
UnoAPI: Balancing Performance, Portability, and
productivity (P3) in HPC Education

George K. Thiruvathukal
Professor and Chairperson of Computer Science, Loyola University Chicago
Visiting Computer Scientist/Guest Faculty, Argonne National Laboratory Leadership Computing Facility

Konstantin Läufer
Professor of Computer Science, Loyola University Chicago

Heterogeneous Computing is (still) a Thing

• Longstanding challenge in parallel computing but resurfacing with
novel architectures and accelerators

• Heterogenous CPU design remains an issue (e.g. Intel x86 vs. ARM)

• Today's challenge is more about intranode heterogeneity (CPU +
one or more, possibly different, accelerators

• Not limited to exascale: IoT/Edge devices are also heterogeneous
compute systems and becoming more so

11/14/2022SC22 | Dallas, TX | hpc accelerates. 2

The Promise of oneAPI™ and Things Like it

• A single API to program all available architectures

• Programming in a modern dialect of C++, Data-Parallel C++

• Long-time HPC folks will recognize ideas of past efforts (C* on
Connection Machine, Data Parallel C)

• Built primarily on SYCL for parallelism/concurrency

• Not the only thing of its kind but likely to be in the running with
strong industry support (not limited to Intel)

11/14/2022SC22 | Dallas, TX | hpc accelerates. 3

The UnoAPI Curriculum / Overarching Goal

Our hope is to create a curriculum that will not only teach oneAPI
and its components but also result in the least amount of frustration
for students and their educators, who also may need to come up to
speed on the latest advancements in C++ and modern software tools
that support it.

We place emphasis on well-crafted exemplars that embrace the best
practices of systems, modern language design, and software
engineering.

11/14/2022SC22 | Dallas, TX | hpc accelerates. 4

Meanwhile...C++ Continues to Evolve

• New foreach loop syntax to visit elements of a collection in natural
order

• Improved initialization syntax, especially for unions and arrays

• Automatic variable type inference (auto keyword)

• Variadic templates for increased parametric code reuse

• Improved libraries for time, atomics, regex, etc.

• Threading/concurrency library (looking beyond pthreads)

11/14/2022SC22 | Dallas, TX | hpc accelerates. 5

Functional Programming in Modern C++

• Lambda expressions is a convenient way of defining an anonymous
function object.

• Known as a closure, a lambda is passed as an argument to a
function.

• A lambda can introduce new variables in its body (in C++14), and it
can also access, or capture, variables from the surrounding scope.

• Lambdas eliminate the tedium of working with function pointers
and extra bookkeeping for scope management

• And they improve code clarity: Yay!

11/14/2022SC22 | Dallas, TX | hpc accelerates. 6

See Lambda expressions in C++ | Microsoft Learn for a nice overview!

https://learn.microsoft.com/en-us/cpp/cpp/lambda-expressions-in-cpp?view=msvc-170

11/14/2022SC22 | Dallas, TX | hpc accelerates. 7

Source: Lambda expressions in C++ | Microsoft Learn

https://learn.microsoft.com/en-us/cpp/cpp/lambda-expressions-in-cpp?view=msvc-170

Batteries Included is Possible in C++

• Most modern languages support thinking about dependencies.

• Python, of course, made the thinking famous via their tagline...

• ...and many other popular teaching languages (Java, Node.js, and Scala)

• By using a build system like CMake, dependencies are here to stay in
C/C++.

• Major HPC implication: Many systems don’t allow users to do
sysadmin, so being able to manage dependencies is a must.

11/14/2022SC22 | Dallas, TX | hpc accelerates. 8

11/14/2022SC22 | Dallas, TX | hpc accelerates. 9

Wow, I can use
CLI 11 in my

C/C++ Exampes

And I can do
unit testing
with Google

Test!

Some Notable Third-Party Libraries (that we use)

• Google Test instead of assert()/exit() in separate test programs

• CLI11 Argument Parsing instead of getopt()

• spdlog instead of printf() and cout/cerr for logging

• More elegant I/O with fmt (emerging standard) and scnlib (input)

• Our approach is to make sensible but not comprehensive choices.
All batteries have options that we may use in the future

• A curated awesome C++ list http://github.com/fffaraz/awesome-
cpp. Similar lists exist for your favorite languages, too.

11/14/2022SC22 | Dallas, TX | hpc accelerates. 10

http://github.com/fffaraz/awesome-cpp

Git and GitHub, Continuous Integration

• Code is available at GitHub - LoyolaChicagoCode/unoapi-dpcpp-
examples.

• Book is available at https://unoapi.cs.luc.edu.

• Continuous integration checks all examples against latest oneAPI
tools and runs unit tests.

• We welcome contributions and collaborations.

11/14/2022SC22 | Dallas, TX | hpc accelerates. 11

https://github.com/LoyolaChicagoCode/unoapi-dpcpp-examples
https://unoapi.cs.luc.edu

HPC Course and Prerequisites

• It is natural to wonder whether we can “pull this off”.

