
UnoAPI: Balancing Performance, Portability, and
Productivity (P3) in HPC Education

Konstantin Läufer and George K. Thiruvathukal
Loyola University Chicago

Software and Systems Laboratory
Department of Computer Science

{gkt,laufer}@cs.luc.edu

Abstract—oneAPI is a major initiative by Intel aimed at
making it easier to program heterogeneous architectures used
in high-performance computing using a unified application
programming interface (API). While raising the abstraction
level via a unified API represents a promising step for the
current generation of students and practitioners to embrace high-
performance computing, we argue that a curriculum of well-
developed software engineering methods and well-crafted exem-
plars will be necessary to ensure interest by this audience and
those who teach them. We aim to bridge the gap by developing
a curriculum—codenamed UnoAPI—that takes a more holistic
approach by looking beyond language and framework to include
the broader development ecosystem, similar to the experience
found in popular HPC languages such as Python. We hope to
make parallel programming a more attractive option by making
it look more like general application development in modern
languages being used by most students and educators today.
Our curriculum emanates from the perspective of well-crafted
exemplars from the foundations of computer systems—given
that most HPC architectures of interest begin from the systems
tradition—with an integrated treatment of essential principles
of distributed systems, programming languages, and software
engineering. We argue that a curriculum should cover the essence
of these topics to attract students to HPC and enable them to
confidently solve computational problems using oneAPI. By the
time of this submission, we have shared our materials with a small
group of undergraduate sophomores, and their responses have
been encouraging in terms of self-reported comprehension and
ability to reproduce the compilation and execution of exemplars
on their personal systems. We plan a follow-up study with a
larger cohort by incorporating some of our materials in our
existing course on High-Performance Computing.

I. INTRODUCTION

In recent years, a number of frameworks and languages
have emerged to improve the level of abstraction in parallel
computing. Although parallel computing itself has reached a
high level of maturity, as we move toward exascale and beyond
computing, the challenges that plagued the earliest days of
parallel and distributed computing are beginning to resurface,
in particular, how to leverage—and manage—heterogeneity.
Heterogeneity manifests itself in an altogether new way in
today’s systems, where one or more architectures may be
present within a single system. That is, it is not uncommon
to find systems that have conventional CPU cores combined
with accelerators such as GPUs and FPGAs.

One of the key frameworks to emerge in response to the
heterogeneity challenge is oneAPI, which promises to be a

single application programming interface (API) that can be
used to program all available architectures. Programming is
done using a modern dialect of C/C++, known as Data-Parallel
C++ and SYCL, a standard for higher-level abstractions for
parallelism and concurrency. While oneAPI is not the only
alternative, the ability to write largely device-independent
programs is a promising direction with great potential to
improve the way we teach the current and future generations of
students how to exploit parallelism as the world moves toward
more “on chip” heterogeneity and clusters thereof.

While this development is promising, we contend that
raising the level of abstraction within a programming language
or accompanying set of libraries is likely going to prove insuf-
ficient for reaching a new generation of developers, especially
if the goal is to create applications. Anecdotally, students
today—and their instructors, including the co-authors—are
attracted to higher-level languages that are actively being
taught in universities and in demand by the general computing
industry. Fewer and fewer of them are learning low-level
languages and have come to expect much more when it comes
to a language. Virtually all modern languages have mature
ecosystems with easy access to many libraries via repositories
such as Maven (Java and other JVM-based languages), PyPI
(Python), NPM (Node/JavaScript), and Go (with its integrated
source-based management).

On the C++ side, it is important to understand that the
language has undergone substantial modernization in recent
decades. The ISO/ANSI standard was first completed in 1998
and amended in 2003. However, in 2011, the C++-11 standard
was developed, which incorporated many innovations associ-
ated with modern languages (including C# and Java):

• New foreach loop syntax to visit elements of a collection
in natural order

• Improved initialization syntax, especially for unions and
arrays

• Automatic variable type inference (auto keyword)
• Variadic templates for increased parametric code reuse
• Improved libraries for time, atomics, regex, etc.
• Threading library (allowing code to be written without

direct use of Pthreads)

Recent language changes have introduced ideas from func-
tional programming, including lambda expressions. While

these features may be unfamiliar to established practitioners
of C++, we introduce them to all of our students enrolled
in Java-based data structures courses—COMP 271 and 272
prerequisites—so they can make the transition to C++. Rem-
iniscent of the days of Oldsmobile advertising, “This is not
your father’s (parent’s) Oldsmobile,” it can safely be said that
modern C++ is not your parent’s C++ programming language
or the one we used while we were graduate students in
the 1990s. Learning modern C++ requires directing significant
curricular effort toward making sure students and educators
alike understand how the concepts associated with modern
languages are crucial to understanding and writing oneAPI
programs.

