Staphylococcus to Mammaliicoccus(12). In the latest GTDB R207 
release, this genus has now been reclassified to Mammaliicoccus. The recent update to taxonomic names 
also includes the reclassification of species S. pasteuri_A to M. fleurettii. Notably, we do not regard S. 
schleiferi as part of Mammaliicoccus because it is categorized as Staphylococcus by GTDB (both R202 
and R207) and groups within the Staphylococcus genus in our ribosomal protein-based maximum-
likelihood phylogeny. Similar to our assessment, the reclassification of this species to Mammaliicoccus 
was recently questioned(13). 

Genome annotation, homology determination in predicted proteomes, and clustering of 
BGCs into GCFs 
Complete or chromosome level assemblies were run through lsaBGC-AutoProcess.py which invokes 
Prokka(1) for gene calling and annotation, antiSMASH for BGC detection (v6)(2), and OrthoFinder2(3) 
for delineating homologous clusters of proteins (Fig. S1a). Since version 1.1, we no longer recommend 
usage of lsaBGC-AutoProcess.py and instead suggest using the lsaBGC-Easy.py workflow or lsaBGC-
Ready.py. lsaBGC-Ready.py can perform many of the same functions as lsaBGC-AutoProcess.py with 
expanded options to: (i) automatically perform clustering of BGCs into GCFs using lsaBGC-Cluster.py or 
to incorporate user-provided BiG-SCAPE(14) clustering results, (ii) identify additional instances of GCFs 
directly in draft quality assemblies using lsaBGC-AutoExpansion.py, and (iii) construct a species 
phylogeny using GToTree(8). 

Subsequent clustering of detected BGCs into GCFs was performed using lsaBGC-Cluster.py. For 
consistency and simplicity, we ran both the genus-level and species-level analyses using identical 
parameters for lsaBGC-Cluster.py. The MCL inflation parameter was set to 4.0, the minimal syntenic 
similarity threshold was set to 0.7, and the Jaccard similarity of homolog groups shared vs. observed in 
union between two BGCs threshold was set to 20. 

lsaBGC-Cluster.py leverages homology information from OrthoFinder2(3) together with syntenic 
similarity akin to the approach taken in BiG-SCAPE(14). However, unlike BiG-SCAPE, which is reliant 
on domains, lsaBGC-Cluster.py uses entire protein sequences designated to discrete homolog groups, 
offers a tailored report for users on appropriate parameter selection, and employs Markov chain clustering 
(MCL)(15) instead of affinity propagation for granular GCF delineation. Similar to BiG-SCAPE, 
lsaBGC-Cluster.py also uses both the presence of coding units (domains for BiG-SCAPE; homolog 
groups for lsaBGC-Cluster.py) as well as sequence similarity between such units to appropriately cluster 
BGCs. In lsaBGC-Cluster.py, the presence of homolog groups and their sequence similarity is implicit to 
the OrthoFinder2 algorithm which determines appropriate thresholds for designating homologous, ideally 
orthologous, protein instances by accounting for genome-wide similarity(3). Also, similar to BiG-SCAPE 
in concept(14), lsaBGC-Cluster.py can be set to require syntenic similarity between BGC instances for 
clustering, but the methodology in lsaBGC-Cluster.py is based on global syntenic similarity measured 
using the absolute value of the Spearman correlation for sets of three homolog groups shared between 
BGC instances. BiG-SCAPE on the contrary uses more localized information on adjacent-pairs of 
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domains to infer overall syntenic similarity. Finally, both lsaBGC-Cluster.py and BiG-SCAPE offer 
flexibility for whether to perform preliminary partitioning of BGCs based on the predicted class by 
antiSMASH. By default, lsaBGC-Cluster.py does not perform such partitioning. 

Unique to lsaBGC-Cluster.py is an option to produce a user-friendly PDF report guiding users for optimal 
parameters for clustering. This report showcases how different values of the MCL inflation parameter and 
the Jaccard similarity threshold for shared homologs between pairs of BGCs affects the final clustering. In 
this report, users can see how different parameter combinations can influence the number of singleton 
GCFs, GCFs with a single BGC member, the number of the core homolog groups observed in all BGCs 
belonging to a particular GCF (Table S2, S3). Such a report is critical for users to be able to move 
forward with an appropriate delineation of GCFs and not to re-track and manually experiment with 
different clustering configurations. An example report, pertaining to clustering BGCs from 77 
Staphylococcus genomes with completed or chromosome-level assemblies, as well as descriptions for 
each of the figures featured in its 52 pages can be found on the Github wiki page for the lsaBGC-
Cluster.py program. 

To additionally provide users with versatility to better define the boundaries of a GCF, which could be 
particularly useful when dealing with hybrid BGCs or multiple BGCs co-located nearby each other, we 
further provide lsaBGC-Refiner.py. lsaBGC-Refiner.py takes in as input a GCF listing file of BGC 
instances belonging to it and a pair of user-defined boundary homolog groups. It then filters BGC 
Genbanks to retain only genes found in between the two boundary homolog groups. This functionality is 
particularly useful for instances where antiSMASH is inconsistent in defining hybrid BGCs due to 
variable inter-protocore content which has recently been highlighted(16).  

For biosynthetic class designations of GCFs in this study, we regarded GCFs as a single class if at least 
90% of BGC instances from complete genomes were predicted by antiSMASH as encoding for the class; 
otherwise, the GCF was regarded as a hybrid. 

High throughput identification of homologous instances of GCFs in assemblies 

To mine metagenomic datasets for base-resolution novelty within BGCs previously unobserved from 
available assemblies for a given taxa, it is first necessary to comprehensively profile all allelic variants of 
a homolog group from such a set of assemblies. We thus developed lsaBGC-Expansion.py to efficiently 
and systematically identify orthologous instances of GCFs across the comprehensive set of assemblies 
available for a taxa, which for certain Staphylococcus species could range in the thousands on NCBI’s 
GenBank database (Fig. 1cd, S1b). In concept, lsaBGC-Expansion.py is similar to the now common 
bioinformatics practice of defining homolog groups for proteins upfront and then searching for their 
presence in new genomes(17–19). In fact, re-identifying instances of homolog groups found within GCFs 
is the first component of lsaBGC-Expansion.py. This is performed by first constructing profile HMMs for 
such homolog groups using MAFFT local alignment(7) with standard settings and HMMER3(20), 
followed by searching genomic assemblies directly using HMMER3 or emitting the consensus sequence 
and searching via DIAMOND(21), as inspired by the approach developed by Melnyk et al. 2019(18). For 
the analyses presented in this paper, we used the DIAMOND-based approach (specified by --quick_mode 
argument). 

In a preliminary step, profile HMMs are similarly aligned to the predicted proteome of genomes from the 
initial set of genomes which were run through antiSMASH and used to establish GCFs. This reflexive 
alignment enables the determination of appropriate E-value thresholds to gauge the presence or absence 
of homolog groups in new genomes. Specifically, the E-value thresholds for each homolog group is 
determined as either: (i) the lowest E-value of false positive alignments multiplied by a factor of 1E-5 or 
(ii) a default threshold of 1E-10 if E-values for some true positive alignments are found to be higher than 
those for false positive alignments. Importantly, this methodology for selecting E-value thresholds 
assumes that new genomes being searched are phylogenetically interspersed with genomes used for initial 
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analysis and construction of the profile HMMs. We additionally required proteins which aligned to 
homolog group profile HMMs to also be of similar length to the proteins used to construct the profile 
HMMs, requiring them to be at most 1.5X the max(25, median absolute divergence) base-pairs shorter or 
longer than the median length of the representative proteins of the homolog group. 

A classical HMM framework, leveraging the pomegranate library(22), is used to scan predicted coding 
genes across assembly scaffolds, where coding genes are regarded to follow a binary state based on 
whether they exhibit homology to a GCF-associated homolog group. Our approach mimics the algorithm 
of ClusterFinder(23), but features several important differences to identify fragmented instances matching 
well-characterized BGCs rather than search for novel BGCs with remote homology to known instances. 
We estimate the emission probability of each homolog group based on whether it's profile HMM is able 
to distinguish true hits from false hits from reflexive alignments (see previous paragraph). If it is able to 
distinguish true-hits from false-hits, then detecting a homolog group at the E-value threshold described 
above is very likely to represent a predicted protein belongs to the GCF and the homolog group will have 
an emission probability of 0.99 for the "GCF State" and a emission probability of 0.01 for the 
"Background State". If the profile HMM is unable to distinguish true-hits from false-hits, then the 
emission probability for the "Background State" is set to a maximum of either: (i) 1.0 - (# of GCF 
instances / # of total instances) or (ii) 0.2. The emission probability for the "GCF State" in this case will 
be set to the complement of the "Background State" probability. The transition probabilities between 
states are set to 0.1 by default and to 0.9 for transitioning to the same state. The start and end of a scaffold 
are equally likely to correspond to either the states of GCF or Background. 