• Our curriculum at Loyola University Chicago emphasizes solid
foundational preparation.

• The ACM/IEEE CS and SE curricula greatly inform our efforts.

11/14/2022SC22 | Dallas, TX | hpc accelerates. 12

11/14/2022SC22 | Dallas, TX | hpc accelerates. 13

HPC Course (COMP 364) Learning Objectives

• Learn how to analyze the scalability and efficiency of parallel
algorithms and applications.

• Implement a distributed-memory parallel program using MPI
and/or other messaging middleware.

• Implement a shared-memory parallel program using threads.

• Learn the hardware components and taxonomy of modern parallel
computing systems, e.g. GPGPU and FPGA accelerators

• Learn to measure single-processor performance and apply
optimization techniques.

11/14/2022SC22 | Dallas, TX | hpc accelerates. 14

How we support PPP (P3) in UnoAPI

11/14/2022SC22 | Dallas, TX | hpc accelerates. 15

Portability

• Build automation (PRO.cm.4, A, E)

• External dependency management (PRO.cm.3, C, E)

• Rootless package management (PRO.cm.4, A, E)

• Cross-platform standards (PRO.imp.7, K, E)

(Major.minor.section, Skill Level, E=Essential vs. D=Desirable)

PRO = Process, cm = Configuration Management

K = Know, C = Comprehend, A = Apply

11/14/2022SC22 | Dallas, TX | hpc accelerates. 16

Reproducibility

Automated testing (VAV.tst.11, A, E)

Continuous integration (PRO.cm.4, A, E)

VAV = Validation and Verification, PRO=Process

tst=Testing, cm=Configuration Management

A=Apply, E=Essential

11/14/2022SC22 | Dallas, TX | hpc accelerates. 17

Productivity

Version control (PRO.cm.1, A, E)

Modern language usage (CMP.cf.8, A, E)

Separation of concerns principle (DES.ev.1, K, E)

Software reuse (CMP.ct.2, A, E)

Software composition (PRO.pp.1, A, E)

11/14/2022SC22 | Dallas, TX | hpc accelerates. 18

11/14/2022SC22 | Dallas, TX | hpc accelerates. 19

A Word about UnoAPI Exemplars

• Each is a subproject of a common CMake build file (allows reuse
and makes it easy for anyone to add a project)

• Has a command-line interface (CLI) to teach application-oriented
thinking and do common HPC experiments (e.g. scaling)

• Use of Modern C++ throughout - no direct C usage unless it truly
helps performance and improves pedagogy

• Ability to select from CPU and GPU (or others) via CLI

• Use of buffered abstractions for memory management

11/14/2022SC22 | Dallas, TX | hpc accelerates. 20

A Quick Tour/Demo - Time Permitting

• Code is available at GitHub - LoyolaChicagoCode/unoapi-dpcpp-
examples.

• Emerging Book/Curriculum is available at
https://unoapi.cs.luc.edu.

• Paper available
from https://doi.org/10.6084/m9.figshare.21200464.v2.

• Continuous integration checks all examples against latest oneAPI
tools and runs unit tests and builds the latest book.

• We welcome contributions and collaborations.

11/14/2022SC22 | Dallas, TX | hpc accelerates. 21

https://github.com/LoyolaChicagoCode/unoapi-dpcpp-examples
https://unoapi.cs.luc.edu
https://doi.org/10.6084/m9.figshare.21200464.v2

Evaluation and Future Plans

• Trapezoidal integration is one of several exemplars in our repo.

• Materials beta tested with small group of sophomores/juniors in
SSL (research group) at Loyola and group of research students at
IIT (Raicu lab)

• Will premier materials in George's next offering of COMP 339 in
Spring 2022.

• Intel also includes many nice oneAPI examples. We are reworking
these to incorporate our SE-focused approach.

11/14/2022SC22 | Dallas, TX | hpc accelerates. 22

Snippets from Exemplar – Live Demo Backup
Slides

11/14/2022SC22 | Dallas, TX | hpc accelerates. 23

11/14/2022SC22 | Dallas, TX | hpc accelerates. 24

Building a Command-Line Interface (CLI) using CLI11

11/14/2022SC22 | Dallas, TX | hpc accelerates. 25

Building a Command-Line Interface (CLI) using CLI11

11/14/2022SC22 | Dallas, TX | hpc accelerates. 26

SYCL Device Selection – Driven by Selectable Command Line OPtion

11/14/2022SC22 | Dallas, TX | hpc accelerates. 27

Creating SYCL Submission Queue and Showing Selected Devices

11/14/2022SC22 | Dallas, TX | hpc accelerates. 28

SYCL's abstractions for sharing memory between devices.

11/14/2022SC22 | Dallas, TX | hpc accelerates. 29

Writing the parallel_for() using buffer and lambda for
computing area under function f(). This computes the area
but does not perform a reduce (sum).

11/14/2022SC22 | Dallas, TX | hpc accelerates. 30

The exemplar uses sycl::reduction to create a function to reduce the sum of each
individual trapezoid calculation.