Apart from the language, however, learning how to incor-
porate third-party libraries—also written in C++—is of great
practical importance. While this may appear to be just an im-
plementation detail, the joy of working with modern languages
lies in being able to take advantage of external dependencies
when creating applications. Perhaps no other language repre-
sents this ethos better than Python with its batteries included
approach [1], which contributes greatly to its popularity among
students, educators, and HPC researchers. Until relatively
recently, working with third-party libraries in C++ required a
great deal of effort. And given that many students will find
themselves needing to take advantage of a computing cluster
(e.g. Intel DevCloud) where they will not have root access,
being able to work with external dependencies is a must. The
days of from-scratch Makefiles can and should be replaced
with more modern build systems, e.g., CMake and Bezel.
In line with modern build systems from other programming
languages, CMake is able to support fetching and building
of external libraries/dependencies without having to get a
sysadmin to set up additional libraries on the system. We
leverage CMake’s ability in this regard to include capabilities
such as performance timing, logging, command-line argument
parsing, and unit testing to our curricular examples. While the
addition of CMake and dependency management might appear
at first glance to introduce complexity, the end result suggests
otherwise. When making use of external C++ libraries, students
can leverage important capabilities with clear, comprehensible
code and break free of writing ad hoc solutions to common
problems from scratch. This allows more effort to be put into
focusing on the scientific/mathematical problems to be solved
instead of already solved problems.

Lastly, we maintain and release all of our exemplars—
current and emerging—on GitHub, including the integration
of these examples into an online book. We use continuous
integration (CI) to ensure that all examples build with the
major releases of oneAPI and pass all tests. The intent is to
create both a living and lasting work that can evolve not only
through our efforts but with students, researchers/practitioners,
and other educators alike.

Our hope is to create a curriculum that will not only teach
oneAPI and its components but also result in the least amount
of frustration for students and their educators, who also may
need to come up to speed on the latest advancements in C++

and modern software tools that support it.

II. BACKGROUND AND RELATED WORK

A growing challenge for the HPC community has been
performance portability [2], [3], i.e., the ability to maintain
consistent application performance in the context of increas-
ing complexity and heterogeneity of hardware, as well as
the additional need to maintain developer productivity and
computational precision [4]. The intersection of performance,
portability, and productivity goals (P3) has also been the focus
of an annual workshop at the Supercomputing Conference
(SC) for several years.

While earlier approaches to heterogeneous computing fo-
cused more on task parallelism [5], the wider availability
of general-purpose accelerators, such as GPUs and FPGAs,
has lead to a strong focus on data parallelism [6]–[8]. The
computer science education community has responded by in-
corporating data parallelism into a variety of recent curricular
offerings [9]–[13]. On the language side, the community has
also incorporated modern C++ into the curriculum [14], [15],
as well as other performance-oriented modern languages, e.g.,
Rust [16]. Additional curricular innovation has occurred in
applications of data-parallel computing [17], [18].

The institutional context for our UnoAPI proposal is our
existing undergraduate elective course COMP 364: High-
Performance Computing, which broadly corresponds to the
Parallel Programming (ParProg) course from the TCPP Core
Topics report [19]. We have offered this course almost every
fall semester since 2015 to approximately 15 students per
year. The course uses Eijkhout’s introduction to HPC [20] and
emphasizes scientific computing with the following learning
objectives. Figure 1 shows the course in the context of its
prerequisites with relevant learning objectives.

• Learn how to analyze the scalability and efficiency of
parallel algorithms and applications.

• Implement a distributed-memory parallel program using
MPI and/or other messaging middleware.

• Implement a shared-memory parallel program using
threads.

• Learn the hardware components and taxonomy of modern
parallel computing systems, e.g. GPGPU and FPGA
accelerators

• Learn to measure single-processor performance and apply
optimization techniques.

III. UNOAPI CURRICULAR GOALS

UnoAPI’s main goal is to help address the P3 challenge
by making HPC attractive to a broader student audience. By
taking a holistic approach to constructing the curriculum, we
aim to make the curriculum transformative and engage a broad
population of emerging researchers and professionals to take
up parallel computing. Our recurring theme is to maintain a
connection with concepts and programming techniques stu-
dents have already seen in other, familiar ecosystems, which
thereby lead them to appreciate HPC as similarly compelling
and intriguing. Our hope is to help build a pipeline of

Fig. 1: COMP 364 with prerequisites including learning ob-
jectives relevant to high-performance computing with DPC++

and oneAPI

students who come to HPC research with proven, state-of-the-
art software engineering and modern systems programming
habits, and are thereby prepared to contribute productively to
performant, portable, maintainable, and reproducible software.

While most curricular innovation in the area of heteroge-
neous HPC has focused on performance—broadly speaking—
we aim to make additional improvements along the portability
and productivity dimensions. In particular, this view is consis-
tent with the HPC education community’s increased emphasis
on reproducibility [21].