Genomic neighborhoods of predicted coding genes detected by the HMM as corresponding to the GCF 
(herein referred to as "potential GCF segments") are next conditionally assessed to avoid reporting false 
positive neighborhoods which are likely not related to the GCF in question. Each potential GCF segment 
must feature at least 3 homolog groups found in a known instance of the GCF. Additionally, all potential 
GCF segments must display reasonable syntenic similarity (gene positioning) to a known instance of the 
GCF found in the high quality genomic assemblies. Unlike the syntenic similarity filtering applied in the 
clustering of BGCs into GCFs, here we use Pearson's correlation instead of Spearman's correlation to 
more reliably assess syntenic similarity of shorter segments to known GCF instances. Correlations are 
only calculated if the genes in the segment under consideration and the comparing known BGC instance 
have genes in the same relative direction. A default correlation of 0.8 to at least one known GCF instance 
is required by each segment (with p-value < 0.1). 

Segments are reported as part of the GCF automatically if any of the following criteria are met: (i) The 
segment features >= 5 homolog groups and segment features >= 3 "core" homolog groups (“core" 
homolog groups are those which are observed in all known instances of a GCF from the high-quality 
genomic assemblies), (ii) the segment features a GCF "specific" homolog group (these are homolog 
groups which are only observed within the GCF in the high-quality genome assemblies, thus their 
presence is a good indication the segment belongs to the GCF and is not a false positive), or (iii) the 
segment features homolog groups which overlap with the core of protoclusters in GCFs as delineated by 
antiSMASH. If segments do not meet any of the three criteria above, they can still be reported if they are 
on the edge of scaffolds (within 500 bp from the end of a scaffold). These segments do not need to meet 
criteria (i) individually, but do need to feature >=5 homolog groups and >=3 core homolog groups of the 
GCF in unison. Additionally, only one edge segment per scaffold is allowed. 

To ensure we are not missing more evolutionarily diverged variants of homolog groups not represented in 
the initial lsaBGC analysis, we perform a final "polishing" step for segments which are considered to 
belong to a GCF. This involves reassessing genes on GCF segments which are unassigned to any 
homolog group and additionally searching for surrounding genes (up to 10 genes on each side) which 
display homology to GCF-associated homolog groups. A gene only needs to display homology at a level 
of less than 1E-10 E-value to be assigned to a homolog group. Critically, we only assign these genes to 
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homolog groups after the segment is determined as belonging to the focal GCF to ensure our detection of 
segments is based on more concrete/significant homology-based evidence 

Ultimately, we do not recommend running lsaBGC-Expansion.py individually on a GCF-by-GCF basis, 
but to instead use the wrapper workflow program lsaBGC-AutoExpansion.py, to automatically search for 
homologous instances across all GCFs. This is because lsaBGC-AutoExpansion.py is able to resolve 
potential conflicts where some part of a genomic assembly might independently be assigned to two 
separate GCFs (Fig. S1c). After running lsaBGC-Expansion.py individually per GCF, it consolidates 
results and resolves any conflict in genes from the same genomic assembly being assigned to multiple 
GCFs. It resolves such conflicts by performing pairwise comparisons of the gene sets across every BGC 
instance from every GCF. Overlap between two BGCs from distinct GCFs is considered a conflict if they 
overlap with more than 5% of the number genes of one of the BGCs. If this is the case, the sum of the 
exponents of E-values of each BGC's genes to their respective homolog group profile HMMs are 
compared and the BGC with the lower sum (indicating more genes in the BGC match a GCF profile or 
that genes match better to the GCF profile) is retained while the other is discarded. lsaBGC-
AutoExpansion.py also creates consolidated result files, including: (i) an updated/expanded sample vs. 
homolog group gene matrix, (ii) an updated/expanded sample listings file (listing the path to each 
sample’s GenBank assembly and predicted proteome), and (iii) an updated listing file of BGCs for each 
GCF. 

Rapid determination of 63 GCFs in >15K Staphylococcus genomes: We were able to use 
lsaBGC-AutoExpansion.py to rapidly identify GCFs determined from complete Staphylococcus genomes 
in all ~15K Staphylococcus genomes represented in GTDB release R202. As expected, we found that 
fewer homolog groups in BGCs were detected for low quality assemblies (N50 < 10K; median of 105 
homolog groups in BGCs per genome) as compared to high-quality assemblies (N50 > 100K; median of 
164 homolog groups in BGCs per genome) (p=8.58E-36; two-sided Wilcoxon rank sum test). 
Furthermore, we found a lower percentage of homolog groups found together on the same BGC fragment 
with core biosynthetic machinery for low quality assemblies (N50 < 10K; median of 54%) as compared to 
high-quality assemblies (N50 > 100K; median of 100%) (p=8.64E-39; two-sided Wilcoxon rank sum test) 
(Fig. 1c). Note, the time taken to run lsaBGC-AutoExpansion.py on all draft-quality Staphylococcus 
genomes described in the main text is not inclusive of preliminary gene-calling using Prokka(1) 
performed via lsaBGC-AutoProcess.py. 

M. luteus - Benchmarking comprehensive antiSMASH vs. lsaBGC framework: To benchmark the 
sensitivity and specificity of the lsaBGC framework, whereby we perform antiSMASH(2) based 
identification on a subset of complete genomes for a taxa and then identify homologous instances in draft 
quality genomes, against simply running antiSMASH on all the available genomes for the taxa, we 
performed two comparative analyses using M. luteus genomes (Fig. 1c, S3, S4). Because lsaBGC-
Expansion.py accounts for all homolog groups found in a GCF rather than being dependent on a smaller 
subset of BGC-associated domains, lsaBGC-Expansion.py should have increased sensitivity for detection 
of genomic regions belonging to a GCF compared to antiSMASH. For instance, if in truth a BGC exists 
across two separate scaffolds, but only one segment features all the core domains encoding for the 
secondary metabolite biosynthesis machinery, then a rule-based approach seeking specific domains might 
struggle with detection of the second segment consisting of only auxiliary cargo, even if some of those 
genes encode enzymes critical for the production of the final metabolite. 

In the first experiment, to assess the sensitivity of lsaBGC-Expansion.py, we compared the final GCFs of 
two different lsaBGC analyses: (i) an expansion based analysis where we ran initial processing, 
antiSMASH based BGC identification, and GCF clustering for 14 high-quality "complete" / 
"chromosome" quality M. luteus assemblies and then perform expansion of the GCFs with 213 additional 
M. luteus draft genomic assemblies of lower quality, and (ii) a comprehensive clustering analysis where 
we ran initial processing, antiSMASH based BGC identification, and GCF clustering across all 227 
genomic assemblies in consideration (Fig. S3a). 
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This comparative analysis essentially allowed us to assess how many instances (in this case contiguous 
segments) of a particular GCF are missed by the lsaBGC expansion-based framework (Fig. S3b). We 
found that almost all instances of BGCs found when running antiSMASH on the draft assemblies directly, 
were also identified through lsaBGC-AutoExpansion.py using BGCs from the 14 high-quality genomic 
assemblies as references (97.8%; 1206/1233). Nearly all the exceptions not detected in the expansion-
based analysis (88.9%; 24 of 27) corresponded to rare GCFs which had no representatives in the high-
quality assemblies. These cases demonstrate a significant limitation of the lsaBGC core framework in 
which BGCs are identified de novo in only a subset of genomic assemblies and is an important 
consideration for users.  

The analysis also allowed us to assess how many instances of a particular GCF were only found by 
lsaBGC-AutoExpansion.py and not by running antiSMASH directly on draft genomes (Fig. S3c). Given 
that our approach is a taxa-focused analysis and utilizes all homolog groups associated with a GCF, not 
just those containing core BGC domains, it is not surprising that we were able to find substantially more 
instances of BGC segments in the draft assemblies using lsaBGC-AutoExpansion.py which were missed 
by antiSMASH. This is likely because of assembly fragmentation, as described in the example scenario 
above. In total, we found 689 new GCF instances only through lsaBGC-Expansion. Of these, most 
(87.1%, 600 of 689) correspond to true "expansions" (the GCF was detected as present in the samples in 
the comprehensive clustering analysis using antiSMASH, but additional segments containing auxiliary 
content on different scaffolds of the assembly were only detected by lsaBGC-AutoExpansion.py). 