In addition to key core parallel programming topics from
the TCPP report [19], we have incorporated the following
complementary learning outcomes from the ACM/IEEE Com-
puter Society Software Engineering 2014 Curriculum Guide-
lines [22]. Bloom’s cognitive skill levels (know, comprehend,
and apply) and relevance to the core curriculum (essential
versus desirable) are shown in parentheses:

• Portability
– Build automation (PRO.cm.4, A, E)
– External dependency management (PRO.cm.3, C, E)
– Rootless package management (PRO.cm.4, A, E)
– Cross-platform standards (PRO.imp.7, K, E)

• Reproducibility
– Automated testing (VAV.tst.11, A, E)
– Continuous integration (PRO.cm.4, A, E)

• Productivity
– Version control (PRO.cm.1, A, E)
– Modern language usage (CMP.cf.8, A, E)
– Separation of concerns principle (DES.ev.1, K, E)
– Software reuse (CMP.ct.2, A, E)
– Software composition (PRO.pp.1, A, E)

While the codes shown in this list may appear a bit
cryptic, they are readily used by academic computing-related
departments to determine what knowledge units are addressed
by courses within the curriculum. For example, PRO.cm.4
is addressing the topic of Build Automation (topic 4) within

the major curricular unit of Process (PRO) and Configuration
Management (cm). We have listed the leaf topic (e.g. Build
automation) in the above outline and where to find it within
the ACM/IEEE SE curricular hierarchy.

In terms of leveraging accepted software engineering and
software architecture practices [22] in HPC education, the
UnoAPI approach builds on our prior contribution to the
Curriculum Development and Educational Resources (CDER)
book project to teach concurrent application development
using Android and Java [23]. While we believe that many
of our colleagues already follow these practices, the HPC
community’s growing interest in P3 issues suggests that these
practices are important enough to become explicit learning
objectives in their own right.

We hope that our curricular offering will be compelling not
just for those interested in scientific programming and other
applications of HPC, but also software engineering majors
interested in contributing to well-constructed HPC solutions.

IV. METHODS

To address the learning objectives listed above, the proposed
UnoAPI approach combines the following key ingredients.
Figure 2 shows the resulting color-coded course outline.

• Platform: oneAPI with Data-Parallel C++

• Language and included libraries: modern C++ and the C++

Standard Library
• Third-party libraries to solve common recurring problems
• Tools for various aspects of software development
• Techniques to help achieve the P3 goals
• Pedagogy based on well-crafted exemplars

Fig. 2: COMP 364 proposed course outline

We now describe our approach in detail based on our
data-parallel trapezoidal integration exemplar. We choose to

https://github.com/LoyolaChicagoCode/unoapi-dpcpp-examples/tree/main/integration

present this exemplar from our growing collection—including
many examples distributed by Intel as part of their own
documentation—here as it is easy to comprehend yet allows
us to demonstrate various key aspects of data-parallel C++

programming using Intel’s oneAPI platform [7], [8], which is
based on the SYCL cross-platform standard for heterogeneous
accelerator-based computing [6]. Although the example is
embarrassingly parallel, it nevertheless exhibits numerous non-
trivial pedagogical challenges that we will discuss in detail.

The exemplar’s sequential version illustrates the underlying
fused-loop map-reduce algorithm, which maps each adjacent
pair of function values to a trapezoid area and, in the same
loop body, reduces (adds) the area to the cumulative result.

if (run_sequentially) {
std::vector values(size, 0.0);
double result{0.0};

values[0] = f(x_min);
for (auto i{0UL}; i < number_of_trapezoids; i++) {
values[i + 1] = f(x_min + i * dx);
result +=

trapezoid(values[i], values[i + 1], half_dx);
}

fmt::print("result = {}\n", result);
}

We’ll see shortly how to write the data-parallel version of
this algorithm in DPC++.

A. The Platform: Intel oneAPI/Khronos SYCL
The SYCL standard [6] defines high-level abstractions for

parallel computing using modern C++, in an effort by Khronos
to influence the ISO C++ standard to support heterogeneous
computing. Data-Parallel C++ (DPC++) [8], a part of Intel’s
oneAPI standard, is an implementation of SYCL. Intel pro-
vides remote access to various types of accelerator hardware,
including GPUs and FPGAs, through its DevCloud program.

1) Device Selection and Task Queues
A typical DPC++ program starts with the selection of one

or more accelerator devices based on criteria of varying
specificity. In our exemplar, the user can choose between
running the code on the host CPU and an available accelerator:

const sycl::device_selector & device_selector{
run_cpuonly ?

static_cast<const sycl::device_selector &>(
sycl::cpu_selector{}) :

static_cast<const sycl::device_selector &>(
sycl::default_selector{})

};

The interface between the programmer and the chosen
device is a queue, to which we can later submit commands
for execution on the device.

sycl::queue q{
device_selector,
dpc_common::exception_handler,
sycl::property::queue::in_order()

};
spdlog::info("Device: {}", q.get_device().
get_info<sycl::info::device::name>());

If we do not explicitly specify a device when creating our
queue, the queue will automatically select the most suitable
available device on the current hardware. Also, we can choose
between a simple in-order queue, as we have done here, or we
can have the queue figure out the best order for executing the
submitted commands without deadlocking.

2) Buffers Shared Between Host and Device
Data-parallel computing typically involves some form of

data sharing between the host and the device. SYCL allows
several choices for this with varying degrees of control where
the data should reside and how it is shared between host
and device. E.g., we could allocate a standard vector on the
host and use universal shared memory (USM) to share it with
the device executing the data-parallel instructions. This might
require copying substantial amounts of data between host and
device and thereby impair performance.

Instead, a buffer is a higher-level data container that allows
SYCL to determine where best to allocate the corresponding
memory; a range represents a 1, 2, or 3-dimensional index
range for a buffer. By not explicitly backing a buffer by a host-
allocated standard vector, the data can remain on the device
for faster access during kernel execution—until we may need
to access it on the host later.

sycl::buffer<double> v_buf{sycl::range<1>{size}};
sycl::buffer<double> r_buf{sycl::range<1>{1}};

3) parallel for() Construct
At the heart of SYCL’s support for data parallelism lies

the parallel_for() construct, which allows us to express
the instructions that should execute in parallel. While also
providing varying degrees of control over splitting up the
workload and assigning it to the accelerator device, SYCL
is able to come up with a suitable assignment that maximizes
parallelism based on the capabilities of the device.

q.submit([&](auto & h) {
const sycl::accessor v{v_buf, h};
h.parallel_for(size, [=](const auto & index) {
v[index] = f(x_min + index * dx);

}); // end inner lambda/parallel_for
}); // end of command group

In this example, f() represents the computation we perform
in parallel on each data item. As shown in §IV-B7, separating
f into its own compilation unit enables us to unit-test it, as
well as choose a specific implementation of f at build time.

We will also discuss below how the parallel_for()
construct relates to other C++ constructs.

B. The Language: Modern C++

“How many C++ programmers does it take to change a
lightbulb? Just one, and when they’re done, the refrigerator
and kitchen sink no longer work.”

Since its initial standardization in 1998, followed by the
2003 update mostly to address some shortcomings in the
original standard, C++ has undergone a long period of stability.
Starting with C++-11, however, the first version associated with

https://www.intel.com/content/www/us/en/developer/tools/Dev\protect \discretionary {\char \hyphenchar \font }{}{}Cloud/overview.html

“modern C++ “ and continuing with subsequent standards every
three years, there has been substantial innovation in terms
of language features and best practices. These have largely
brought the language in line with other languages used widely
in computer science education, such as Java and Python, and
arguably make C++’s erstwhile complexity, as witnessed by the
joke above, more manageable. We currently follow the C++-17
standard because it forms the basis for SYCL and is well-
supported by the Data-Parallel C++ compiler.

1) const and constexpr
This language feature falls within the broader category

of static type safety. By declaring variables as const or
constexpr, we enable the C++ compiler to prohibit unin-
tended attempts to modify those variables and optimize the
generated code accordingly. This C++ concept derives from
modern functional programming languages such as Scala val
and ML and related languages with its let expressions. In the
following declarations, we use C++-11’s simplified, uniform,
and safe initializer syntax.

constexpr size_t DEFAULT_NUM_TRAPEZOIDS{10};
size_t number_of_trapezoids{DEFAULT_NUM_TRAPEZOIDS};
double x_min{0.0};
double x_max{1.0};
bool show_function_values{false};
bool run_sequentially{false};
bool run_cpuonly{false};
uint x_precision{1};
uint y_precision{1};

2) auto Variable Type
In the presence of nested type constructors, such as parame-

terized container types, explicit variable types can quickly be-
come complex and unwieldy. The auto variable type provides
a convenient and concise way to let the compiler figure out
such types automatically—known as type inference—instead
of the programmer having to spell them out. Nevertheless,
these variables are still statically typed, and the compiler will
prohibit any incorrect attempts to interact with them. While the
notion of type inference originated in functional languages, it
has found its way into C#, C++, and eventually Java.

const auto size{num_of_trapezoids + 1};
const auto dx{(x_max - x_min) / numb_of_trapezoids};
const auto half_dx{0.5 * dx}; // needed later

Although these uses of auto are trivial, others—including
those in the parallel_for() example above—avoid
highly complex, error-prone explicit types. E.g., the type of
the iterator t for iterating over a nested container takes up
well over a dozen lines.

In sum, minimizing the complexity arising from explicit
type declaration not only reduces complexity but also brings
statically-typed language such as C++ in line with the allure of
dynamically-typed languages (e.g. Python) when it comes to
clarity and conciseness of expression but offer the safety and
performance advantages of statically typed-languages.