In the second benchmarking experiment, we again use the 14 completed M. luteus genomes available, but 
in this setup our aim was to compare how the lsaBGC approach compared to running de novo 
antiSMASH when applied to fragmented versions of the original genomic assemblies (Fig. S4a). To 
generate the fragmented assemblies, paired-end reads were first simulated from assemblies using 
ART(24) at 5X coverage and then re-assembled using Unicycler(25). Five fragmented assemblies were 
created for each of the original 14 completed M. luteus genomes. On average fragmented assemblies had 
an N50 of 13,935 bp. This benchmarking setup allowed us to assess how many coding genes initially 
identified as part of distinct GCFs on complete genomes are re-identified after genomes are artificially 
fragmented. We performed in silico simulation of assembly fragmentation for each of the 14 genomes in 
five replicates. For each such replicate simulation, we randomly fragmented genomic assemblies at a 
single point within each BGC predicted for it by antiSMASH. This resulted in 70 fragmented assemblies 
(5 for each of the 14 genomes), which were then searched de novo for BGCs using antiSMASH or 
searched based on similarity to the initial BGCs identified in the completed (unfragmented) genomes 
using lsaBGC-AutoExpansion.py. Coding genes were matched between the initial completed genomes 
with their fragmented versions based on exact sequence matching and also checking if ORFs from the 
fragmented genome were subsequences of ORFs from the complete genomes.  

As expected, based on the algorithms employed, we found that lsaBGC-AutoExpansion.py was able to re-
identify more of the initial coding genes associated with BGCs in complete genomes compared to 
rerunning antiSMASH de novo (Fig. 1c, S4b). Rerunning antiSMASH on fragmented assemblies detected 
only 45.3% on average of the proteins it had originally associated with BGCs in complete genomes, while 
lsaBGC-AutoExpansion.py was able to recover 77.1% of them on average. However, lsaBGC-
AutoExpansion.py did identify multiple instances of homolog groups which were not present in the initial 
BGC predictions on complete genomes (Fig. S1c, S4bc). This is because lsaBGC-AutoExpansion.py used 
as reference all BGC instances from across the 14 genomes to identify GCFs in the fragmented genomes 
and thus increased the boundary of GCFs beyond what they might have initially been set to by the initial 
antiSMASH run on the complete (unfragmented) genomes. This can be seen as another key advantage of 
lsaBGC-AutoExpansion.py, in that it allows smoothing of BGC boundaries across homologous instances 
upon identification and can enable more comprehensive and robust comparative genomics of GCFs 
downstream. 
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Visualization of BGCs across phylogenies  

We have provided the lsaBGC-See.py program to allow users to visualize GCF instances across either a 
user-provided species phylogeny or automatically generated GCF-specific phylogeny. While the latter 
functionality is present in CORASON(14), the former feature, which can provide a differing and 
important evolutionary perspective, is currently unique to lsaBGC. lsaBGC creates automated PDF 
reports using R visualization libraries ggplot2(26) and ggtree(27) as well as creates a track for 
visualization in iTol(28). Additionally, the constructed GCF phylogeny and user-provided species 
phylogeny are reformatted to a Newick file in which genome identifiers are expanded if multiple 
instances of a GCF are found for it, which is critical for visualizing fragmented BGCs from draft 
genomes. The program generates a GCF specific phylogeny if requested by creating codon alignments (as 
described in the section “Understanding GCF Conservation and Composition through Evolutionary and 
Population Genetic Statistics”), concatenating these, filtering for conserved SNVs and generating an 
approximate maximum-likelihood phylogeny using FastTree2(29). 

Since version 1.3, we also provide the largely standalone program GSeeF.py within the lsaBGC suite 
which allows for construction of species phylogenies using GToTree(8) and phylogenomic heatmaps 
showcasing the presence of GCFs, defined by lsaBGC-Cluster.py or BiG-SCAPE, with the coloring of the 
heatmap corresponding to annotation types of BGCs extracted from antiSMASH BGC GenBanks. 
GseeF.py can be used to create similar views such as what we have depicted in Figure 1B. 

For generating comparative views between different crt encoding GCF representatives (Fig. S9a) we used 
clinker(30). For visualization of staphyloxanthin encoding GCFs across the Staphylococcus phylogeny 
(Fig. 3a, S8b), only a single representative genome from each species, as classified by GTDB(31), was 
selected and used to prune the original ribosomal phylogeny created from the diversity representation 
genome set. The percentage of species members with GCFs was determined using lsaBGC-
AutoExpansion.py results for all ~15K Staphylococcus genomes and was shown in log10 scale. 

Inspection of Staphylococcus and Corynebacterium GCFs with high Beta-RD values 

Investigation into High Beta-RD of lugdunin encoding NRPS GCF-46 in Staphylococcus: Among 
staphylococcal GCFs, GCF-46 depicted the highest posterior Beta-RD distribution (Fig. S5c). This GCF 
encodes for the lugdunin NRPS, which was determined to be an antibiotic produced by S. lugdunensis 
which is active against S. aureus(32). The ubiquity of this GCF being regarded as present in multiple 
staphylococcal species by lsaBGC-AutoExpansion.py was unexpected; however, further investigation 
revealed a rare instance of a small insertion-sequence element, which is ubiquitous across 
Staphylococcus, within the protocore region of the lugdunin BGC, thus resulting in lsaBGC-
AutoExpansion.py over-classifying the presence of the GCF as it assumes the genes within the element 
are highly BGC-associated. Although we suspect such cases to be rare, we have since introduced more 
stringent requirements for defining homolog groups as part of the protocore of BGCs predicted by 
antiSMASH in more recent releases of lsaBGC.  

Investigation into Corynebacterium GCF with the second highest Beta-RD value: In addition to 
Corynebacterium NRPS encoding GCF-50, the NRPS encoding GCF-9 exhibited a similarly high 
posterior Beta-RD distribution (Fig. S4d). GCF-9 was found to also be present in multiple species on the 
skin and was most prevalent in the well-known skin pathogen C. diphtheria(33). This GCF exhibited a 
similar scenario to GCF-50, in which it featured a highly conserved region with NRP synthase(s) flanked 
by MGEs in addition to a nearby phage and toxin/antitoxin system. GCF-9 was not further investigated 
because the NRP synthase (OG0002384) within GCF-9 could be found in multiple copies within certain 
genomes. To address such limitations, in version 1.3 of lsaBGC, we have switched the default settings to 
use more resolute orthogroup classifications by OrthoFinder (hierarchical orthogroups), which we found 
are able to better partition paralogous groups of NRP synthases. 
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Ancestral inference of gene cluster family carriage 

We performed ancestral inference of GCF carriage to predict vertical descent of GCFs within the skin-
associated phylogenetic clades of Staphylococcus and Corynebacterium (Fig. S5ab)(34). GCF carriage 
across genomes was encoded as a binary trait and AncestralGeneRator 
(https://github.com/broadinstitute/AncestralGeneRator) was used to perform ancestral state reconstruction 
to infer carriage for inner-nodes of the Corynebacterium and Staphylococcus ribosomal phylogenies. 
Briefly, PAUP (v4b)(35) was used to perform maximum parsimony with the ACCTRAN algorithm, 
setting gain and loss costs to 10 and 5, respectively. Afterwards, result files from AncestralGeneRator 
were further processed and were visualized using iTol(28). This analysis revealed that four GCFs were 
ancestral to the S. epidermidis/aureus clade (predicted siderophore, terpene/T3PKS, cyclic lactone 
autoinducer, and hserlactone) and five GCFs were ancestral to the C. tuberculostearicum species complex 
(predicted siderophore, terpene, T1PKS, NAPAA, and NAPAA/betalactone). 

Identification of homolog groups associated with skin-residing species of Staphylococcus 
and Corynebacterium 

We developed a script called crawlingFisher.py, provided in the lsaBGC suite, which tests for 
enrichment or depletion of homolog group presence amongst genomes in focal clades using Fisher’s exact 
test. Provided with a phylogenetic tree and matrix specifying the presence of homolog groups across 
genomes, the program automatically performs such tests for each homolog group at each inner-node of 
the phylogeny. Multiple testing correction was performed comprehensively at the end using Benjamini-
Hochberg false discovery rate and cases were considered statistically significant if the adjusted p-value 
was less than 0.05. Results were further filtered to retain only homolog groups which were present in at 
least 80% of genomes under the focal node and at most 20% of other genomes or, alternatively, at most 
20% of genomes under the focal node and at least 80% of other genomes. Finally, only results pertaining 
to focal nodes where at least 80% of genomes were classified as skin-associated were reported (Fig. S5ab, 
Table S5).  