3) Lambda Expressions
Lambda expressions are a syntactic mechanism for express-

ing a (possibly parameterized) unit of computation without

having to define it explicitly as a function. This conveniently
allows us to specify the computation where it is used, can
capture and access variables in the current scope instead of
having to pass them as additional parameters, and avoids the
need to come up with a name that is used only once.

The parallel_for() example shown above actually
consists of two nested lambda expressions, an outer one
for submitting a command to a queue that is parameterized
by a handler, and an inner one for the loop body of the
parallel_for() that is parameterized by an abstract in-
dex. The capture clause [&] for the outer lambda indicates
access to the captured variable(s) (buffer v_buf) by reference
and thereby allows modification, such as assigning values to
v_buf through the locally declared accessor v. By contrast,
the capture clause [=] for the inner lambda indicates access
to the captured variables (scalars x_min and dx) by copy and
thereby prevents modification.

This example illustrates the nature of parallel_for()
as a higher-order method, whose parameter is an (itself
parameterized) lambda expression that gets applied to each
data element in the given range in a way that maximizes
the degree of parallelism based on the available hardware. In
this sense, parallel_for() is closely related to the map
function commonly available in functional languages, whose
effectful version is often called foreach. The purpose of
these functions is the uniform transformation of each element
in a container without specifying a particular order, unlike an
imperative for loop, and thereby allowing parallelism as an
optimization if available.

A closely related concept is the reduction of the elements
in a container to a single combined result, which corre-
sponds to the second stage of a map-reduce algorithm. While
functional languages usually call this reduce and/or fold,
oneAPI/SYCL’s parallel_for handles it in conjunction
with a reduction variable:

const auto sum_reduction{
sycl::reduction(r_buf, h, sycl::plus<>())};

h.parallel_for(
sycl::range<1>{number_of_trapezoids},
sum_reduction,
[=](const auto & index, auto & sum) {
sum.combine(
trapezoid(v[index], v[index + 1], half_dx));

});

4) C++ Standard Library
The C++ Standard Library, based on the earlier Standard

Template Library (STL), is a comprehensive, mature, highly
optimized library included with C++ toolchains. It provides
building blocks for solving common programming problems,
such as generic containers, I/O streams, algorithms to operate
on containers and streams, threads, and various auxiliary types
and functions.

In particular, the std::vector class is a highly perfor-
mant implementation of a resizable linear container that adds
a thin layer around native C++ arrays and optionally supports
custom memory allocators.

To facilitate working with vectors and other containers, C++

now supports foreach loops for iterating over each element of
the container exactly once (see also §IV-B3):

forward_list<string> lines;
// ...insert elements into lines...
for (const auto & line: lines) {

// visit each line once
}

Beyond explicit loops, which can be verbose and error-
prone, there is a trend toward combining higher-order con-
structs, which can have parameters that are themselves func-
tions. Despite their high level of abstraction, recent versions
of these constructs are highly optimized.

E.g., the following code reads successive words from stan-
dard input but adds only those to the vector words that have
the specified minimum length. (The minimum length predicate
is a lambda expression.)

std::vector<std::string> words;
std::remove_copy_if(
std::istream_iterator<std::string>(std::cin), {},
std::back_inserter(words),
[=](const auto & word) {

return word.length() < min_word_length;
}

);

5) C++ Namespaces
C++ supports namespaces for grouping related type and func-

tion definitions and declarations together. In our exemplar(s),
we make explicit reference to the namespace of a type or
function when making use of various features of SYCL and
oneAPI. There is a tradeoff involved, much like there is for
other programming languages that support namespaces. For
example, Python programmers readily use modules as objects,
e.g. sys.argv. C++, on the other hand, uses the double colon,
::, to achieve the same thing, which looks a bit unsightly
compared to the Python equivalent. We acknowledge that the
:: can impact readability; however, C++ provides for more
concise expression as long as the symbols are imported. If
one writes using sys::queue then the code can refer-
ence queue instead of using sys::queue. The concept
of namespaces is eminently teachable. We opt for explicit
namespace references so those learning oneAPI and SYCL
know, specifically, where to find more information about the
definition or declaration.

6) Variadic Templates
Modern C++ supports more powerful, flexible syntax for vari-

adic templates beyond simple expansion of type parameters.
Similar to duck typing in dynamic languages but statically
typed, this helps us make the code “DRY” (don’t repeat
yourself) because values can be any indexed container
(Indexable), such as a standard vector or a SYCL buffer.

template <class Indexable>
void print_function_values(
const Indexable & values,
const double x_min, const double dx,
const uint x_precision, const uint y_precision)

{
for (auto i{0UL}; i < values.size(); i++) {
fmt::print("{}: f({:.{}f}) = {:.{}f}\n", i,

x_min + i * dx, x_precision,
values[i], y_precision

);
}

}

7) Separate Compilation and External Functions
Separate compilation of source files helps us decompose

a software system into smaller modules. This has multiple
benefits, including separation of concerns, unit testing, easier
collaborative development, and the ability to defer certain
decisions (e.g., what we’re integrating) until build time.

In our exemplar, we’ll want to unit-test the function to be
integrated and defer choosing a specific implementation of that
function until build time. To be able to separately compile the
function and call it inside a DPC++ kernel, we declare it in this
SYCL-specific way:

#include <CL/sycl.hpp>

SYCL_EXTERNAL double f(double x);

To observe a speedup when using parallel_for, we define
f as an intentionally inefficient way to compute the unit value:

double f(const double x) {
return cos(x) * cos(x) + sin(x) * sin(x);

}

8) Performance Timing
We can use the chrono section of the C++ Standard Library

for this purpose.

void mark_time(
ts_vector & timestamps,
const std::string_view label)

{
timestamps.push_back(std::pair(label.data(),
std::chrono::steady_clock::now()));

}

Every time we want to add a timestamp, we invoke
mark_time with a suitable string label for the phase whose
performance we are measuring. At the end, we use the
print_timestamps function to print the collected mea-
surements in comma-separated-values (CSV) format. (For
readability, we have replaced the actual device name, “Intel(R)
UHD Graphics P630 [0x3e96]”, with “gen9.”)

TIME,DELTA,UNIT,DEVICE,PHASE
68719429381281,0,ns,gen9,Start
68719429386913,5632,ns,gen9,Memory allocation
68719466567445,37180532,ns,gen9,Queue creation
68719769668012,303100567,ns,gen9,Integration
68719773241994,3573982,ns,gen9,DONE
68719773241994,343860713,ns,gen9,TOTAL

These measurements lead to various insights on what is
going “under the hood” during program execution, to name
a few:

• Initial allocation of a SYCL buffer takes very little time
compared to allocating an standard vector.

• Queue creation introduces significant overhead.
• To achieve an overall speedup in light of this overhead,

a high degree of parallelism is required (between about
10 and 20 million trapezoids on an Intel DevCloud gen9
node).

• Compared to the sequential version, there is an overall
speedup even when using SYCL on the host CPU rather
than the accelerator.

C. Best-of-breed External Libraries

As we have seen above, the “included batteries”, i.e.,
the C++ standard library, addresses many common, general
programming concerns. Nevertheless, there are various other
common concerns that are too specific for the C++ Standard
Library to address, or which it doesn’t address yet, e.g.:

• Logging
• Formatting
• Command-line option parsing
• Unit testing
One major learning objective of UnoAPI is to avoid the

“not invented here” syndrome, which refers to a strong bias
against outside ideas (see also Wikipedia) and thereby hampers
productivity. To this end, we strive to impart on our students a
culture of aggressive software reuse in the form of proven,
best-of-breed, open-source external libraries, in addition to
the C++ and DPC++ ones on the oneAPI platform. We start
with curated lists of libraries and other pertinent resources,
such as Awesome C++, which exist for most languages and
platforms. By “standing on the shoulders of giants” who have
professionally engineered these building blocks, our students
will not only benefit from using these in their solutions, but
also become familiar with good design and documentation of
such components, which they can then imitate in their own
work. The key selection criteria are intended to minimize soft-
ware composition risks: correctness/security, stability/active
maintenance, usability/good documentation, and performance.

This approach requires the support of a suitable build
management system, such as CMake, and userland package
management, such as Homebrew, discussed below in detail.
We have designed our exemplars to work with recent versions
of these tools.

1) Logging: spdlog
This example shows the complementary role of logging

relative to actual output using spdlog.

if (show_function_values) {
spdlog::info("preparing function values");
const sycl::host_accessor values{v_buf};
spdlog::info("showing function values");
print_function_values(values, x_min, dx,

x_precision, y_precision);
}

This type of logging works only outside of kernel code
running on an accelerator. oneAPI supports limited I/O in the

kernel for logging and debugging purposes but does not allow
file I/O (see also Doing IO in the Kernel).

2) Formatting: {fmt}
Most modern languages support some form of string in-

terpolation, where one can reference variables—and even
expressions—from the current scope directly in a for-
matting string. While the familiar printf() format
syntax does not provide full-fledged string interpola-
tion, it is familiar and arguably more convenient than
std::ostream::operator<<.

The {fmt} library brings back fast formatting using an
enhanced printf format syntax and is being incorporated
into C++-20. We can even make decimal precision a dynamic
parameter by using nested placeholders (pairs of curly braces).

fmt::print("{}: f({:.{}f}) = {:.{}f}\n",
i, x_min + i * dx, x_precision,
values[i], y_precision

);

3) Command-line Option Parsing: CLI11
Command-line option parsing enables us to defer certain

decisions about the way our exemplars execute all the way
until invocation time without the need to recompile the code.
This ability is crucial for making our code parametric at the
application level. E.g., we can write shell commands to carry
out a detailed performance study over the Cartesian product
of possible parameter values.