Understanding GCF conservation and composition through evolutionary and population 
genetic statistics 

A core program of the lsaBGC suite is lsaBGC-PopGene.py which generates a table report of 
conservation and evolutionary statistics for each homolog group found within a specific GCF. To 
calculate certain homolog group statistics within this report, lsaBGC-PopGene.py begins by constructing 
protein alignments(7) for each homolog group and translating those to codon-based alignments using 
PAL2NAL(36). Codon-based alignments are additionally used to visualize conservation and domain 
structure for homolog groups and downstream in lsaBGC-DiscoVary.py. Three of the evolutionary 
statistics which codon alignments are used for computing are: (i) homolog-group specific variants of the 
Beta-Relative Divergence statistic, (ii) the rate of non-synonymous mutations relative to the rate of 
synonymous mutations (dN/dS), and (iii) Tajima’s D statistic, which can be used to detect signatures of 
sweeping vs. balancing selection. lsaBGC-PopGene.py also allows users to specify population 
designations for each isolate with the focal GCF and computes additional statistics per homolog group 
pertaining to this information. 

Assuming users provide genome-wide similarity estimates, either ANI or AAI, to lsaBGC-PopGene.py, it 
will calculate how pairwise homolog group similarities in codon alignments or protein alignments 
compare to such genome-wide expectations. This is reported as the median Beta-RelativeDivergence 
(analogous to the BGC-wide metric described in the Materials and Methods) across all pairs of genomes 
with the homolog group found in the focal GCF.  

https://github.com/broadinstitute/AncestralGeneRator
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Tajima’s D is a simple statistic where values below -2 typically indicate conservation or sweeping 
selection and a low ratio of rare minor alleles to high-frequency minor alleles while values above 2 
indicate balancing selection. To calculate Tajima’s D we modified a previous implementation(37) into a 
function within lsaBGC. Namely, we adjusted the calculation of Tajima's D to better reflect the 
mathematical derivation described by Simonsen, Churchill and Aquadro 1995(38). Additionally, we only 
considered sites as segregating or pairwise differences if both sequences being compared had a valid 
allele at the position within the alignments (alignment sites with gaps were ignored). As an alternate 
assessment of sequence variation to Tajima’s D, we also report the proportion of sites across homolog 
group multiple sequence alignments where multiple alleles exist (major allele < 98%) and the proportion 
of sites where the major allele is non-dominant (<75%). 

The rate of non-synonymous mutations relative to the rate of synonymous mutations is a classical statistic 
used to infer the effect of positive versus negative selection. If the rate for non-synonymous mutations is 
higher than the rate for synonymous mutations across different instances of a gene (dN/dS > 1), it could 
suggest positive selection; whereas, if the reverse is true (dN/dS < 1), it could suggest negative or 
purifying selection. We used Biopython's codonalign.codonseq module(39) to calculate dN/dS using the 
method described by Nei and Gojobori 1986(40). To more robustly calculate the statistic, we replace 
singleton codon instances (those observed in only one in one BGC) with gaps. Additionally, to ensure we 
avoid excessive computation when the number of sequences with a homolog group is large, we have 
implemented an empirical but non-exhaustive framework in which we calculate the median dN/dS 
between 1000 randomly selected pairs of samples. This random sampling and calculation of dN/dS is 
performed for 20 iterations and the median of dN/dS estimates across iterations, along with the absolute 
median deviation to assess robustness, is reported. Because we are actively seeking to improve our 
calculations of dN/dS in lsaBGC and Biopython’s codonalign module is under development currently, we 
do not discuss results related to dN/dS in this study. 

Inference of consensus order and directionality of homolog groups for a GCF 

We developed an algorithm to infer the consensus order of homolog groups relative to each other in the 
GCF, as well as their relative consensus directionality (sense vs. antisense). This algorithm works by first 
computing how many times a homolog group proceeds another homolog group across BGC instances 
belonging to a GCF. To gather this information, a single BGC instance, with the most homolog groups, is 
selected as the reference and used for configuring the general direction of the remaining GCF instances, 
deciding whether to flip them to better align with the order of the reference. The gene order information 
for each BGC, encoded as a dictionary, is then used to construct a primary path, starting from the 
homolog group most often found at one edge of a GCF to the homolog group most often found on the 
opposite edge. Afterwards, homolog groups which were not featured in this consensus path, potentially 
because they are infrequently found and not core to the GCF, are attempted to be placed in their most 
appropriate locations. The core ordering path will be structured primarily by more prevalent homolog 
groups. When looking at the lsaBGC-PopGene.py report table sorted by the consensus ordering of the 
homolog groups, it is thus important to consider the proportion of samples with the GCF which have a 
particular homolog group. The consensus directionality of homolog groups is simply based on whether 
most instances of it are forward or reverse relative to a reference gene from the chosen representative 
BGC. 

Metagenomic mining for BGCs, homolog groups, and novel SNVs 

Metagenomic methods to explore microdiversity within microbiomes are continually advancing(41,42). 
We developed lsaBGC-DiscoVary.py to explore the micro-diversity of BGCs beyond the limited set of 
single-isolate genomes available for a lineage or taxa of interest and allow users to identify BGC genes 
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and base-resolution novel SNVs within metagenomic datasets (Fig. S2). Briefly, lsaBGC-DiscoVary.py 
serves two roles: 

1. Assessing the presence of GCFs, individual homolog groups and if requested, phasing them (uses a 
custom approach leveraging DESMAN(43)), and 

2. If users construct a comprehensive database of homolog groups alleles observed across all available 
assemblies for a taxonomy, lsaBGC-DiscoVary.py can also be used to identify putatively novel SNVs 
never previously observed at a particular site in a homolog group.  

Selection of Representative Alleles for Reference Database: lsaBGC-DiscoVary.py begins by 
identifying representative allelic sequences for each homolog group in the focal GCF from the codon 
alignments listing file provided. To select representative alleles, it parses each homolog group's MSA 
FASTA file, considers sequences within a single median absolute deviation from the median length, and 
determines the number of differences between pairs of sequences. Sequences are deemed to be members 
of the same allelic cluster if they exhibit >99% identity of the shorter sequence and they differ at less than 
10 sites from each other. Afterwards, pairs of such similar sequences are joined into larger clusters 
through single-linkage clustering and a representative sequence is chosen based on the minimal summed 
differences to the other sequences in the allelic cluster (e.g. the centroid). A Bowtie2(44) reference 
database is finally constructed from the representative sequences.  

 

Read Alignment to Reference Database and Alignment Parsing: Processed sequencing reads are 
next aligned against the database of representative sequences for homolog group alleles using Bowtie2 in 
“--very-sensitive-local” mode(44). Because our database is currently based on individual genes (which 
are rather short), we found that aligning paired-end reads individually (as unpaired reads), increased 
sensitivity and did not significantly compromise specificity. This is similar to the approach for mapping 
used in MetaMLST(45). After alignment, sorting and indexing of BAM files is performed using 
samtools(46). Alignments for each homolog group are then processed and investigated using the pysam 
library in Python(47). An allele of a homolog group is considered potentially present if 90% of its sites 
are covered by at least one read, accounting for whether a read has lower than 30 base-quality and 
whether a site is a skipped region in the reference or corresponds to a deletion. Each alignment of a read 
to an allelic representative of a homolog group is then assessed as to whether it exhibits: 

1. Alignment to multiple allelic representatives of the homolog group. Only alignments with 
the top/maximum alignment score of the read to any of the allelic representatives of the homolog 
group will be considered. This allows partitioning a read into one or more allelic representatives. 

2. The read displays at least 95% identity to the reference allele sequence within the core 
alignment, where the core alignment is defined as the part of the alignment in between the first 
and last positions where reference and query sequences both have valid nucleotides (even if non-
matching). If the core alignment length is >= 100 bp, 95% identity is required, while if it is 
shorter, >= 60 bp, 99% identity is required. 

3. The total indel length within the core alignment is < 5 bp. This allows for some leniency 
around small deletions and insertions, so as to not discard otherwise high-quality alignments. 
Reads with indels will be used for phasing or determining consensus alleles for homolog groups 
within metagenomes, but are not used as support for potentially novel SNVs reported. 

If an alignment meets the above criteria, it is next assessed at each position for high base quality 
(>= 30 PHRED). If so, then the reference allele site is considered to be covered and the base of the 
read/query is noted. Further, because the reference allelic sequences were already aligned to each other 
and provided as the codon alignment inputs, we can translate the position of a site on the reference allele 
to a position in the codon multiple sequence alignment and ultimately gain a universal tally of base counts 
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at particular sites of a homolog group. The synchronization of reference gene positions to codon 
alignment positions is a key feature of lsaBGC-DiscoVary.py which enables it to identify novel SNVs. 