State-of-the-art command-line parsing libraries, such as
CLI11, are feature-rich and may support dynamic validation
of provided values. The following shows how we support CLI
for our trapezoidal integration example:

CLI::App app{"Trapezoidal integration"};

app.option_defaults()->always_capture_default(true);
app.add_option(

"-n,--trapezoids", number_of_trapezoids,
"number of trapezoids")->
check(CLI::PositiveNumber.description(" >= 1"));

app.add_option(
"-l,--lower,--xmin", x_min, "x min value");

// ...
app.add_option(

"-y,--y-format-precision", y_precision,
"decimal precision for y (function) values")->
check(CLI::PositiveNumber.description(" >= 1"));

CLI11_PARSE(app, argc, argv);

The resulting executable is self-documenting, using the -h
or --help flags following the UNIX tradition:

$./cmake-build-release/bin/integration -h
Trapezoidal integration
Usage: ./cmake-build-release/bin/integration [OPTS]

Options:
-h,--help Print this help message and exit
-n,--trapezoids UINT: >= 1=10 number of trapezoids
-l,--lower,--xmin FLOAT=0 x min value
...

Note how the CLI allows one to think parametrically about
the application with intuitively named arguments—and concise

https://en.wikipedia.org/wiki/Not_invented_here
https://github.com/fffaraz/awesome-cpp
https://github.com/gabime/spdlog
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top/tools/io-kernel.html
https://fmt.dev/latest/
https://github.com/CLIUtils/CLI11

ones—in the UNIX tradition. E.g., we can compute the integral∫ 2

1/2
f(x) dx using 100 trapezoids on the CPU:

$./cmake-build-release/bin/integration -n 100
-l 0.5 -u 2.0 -c

[info] integrating function from 0.5 to 2
using 100 trapezoid(s), dx = 0.015

[info] preparing for vectorized integration
...
result = 1.4999999999999973

The CMake build tool allows us to address the concern
of release builds (optimized, suitable for performance anal-
ysis) versus debug builds (instrumented for possible debug-
ging) without listing specific compiler options. (We’ll discuss
CMake in more detail in §IV-D1.)

cmake -DCMAKE_BUILD_TYPE={Debug|Release} ...

4) Unit Testing: GoogleTest
The main value proposition of automated unit testing is

that it encourages frequent regression testing by making it
painless [24]. During the last two decades, this “test-infected”
mindset has gradually entered the mainstream including intro-
ductory computer science courses. We argue that it can benefit
and integrate seamlessly with HPC education.

Support for unit testing in C/C++ has improved considerably,
and we prefer GoogleTest for this purpose. A typical floating-
point correctness test looks like this:

TEST_F(IntegrationTest, Simple3) {
EXPECT_NEAR(trapezoid(-1, 1, 0.5), 0, EPS);

}

D. Software Engineering Practices: Techniques and Tools

We argue that following modern software engineering prac-
tices, especially build and configuration management and build
automation (continuous integration) can help greatly with
portability and reproducibility in the software supply chain.

1) Build and Configuration Management: CMake
A key portability challenge results from differences across

users’ development and production environments, such as
different versions of operating systems, compilers, libraries,
and other tools. Among several efforts to abstract away these
differences and support building a project on any environ-
ment meeting certain minimum criteria, (modern) CMake has
emerged as the most painless choice, especially for C/C++-
based projects.

CMake enables us to use C/C++ similar to other languages,
such as Java, Scala, Python, JavaScript/Node, by managing
external library dependencies declaratively and fetching them
dynamically. This encourages parametric thinking and makes
it possible to develop adaptable HPC codes.

The following settings consistently ensure a specific lan-
guage standard:

set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)

This section is an example of declaring an external depen-
dency that gets included into the build process at source level.

FetchContent_Declare(
fmt
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
GIT_TAG 8.1.1

)
FetchContent_MakeAvailable(fmt)

The external dependencies declared in this way then become
available for linking into the executable(s).

add_executable(integration
main.cpp f.cpp trapezoid.cpp timestamps.cpp

)
target_link_libraries(integration

fmt::fmt spdlog::spdlog CLI11::CLI11
)

2) Version Control: git/GitHub
Version control, especially distributed, hosted services such

as GitHub, GitLab, and Bitbucket, are one of the foundations
of modern software engineering practice. Version control
allows a development team to keep their code in a secure
place and enables collaboration following numerous different
models and cultures.

3) Continuous Integration: GitHub Actions
There are various choices for adding continuous integration

to a software project, such as setting up a dedicated server or
connecting to an external provider. Even more conveniently,
major hosted version control services already include sup-
port for continuous integration. In practice, automated builds
(workflow runs) are triggered every time a project contributor
commits changes to the code base. Such a build automates
the steps one would typically perform manually on one’s
workstation:

• starting with a vanilla configuration,
• installing prerequisites to the build,
• checking out the project source code,
• building executable artifacts, and
• running/testing them.