Final Assessment of Homolog Group Presence: As is often cautioned in gene-based metagenomic 
analysis, faulty alignment of reads belonging to the lineage of interest or from other taxa can lead to a 
misinterpretation of enzyme presence or association with the lineage of interest. To further filter out 
faulty alignments, we parse the codon alignments of each homolog group, featuring reference and 
representative allelic sequence, and mark regions along it which are particularly "gappy", >10% of 
sequences have no allelic residue, as troublesome, including +/- 50bp around the start and end of each 
region. These regions were observed to present problems as default gap opening and extension costs in 
the aligning algorithm can occasionally lead to faulty alignments. Based on a similar logic that alignment 
and alignment scores could behave irrationally when only part of reads should properly align to a 
reference, we also deem the first and last 50 bp of a MSA as "troublesome".  

Additionally, we self-align the full predicted proteome of the genomes used to establish representative 
alleles for homolog groups with DIAMOND(21) to identify regions along the homolog group MSAs 
which are similar at high-identity to potential paralogs. The criteria for defining these regions matches our 
criteria for mapping reads to allelic sequences. Thus, alignments which are >20 residues long and exhibit 
>99% amino acid identity or >33 residues long and exhibit >90% amino acid identity for >5% of the 
initial sample set are marked as "troublesome" for accurate alignment of reads.  

For each sequencing read set, each homolog group is next more thoroughly assessed for carriage in the 
context of the full BGC. Up to this stage, the criteria for consideration of a BGC homolog group as 
present is pretty lenient and simply requires 1X coverage at 90% of sites for one of the representative 
alleles of the homolog group. Here, we further refine this criteria to require 1X coverage at >90% of sites 
in the codon alignment of the homolog group which are deemed as non-troublesome to align. For 
homolog groups which meet this requirement, the median depth of the middle 80% of positions is 
computed. The median of these homolog group specific median depths is then calculated along with the 
median absolute deviance. Because these homolog groups are expected to be co-located together in a 
BGC, potential variability in sequencing coverage across the genome, associated with active 
replication(48), should not result in a difference in coverage between homolog groups of the BGC. Based 
on this assumption, we next aim to identify and disregard homolog groups which are outliers in terms of 
their coverage (>2 median absolute deviances from the median of 80% trimmed median depths). These 
homolog groups will be difficult to gauge from raw metagenomics sequencing data as they will likely 
either lack enough coverage for resolved allele typing or have too much coverage and correspond to 
potentially multi-copy or common enzymes where undesired reads (from outside the focal BGC or 
lineage) are being aligned to the homolog group. Homolog groups are also disregarded if one of their 
predicted products contains mobile genetic element MGE suggestive keywords 'integrase' or 'transp'. In 
the most recent release of lsaBGC, we have updated the second keyword to ‘transpos’ to still allow for 
novel SNV detection on transporters. 

If there are at least 5 homolog groups which are deemed present and not filtered by the above criteria, 
then BGC presence is assessed as a whole based on whether >70% of the core homolog groups are 
present (where the core homolog groups are those found in all BGCs from the initial lsaBGC 
processing/clustering analysis - e.g. the BGCs from high-quality genomes) or if just a single GCF specific 
homolog group is observed. Homolog groups are also disregarded if >5% of the initial set of the high-
quality genomes used for initial lsaBGC analysis featured multiple copies of the homolog group (paralogs 
were common). Finally, a report file will be generated featuring only homolog groups deemed present 
(not filtered by above criteria) for samples which are regarded as featuring the BGC. 

Note for investigations of cutimycin in C. acnes, we manually specified the core homolog groups 
involved in the thiopeptides biosynthesis(49) to increase sensitivity through an optional setting in 
lsaBGC-DiscoVary.py. 
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Consensus allele determination, allelic phasing, and phylogenetic visualization: For the set of 
retained homolog groups deemed as present within a sequencing readset for the focal GCF, the proportion 
of positions which are heterozygous are next computed and used to determine whether allelic phasing is 
needed or appropriate (current default >5% of sites along present homolog groups in the sequencing 
dataset need to be heterozygous to turn on phasing mode). If phasing mode is initiated and specified by 
users, DESMAN(43) is used to first determine the most likely number of strains and then phase the 
distinct haplotypes. If phasing mode is not initiated, then the consensus / majority-rule allele is selected 
for each site along the homolog group. Critically, the output from emission of the consensus sequence or 
multiple phased alleles for the homolog groups is not an independent sequence but rather an allele call for 
the sequencing / metagenomic read set at each position in the homolog group codon alignment. This 
allows us to avoid inferring faulty frameshifts in our sample-specific sequence(s) of homolog groups and 
allows direct incorporation into the codon alignment to build phylogenetic views. Additionally, we 
require that each base emitted / inferred has a minimum depth (current default is 5) and for the total depth 
at each position to be within a reasonable range of the median depth observed across all homolog groups 
regarded as present. For each inferred sequence, if an in-frame stop codon is observed, then downstream 
sites are automatically emitted as gaps.  

The sequences inferred for each homolog group are brought into the context of the full codon alignments 
of reference alleles, after which filtering is performed to remove sequences which have gaps at more than 
25% of non-"troublesome" sites of the alignments. Of the sequences retained after this filtering, 
individual sites are filtered to retain only those in which at most 10% of sequences have gaps / ambiguity. 
The resulting FASTA files are input into FastTree2(29) to infer a quick homolog group specific 
phylogeny which is then visualized in R and used to display the similarity of newly identified alleles / 
sequences to known / reference sequences. 
 

Identification of novel SNVs: The cornerstone feature of lsaBGC-DiscoVary.py is its ability to 
search metagenomic / raw-read datasets and then assess whether they possess any potential novel SNVs 
not previously observed in the comprehensive set of known alleles gathered from all available assemblies 
for a taxa. Currently, only SNVs which are supported by at least 5 reads and not located in sites along the 
codon-alignment marked as "troublesome" are reported. Additionally, SNVs are not reported after the 
first in-frame stop codon observed from preliminary scanning. A comprehensive report of putatively 
novel SNVs is produced for all sequencing samples and homolog groups. A subset of reads which are 
supportive of putatively novel SNVs (last column in the report) are written in gzipped FASTQ format for 
each sequencing / metagenomic sample. This allows users to quickly taxonomically profile and assess 
that reads in fact belong to the lineage of interest (see subsection below). 

Benchmarking lsaBGC-DiscoVary against assembly-based novel variant detection using M. 
luteus single-isolate sequencing readsets 

The correspondence for novel single nucleotide variants (SNVs) reported by lsaBGC-DiscoVary.py was 
assessed using whole-genome sequencing readsets for single isolates and compared to SNV identification 
based on an assembly-based approach (Fig. S11). lsaBGC-AutoProcess.py was run on all complete 
instances of M. luteus genomes present in GTDB to identify BGCs which were then clustered into 9 
GCFs using lsaBGC-Cluster.py. Afterwards, lsaBGC-AutoExpansion.py was used to search all 
remaining, draft-quality, genomes from the species for homologous instances of the 9 GCFs identified 
and lsaBGC-PopGene.py was run to generate codon-based alignments for homolog groups associated 
with each GCF. We then used the sequencing reads from 132 M. luteus isolates sequenced by our lab, and 
absent in the current GTDB release, to run lsaBGC-DiscoVary.py and identify novel variants not 
previously observed in available genomes for the species. Because we had constructed draft assemblies 
for these same samples, we also identified GCF and homolog group instances in each assembly using 
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lsaBGC-AutoExpansion.py. MAFFT(7) was then used to incorporate the homolog group sequences 
identified in the draft assemblies into the codon alignments used for lsaBGC-DiscoVary.py analysis and 
the expanded codon alignments were subsequently parsed and assessed for novel SNVs. We found a high 
concordance between the lsaBGC-DiscoVary.py and assembly-based approaches for novel SNV 
detection, with 1788 of 1798 (99.5%) novel SNVs reported by DiscoVary also being found by the 
assembly based approach and 1788 of 1858 (96.3%) novel SNVs found by the assembly based approach 
also being reported by lsaBGC-DiscoVary (Table S11). Of the 69 novel SNVs only found by the 
assembly based approach, 30 were identified by lsaBGC-DiscoVary.py but not reported due to alleles 
exhibiting more or less coverage than expected given the median coverage of the BGC. Among the 
remaining 39 novel SNVs, manual examination of a common SNV (homolog group OG0001039 - 
position 65 in the codon alignments; found in 15 samples), revealed that it involved a cytosine allele 
within a lengthy stretch of 21 C/Gs, which could lead to less confident read alignment in lsaBGC-
DiscoVary.py. Of the nine novel SNVs found by lsaBGC-DiscoVary, six correspond to minor alleles, 
explaining why they were not represented in sample assemblies. 

Scrutinization of putative novel variants for lsaBGC-DiscoVary application to cutimycin in 
C. acnes and the comprehensive set of GCFs for the C. tuberculostearicum species complex  

By default, lsaBGC-DiscoVary.py only considers reads aligning at 95% identity to reference gene 
sequences and avoids reporting novel variants on genes if either annotation or coverage (relative to other 
genes in the BGC context) suggests they might be MGEs. The program also automatically extracts the 
subset of reads supporting the existence of novel variants, which can then be further screened with high 
stringency filters using otherwise computationally expensive methods. This can involve mapping reads 
supporting putative novel SNVs to a representative database of whole-genomes to observe for higher 
quality alignments or checking whether reads are classified as a particular taxonomy by Kraken2 (v2.0.8-
beta)(50). As described previously(51), we used a customized database for Kraken2 analysis constructed 
from chromosomally complete bacterial, viral, archaeal, fungal, protozoan genomes as well as the human 
genome available on RefSeq, where plasmid sequences were distinguished to alleviate potential 
misclassifications of reads to a particular taxonomy.  

We generally do not recommend screening variant-supporting reads for an appropriate taxonomic 
match with Kraken2 as it can generally lead to false negatives (on average only 92.8% of read-pairs per 
sample were taxonomically classified and misclassification can also occur; Fig. S14). For reads 
supporting putative novel variants within the cutimycin GCF of C. acnes or the six GCFs of the C. 
tuberculostearicum species complex, we required them to not align with a higher alignment score to a 
comprehensive database of all Cutibacterium or Corynebacterium genomes, respectively.  

We further validated that reads supporting the existence of variants at conserved sites in the 
mycolic acid biosynthesis gene mapped best to the C. tuberculostearicum species and confirmed our 
suspicion that they could be misclassified by Kraken2 given the representation in the underlying database 
(Fig. S14). This ad hoc analysis was performed using paired-end information when mapping in Bowtie2 
and accounting for concordant read pair alignments. While many reads supporting the existence of novel 
SNVs in the biosynthesis gene were classified as C. acnes by Kraken2, we found that none of the reads 
concordantly aligned to the comprehensive Cutibacterium genomes Bowtie 2 database whereas 85.07% 
concordantly aligned to the comprehensive Corynebacterium genomes Bowtie 2 database.  

Note, the reasoning behind mapping SNV supporting reads to comprehensive genomic databases 
to purge false positive SNV calls, is that if a read truly aligns best to the BGC-associated homolog group 
where it was used to call a SNV, then it should at most generate a mapping to this comprehensive 
database of equal mapping quality. We align paired-end reads individually as was performed in lsaBGC-
DiscoVary.py to have mapping scores be comparable with those from the original alignment. 
Furthermore, because our initial database within lsaBGC-DiscoVary.py consisted of allelic 
representatives of homolog groups, we realized that reads mapping to the start and end of genes could 



15 
 

result in a lower mapping score than if a larger genomic context was provided. To ensure we do not 
remove such reads mapping to gene edges, scrutunizeNovelSNVSupport.py, the program we developed to 
perform Kraken 2 and genomic database alignment based filtering of novel SNV reports from lsaBGC-
DiscoVary.py, also compares the reference sequences when it finds a better Bowtie 2 mapping for SNV-
supporting reads in genomic databases. If the reference sequence in the genomic database encompasses 
the reference sequence in the original alignment to the lsaBGC-DiscoVary.py homolog group database 
and the read was previously noted to map to a gene edge, then reads are still retained and SNV read 
support is not decremented. Five retained and supportive reads are required for an SNV to be featured in 
the filtered report produced by the program. 

Determination of whether novel SNVs detected for BGCs of the C. tuberculostearicum 
species complex would be identified in metagenomic assemblies:  

Because the C. tuberculostearicum species complex can be found at low abundance at certain body sites 
within individuals, we wanted to determine whether the 34,545 novel SNVs found in BGC contexts of the 
species complex, after filtering SNVs where reads mostly map with higher scores to other regions of 
Corynebacterium genomes (as described in the previous subsection), would also be detected through 
metagenomic assembly. MEGAHIT(52) assembly was performed individually for all metagenomic 
readsets using default options and filtered to only retain 2 kb or longer contigs. Sample specific 
metagenomic assemblies were then combined into one consolidated FASTA file and used to construct a 
Bowtie 2 database(44). No pooling of samples for metagenomic assembly or subsequent dereplication 
was performed to ensure strain-specific variability is retained. After assessing the presence of putative 
novel SNVs and filtering those where supportive reads are mostly mapped to alternate regions in 
Corynebacterium genomes at higher scores (as described in the Materials and Methods), we performed 
similar investigations through Bowtie 2 mapping of reads supporting novel SNV presence to the 
concatenated database of contigs from individual metagenomes. Exact mappings of SNV-supporting 
reads to contigs were identified and used to assess whether novel SNVs are represented in metagenomic 
assemblies. Of the 34,545 novel SNVs deemed as reliable after mapping to the comprehensive database 
of Corynebacterium genomes, we found that 22,886 would also be identified from metagenomic 
assembly. Thus, 11,659 SNVs detected by lsaBGC-DiscoVary.py would be missed by metagenomic 
assembly and are not represented in contigs of considerable length. This is expected to be an 
underestimate as a concatenated database of metagenomic contigs from multiple samples was used. We 
additionally tested mapping SNV supporting reads to only a subset of the metagenomic contigs which we 
deemed as belonging to Corynebacterium. These contigs were identified by BLASTn analysis(11) of the 
metagenomic contigs to the comprehensive Corynebacterium genomics database used to filter putative 
novel SNVs in the previous subsection. Contigs with HSPs with query coverage greater than 25% and 
sequence identity greater than 85% or query coverage greater than 70% and sequence identity greater than 
70% to one of the known Corynebacterium genomes were classified as Corynebacterium. Of the 556,030 
total concatenated metagenomic contigs, 91,713 were classified as Corynebacterium. However, using this 
subset of contigs instead of the full metagenomic assembly database resulted in a minor increase in the 
number of SNVs which would be undetected by metagenomic assembly (11,763 instead of 11,659; an 
increase of 0.9%), suggesting that reads supporting novel SNVs detected by lsaBGC-DiscoVary.py were 
>99% Corynebacterium. 

lsaBGC-DiscoVary based analyses of BGCs from the C. tuberculostearicum species 
complex:  

For the following analyses, we used 5,802 instances of 2,343 unique novel SNVs found across 66 
homolog groups which were core or adjacent to core biosynthesis machinery of BGCs from the C. 
tuberculostearicum species complex. A total of 68 context-distinct homolog groups were determined after 
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partitioning multi-GCF occurring homolog groups based on their GCF context (OG0000094 and 
OG0000100 were each found in two separate GFCs and thus each was partitioned as two separate 
homolog groups). The 2,343 novel SNVs had site and allele-specific coverage values less than two 
median absolute deviations from the median coverage for the entire BGC. 

Comparing SNVs shared across body sites and subjects: To comprehensively assess whether 
novel SNVs were shared more frequently for microbiomes of the same body site or from the same 
individual, we performed a pairwise, multi-iteration resampling analysis. For each pair of metagenomes, 
where each sample had at least 30 novel SNVs, we calculated the average Jaccard similarity across 1,000 
simulations in which we randomly drew sets of 30 SNVs from each metagenomic sample to control for 
sequencing depth. Pairs of metagenomes were classified as one of three categories: “different body site, 
different participant”, “different body site, same participant”, and “same body site, different participant” 
(Fig. S13e). A two-sided Wilcoxon rank sum test for differences between the three distributions of 
average Jaccard similarities revealed that there was a statistically significant difference between “different 
body site, same participant’ and “same body site, different participant” (p=6.01E-3). Of greater relevance, 
there were statistically strong significant differences between the “different body site, different 
participant” distribution and the two other distributions: “different body site, same participant” and “same 
body site, different participant” (p=3.67E-09 and p=1.39E-116, respectively). Thus, pairs of metagenomes 
were more likely to share novel SNVs if they were either from the same body site or same participant 
compared to if they were from different participants and different body sites. Two metagenomic samples 
for participant S002 were not used because they corresponded to a resampling of two of their body sites 
and we did not have enough of such samples to pursue a temporal analysis. We assessed this testing using 
different considerations/cutoffs for: (i) the number of novel SNVs needed for a metagenome to be 
considered in the analysis and (ii) whether or not to account for singleton SNVs. In all cases, statistical 
testing for differences between distributions of pairwise metagenome categories yielded similar 
conclusions. 

Assessing trends for novel SNV predicted synonymous to non-synonymous rate with metagenome 
ubiquity and site conservation: Using reports from lsaBGC-DiscoVary.py, we performed a systematic 
prediction of whether novel SNVs identified on the 68 context-distinct homolog groups nearby or 
overlapping with protocore regions of BGCs in C. tuberculostearicum corresponded to synonymous or 
non-synonymous substitutions. As described in other sections, SNV alleles were compared to 
corresponding alleles observed at the site on the reference gene sequences which SNVs were called upon. 
We aimed to check whether the rate of synonymous to non-synonymous novel SNVs showed a 
relationship to: (i) how common SNVs were across metagenomic samples and (ii) conservation levels 
across protein sequences. 

Novel SNV predicted synonymous to non-synonymous rate increases with SNV metagenome 
ubiquity amongst metagenomic samples: The occurrence of novel SNVs, a novel allele observed at a 
specific site in the multiple sequence codon alignment of a particular homolog group, was tabulated 
across metagenomic samples. While novel SNVs found in a single metagenome were only 2.4X as likely 
to correspond to a synonymous change as opposed to a non-synonymous change, more prevalent novel 
SNVs, found in ten or more samples, were 8.4X more likely to correspond to a synonymous change (Fig. 
S13d). 

Novel SNV predicted synonymous to non-synonymous rate increases at conserved sites in protein 
sequences: We searched RefSeq’s bacterial NR database for remote homologs of the 68 context-distinct 
homolog groups within or adjacent to protocore regions of BGCs. The top 20 homologs which belonged 
to classified bacterial species outside of the Corynebacterium genus or Corynebacteriales family were 
identified using hmmsearch from HMMER3 with profile-HMMs gathered from lsaBGC-Expansion for 
each homolog group and an E-value threshold of 1E-20 (Table S12). Of the 2,343 unique novel SNVs 
identified in protocore or protocore adjacent homolog groups of BGCs from the C. tuberculostearicum 
species complex, 2,244 were found in 34 context-distinct homolog groups with conservation information 
calculated from alignments featuring distantly related homologs from diverse bacteria. The sequences of 
representative homologs were added to protein alignments for homolog groups in lsaBGC-PopGene 
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results using the ‘--add’ option in MAFFT(7). Afterwards, we used the alignments for scoring protein 
sequence conservation with Jensen-Shannon divergence(53). Conservation scores were used to determine 
conservation percentiles of sites along protein alignments for individual homolog groups.  

Rates of predicted synonymous to non-synonymous novel SNVs were calculated for each 
conservation percentile across all homolog groups. Novel SNVs found in the top five percentile of 
conserved sites for a homolog group were approximately 9.8X more likely to correspond to a 
synonymous change as opposed to a non-synonymous change (Fig. 5b). In contrast, the bottom 20% of 
conserved sites (the least conserved sites), were only 1.7X as likely to represent non-synonymous 
substitutions as synonymous substitutions. Further, the number of novel SNVs, either synonymous or 
non-synonymous observed at conserved sites, amongst the top 20% of conserved sites was 412, and lower 
than the number of novel SNVs found in the 20-40 (n=459), 40-60 (n=490), and 60-80 (n=493). Only 388 
novel SNVs were found in the 80-100 percentile ranges of conserved sites and we suspect that this 
decrease is due to read alignments to such regions becoming more challenging at the thresholds required 
by lsaBGC-DiscoVary.py. 

For the three SNVs predicted to result in non-synonymous differences and in the top five 
percentile of conserved sites along the mycolic acid PKS, we inspected their codon contexts to check that 
there were no additional variants which, in aggregate, might result in a synonymous change (Fig. 5c; 
Table S13). 
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Figure S1: Schematics of select lsaBGC programs and workflows. a) A schematic of the lsaBGC-AutoProcess workflow
which generates the inputs required for lsaBGC analyses. b) An overview of the algorithm behind lsaBGC-Expansion used
to identify homologous instances of GCFs in a sensitive and efficient manner from potentially draft-quality assemblies. c) A
schematic of the lsaBGC-AutoExpansion workflow which automatically runs lsaBGC-Expansion for each GCF and then
resolves conflicts of overlap and consolidates results.



Figure S2: An overview of lsaBGC-DiscoVary. a) An overview of the lsaBGC-DiscoVary algorithm is shown. Codon alignments for each BGC homolog group, as constructed by lsaBGC-PopGene, are used to
dereplicate and select representative alleles for mapping metagenomic readsets with Bowtie2. Afterwards, alignments are processed and used to identify whether homolog groups are represented in metagenomic
samples. SNV sites along individual representative genes for homolog groups are mapped to comprehensive codon alignments and used to assess whether the allele represented by the SNV has previously been
observed at the codon alignment position. Optional phasing of multiple alleles for a homolog group within a lineage or taxa can also be performed using DESMAN. b) Novel SNVs are not reported if they are within
specific regions along codon alignments, including regions which are towards the beginning or end of the alignment, regions which are highly redundant, and regions where >10% of gene instances have deletions or
lack sequence. c) An overview of lsaBGC-DiscoVary for determining putative novel SNVs which can then be further filtered using exhaustive methods to assert that reads supporting their presence do not map better to
other taxa or genomic regions.
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Figure S3: Benchmarking lsaBGC-AutoExpansion using actual draft-quality M. luteus assemblies. a) An overview of the first benchmarking experiment is
shown comparing the use of lsaBGC-AutoExpansion to comprehensive antiSMASH to profile GCFs in 132 M. luteus genomes. b) Results from the first
benchmarking experiment are shown. BGC instances identified by antiSMASH in genomes were mapped to BGC segments identified by running lsaBGC-
AutoExpansion trained on GCFs from complete M. luteus genomes. “NA”, shown in black, represent GCF segments which were undetected by antiSMASH. c)
Results from the first benchmarking experiment are shown. BGC instances identified by lsaBGC-AutoExpansion were mapped to BGC segments identified by
running lsaBGC-AutoExpansion. “NA” , shown in black, represent GCF segments which were undetected by lsaBGC-AutoExpansion.
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Figure S4: Benchmarking lsaBGC-AutoExpansion on simulated fragmented assemblies showcases ability to synchronize GCF boundaries. a) An overview of the second benchmarking experiment
is shown comparing the use of lsaBGC-AutoExpansion to antiSMASH for predicting BGCs in fragmented versions of 14 complete genomes of M. luteus. b) The heatmap shows how many times each
homolog group from different GCFs were identified by lsaBGC-AutoExpansion across 5 replicate simulations where fragmented genomic assemblies were generated from simulated reads for each of the
corresponding complete M. luteus genomes. Dots signify whether homolog groups were detected as part of a BGC for a particular genome in the original antiSMASH annotation of the completed genome
(unfragmented). c) lsaBGC-See was used to illustrate segments detected for a single GCF, GCF-3, by lsaBGC-AutoExpansion in fragmented versions of a single genome, M. luteus GCA_006094415, in
relation to the BGC detected on the completed genome (unfragmented; highlighted in red) and homologous instances of the GCF in the other 13 completed M. luteus genomes (blue labels). Dotted black
lines separate GCF instances predicted for the five different replicate fragmented assemblies based on simulated reads from the focal completed genome. The first 6 set of BGC segments illustrates how
lsaBGC-AutoExpansion is able to find and put together multiple BGC segments into the same GCF despite their dispersion across six different scaffolds. One segment (highlighted in teal) includes genes
which were not part of the original BGC delineation on the completed focal genome but were part of homologous BGCs from different completed genomes. We validated these genes are adjacent to the
original BGC delineation in the completed focal genome and were simply not included as part of the BGC because they were slightly more distant from core genes/domains of the BGC.
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Figure S5: Systematic identification of skin-associated BGC genes and signatures of intra-GCF horizontal gene transfer. A maximum likelihood phylogeny was constructed
from ribosomal protein encoding genes for a) 229 representative Staphylococcus genomes and b) 456 representative Corynebacterium genomes. Ancestral state reconstruction for
GCF carriage was performed using maximum parsimony with the ACCTRAN algorithm and shown as piecharts for innernodes which encapsulate five or more species. Color strips to
the right of the phylogenies correspond to the species classification of the genomes. The bar chart to the right of the species color strip corresponds to the number of metagenomes
which were found to feature the species. The final track shows the presence of homolog groups found to be enriched in phylogenetic clades where >80% of genomes are classified
as skin-associated species. lsaBGC-Divergence was used to calculate the Beta-RD statistic between pairs of genomes carrying a particular GCF in representative c) Staphylococcus
and d) Corynebacterium genomes. Bayesian shrinking analysis was performed of raw Beta-RD calculates using STAN.
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Figure S6: lsaBGC . a) A
maximum-likelihood phylogeny was constructed from PznA and PznB
showing the relationship between GCFs encoding for pyrazinones. Branch
color corresponds to different GCFs and the outer circular color denotes the
species classification for the genome from which the sequences were gathered.
b) Homolog groups (nodes) across the seven pyrazinone encoding GCFs are
depicted as a network where edges indicate that two homolog groups co-occur
in the same GCF. The color of each node depicts the distinct pyrazinone GCFs
in which the homolog group was found.



Figure S7: Tajima’s D statistic highlights GCFs and homolog groups under selective pressure. a) For each homolog group found in a GCF, Tajima’s D
statistic was independently calculated per species and the median value across species was determined. The histogram of the median Tajima’s D across
species exhibits a normal distribution roughly centered around 0. The scatterplot below the histogram showcases that the median Tajima’s D across species per
homolog group exhibited no correlation with the median length of homolog groups. Each homolog group in the scatterplot is colored according to an analogous
statistic to Tajima’s D which is the ratio of sites along the homolog group’s codon alignment where the major allele is found in >75% of sequences to sites where
the major allele is found in >95% of sequences. b) The aggregate Tajima’s D statistic was calculated over all sequences per homolog group and found to be
biased by the number of species the homolog group was found in and thus the maximum and minimum Tajima’s D per species was investigated instead. c) Intra-
species Tajima’s D calculations using 24 distinct S. aureus genomes highlight GCF-3, predicted to encode a hybrid terpene/T3PKS BGC, as feature seven
homolog groups with Tajima’s D below -2.0, including crtM, involved in staphyloxanthin biosynthesis, and ssaA, encoding a staphylococcal secretory antigen.
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Figure S : Signatures of conservation and speciation in the surrounding context of staphyloxanthin
encoding GCF-3. GCF-3 is a predicted hybrid BGC which includes the staphyloxanthin

encoding operon and the mevalonate pathway related enzyme hydroxymethylglutaryl-CoA synthase, a false positive
detection due to homology with type-III polyketide synthases. a) A consensus schematic of GCF-3 is shown,
generated from individual instances from 103 representative staphylococci found to feature it. Genes are colored
according to broad annotation categories and transparency illustrates the proportion of GCF-3 carrying samples found
to possess a specific homolog group. b) A maximum-likelihood phylogeny for the 25 species within the S. aureus / S.
epidermidis clade found to carry GCF-3 is shown alongside three heatmaps depicting species-specific metrics for
select homolog groups. The left heatmap showcases the percentage of the total species genomes found to carry
select genes from GCF-3, including the staphyloxanthin encoding crt genes. The right heatmap depicts whether
homolog groups are found in multiple-copies within the GCF-3 context for different species.
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Figure S9: The staphyloxanthin encoding crt operon is found in multiple
GCFs. a) Sequence and syntenic comparisons between representative instances
of GCFs featuring the crt operon encoding for staphyloxanthin were performed and
illustrated using clinker. Based on phylogenetic analysis of CrtMN sequences
(Figure 3b), the crt operon is likely misclassified as GCF-17 for S. lugdunensis and
should instead be GCF-3. The cause of the misclassification is because the crt
operon is in a different genomic context within the species as compared to other
species in the S. aureus/epidermidis clade with GCF-3. b) Schematics of the near
completed genomic assemblies for S. epidermidis LK1136 and S. warneri LK413
isolated from skin showcasing the location of staphyloxanthin encoding GCFs.
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Figure S10: Staphyloxanthin encoding GCF-6 exhibits signatures of mobilization. a) A
maximum-likelihood phylogeny was built from CrtM and CrtN protein alignments. Branch colors
represent the GCF classification of the CrtMN sequences and bootstrap values are shown for key
nodes where GCFs partition. The species the CrtMN sequence was extracted from is shown as a
color strip followed by a bar plot depicting the comparative codon usage cosine distance (CCU-cd).
CCU-cd was only calculated for the full five gene crt operon and represents the codon frequency
dissimilarity with the codon frequency of the background genome. The heatmap showcases the
genome-wide average amino acid identity (AAI) between pairs of genomes from which CrtMN
sequences were gathered. b) AAI and shared homolog group content were calculated between pairs
of GCF instances from different genomes for GCF-3 and GCF-6 individually. The coloring represents
genome-wide AAI similarity.
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Figure S11: Benchmarking lsaBGC-DiscoVary to assembly based SNV
identification using single isolate genomic sequencing data for 132 M. luteus. a)
A schematic of the benchmarking setup for comparing lsaBGC-DiscoVary identification
of novel SNVs from sequencing reads for 132 M. luteus compared to an assembly
based identification of novel SNVs for the same isolates. Novel SNVs corresponded to
alleles which were not previously represented at specific sites in homolog group codon
alignments constructed from publicly available M. luteus genomes gathered from
NCBI. b) A venn diagram showcasing the number of novel SNVs reported by lsaBGC-
DiscoVary as compared to the novel SNVs found by the assembly-based approach.
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Figure S12: lsaBGC-DiscoVary SNV reporting on BGCs is congruent with
whole-genome strain detection tools. a) The cutimycin encoding GCF is found
primarily in clade I (subclade IB; orange) and clade III (tan) C. acnes. b) The
mumber of distinct SNVs identified by DiscoVary (post-filtering) which were
identified upon reference genes belonging to clade I, clade III, or both clades.
Results are shown separately for metagenomes in which StrainGST detected both
clade I and clade III strains and metagenomes in which StrainGST only detected
clade I strain(s) as present.
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Figure S13: The C. tuberculostearicum species complex is highly prevalent across skin metagenomes. a) A more resolute and comprehensive phylogeny of 1,118 Corynebacterium, including
all 22 genomes found to belong to the C. tuberculostearicum species complex in this study, was constructed using a set of 138 genes determined as largely single-copy in Actinomycetota with
GToTree. The C. tuberculostearicum species complex was found to form a monophyletic clade. b) The relative abundance of Corynebacterium and representative strains of the C. tuberculostearicum
species complex in the StrainGST database are shown across skin metagenomes from different body sites and individuals. c) Assessment of novel SNVs identified by lsaBGC-DiscoVary, post-
filtering, for each BGC from the C. tuberculostearicum species complex for presence within metagenomic assemblies. d) Novel SNVs were tabulated by the number of metagenomes they were
observed in. The color of bars corresponds to the ratio of suspected synonymous to non-synonymous SNVs for the sets of novel SNVs. e) For metagenomic samples where 30 or more novel SNVs
were identified, a multi-iteration, down-sampling based approach was used to compute the average Jaccard similarity for number of shared novel SNVs between pairs of metagenomes. Pairwise
comparisons of metagenomes were categorized by whether samples were from the same body-site or subject.
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Figure S14: Validation of taxonomic origin for reads supporting the presence of non-
synonymous SNVs at highly conserved sites as identified by lsaBGC-DiscoVary. a)
Reads supporting the existence of three novel SNVs in highly conserved sites of the mycolic
acid biosynthesis polyketide synthase ( G0001691) were classified taxonomically with
Kraken2. Despite many of the reads supporting novel SNV existence being classified as
Cutibacterium, paired-end alignment to a comprehensive database of all Cutibacterium
genomes featured in GTDB R202 showed that none aligned concordantly. b) Of the reads
supporting the existence of novel SNVs, 85.07% aligned as concordant pairs to a
comprehensive database of all Corynebacterium genomes, with the majority aligning to
species belonging to the C. tuberculostearicum species complex.

b
L343S

L343V

P1434L

L342A

R
e

ad
 c

ou
nt


	Supplementary_Text.pdf
	Automated workflows for running lsaBGC
	Updates to lsaBGC since release 1.0
	Assessment of hybrid genomic assemblies constructed for S. epidermidis LK1136 and S. warneri LK413
	Designation of species belonging to Mammaliicoccus
	Genome annotation, homology determination in predicted proteomes, and clustering of BGCs into GCFs
	High throughput identification of homologous instances of GCFs in assemblies
	Visualization of BGCs across phylogenies
	Inspection of Staphylococcus and Corynebacterium GCFs with high Beta-RD values
	Ancestral inference of gene cluster family carriage
	Identification of homolog groups associated with skin-residing species of Staphylococcus and Corynebacterium
	Understanding GCF conservation and composition through evolutionary and population genetic statistics
	Inference of consensus order and directionality of homolog groups for a GCF
	Metagenomic mining for BGCs, homolog groups, and novel SNVs
	Benchmarking lsaBGC-DiscoVary against assembly-based novel variant detection using M. luteus single-isolate sequencing readsets
	Scrutinization of putative novel variants for lsaBGC-DiscoVary application to cutimycin in C. acnes and the comprehensive set of GCFs for the C. tuberculostearicum species complex
	Determination of whether novel SNVs detected for BGCs of the C. tuberculostearicum species complex would be identified in metagenomic assemblies:
	lsaBGC-DiscoVary based analyses of BGCs from the C. tuberculostearicum species complex:
	Supplementary Text References
	Supplementary Figures

	Supplementary_Figures.pdf