Starting with a vanilla (default) system configuration ensures
that all project dependencies (tools, external libraries, etc.) are
fully understood and explicit. In addition, build automation
results in almost immediate feedback on an incorrect commit
that “breaks the build” (see Appendix A for the actual scripts).

We argue that continuous integration can make us
reproducibility-aware: A researcher wishing to reproduce the
work represented by a particular project can “fork” the project
into their own account on, say, GitHub. The CI workflow then
runs on that user’s fork of the project. This gives us some
degree of reproducibility “for free,” subject to limitations in
devices available through the actual CI container (i.e., not
usually accelerators).

4) Automated Testing
Automated testing usually takes place as part of continuous

integration. Indeed, the last section of the CI workflow shown
above invokes all discovered executable tests.

https://google.github.io/googletest/
https://cmake.org

5) Rootless Package Management for Libraries and Tools
On publicly accessible HPC clusters, such as Intel’s Dev-

Cloud and those run by some national laboratories, users
don’t typically have root access (administrative privileges).
This precludes them from using native package management,
such as apt on Ubuntu, to install missing packages or newer
versions of outdated packages.

During the last decade or so, userland package manage-
ment tools have emerged as a complement to native package
management. These tools, such as Homebrew on MacOS and
Linux and Chocolatey on Windows, allow users to install
additional packages for their personal use without requiring
root access, e.g., a current version of CMake.

V. EVALUATION AND FUTURE PLANS

The UnoAPI curricular modules are available at un-
oapi.cs.luc.edu, and the source code of the exemplars can
be found at github.com/LoyolaChicagoCode/unoapi-dpcpp-
examples. While our trapezoidal integration exemplar used
throughout this paper is complete, the curricular modules are
still a work in progress.

By the time of this submission, we have shared these ma-
terials with a small group of undergraduate sophomores, and
their responses have been encouraging in terms of self-reported
comprehension and ability to reproduce the compilation and
execution of exemplars on their personal systems.

During the second half of the 2022/23 academic year, we
are planning to conduct a broader study with a larger cohort
by incorporating some of our materials in the existing course
COMP 364: High-Performance Computing.

We also plan to study the role of internationalization (i18n)
and localization (l10n) in software reproducibility and enhance
our written curricular materials accordingly.

VI. CONCLUSION

While we have noticed growing awareness among our
colleagues of the practices we have described as part of the
UnoAPI curriculum, the HPC community’s growing interest in
P3 issues suggests that these additional programming language
and software engineering practices are important enough to
become explicit learning objectives in their own right. The
various curricular components we have described above are
widely available, well documented, and increasingly used in
general software development practice. However, what we
have not seen in prior work is a coherent, holistic pedagogical
vision that combines them as part of the intermediate under-
graduate curriculum. We maintain that this combination of
materials is eminently teachable and have shared our vision
in the hope of encouraging other educators to incorporate
these techniques and tools into their teaching to enhance early
interest about HPC among emerging student talent.

In sum, we have argued that systems and HPC programming
can be effective and engaging using proper software engineer-
ing techniques, and we can teach students how to write high-
quality, reproducible code in this domain. While a small group
of undergraduate sophomores has responded positively to our
materials, we plan a broader study with a larger cohort.

REFERENCES
[1] P. F. Dubois, “Guest editor’s introduction: Python: Batteries included,”

Computing in Science & Engineering, vol. 9, no. 03, pp. 7–9, May
2007, ISSN: 1558-366X. DOI: 10.1109/MCSE.2007.51.

[2] S. J. Pennycook, J. D. Sewall, and V. W. Lee, “A metric for perfor-
mance portability,” in Proc. 7th International Workshop in Performance
Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems, 2016. DOI: 10.48550/ARXIV.1611.07409.

[3] Performance portability, Department of Energy. [Online]. Available:
https://performanceportability.org.

[4] D. Chamont, “Performance vs portability vs productivity vs precision :
A trail in the hardware and software jungle,” in Learning to Discover:
Advanced Pattern Recognition, Institute Pascal, Orsay, Paris, Oct.
2019.

[5] P. J. Hatcher and M. J. Quinn, Data-Parallel Programming on MIMD
Computers. MIT Press, 1991, ISBN: 9780262082051.

[6] The SYCL 1.2.1 specification, Khronos SYCL Working Group, 2019.
[Online]. Available: https://www.khronos.org/registry/SYCL.

[7] B. Ashbaugh, A. Bader, J. Brodman, et al., “Data parallel C++: En-
hancing SYCL through extensions for productivity and performance,”
in Proceedings of the International Workshop on OpenCL, ser. IWOCL
’20, Munich, Germany: Association for Computing Machinery, 2020,
ISBN: 9781450375313. DOI: 10.1145/3388333.3388653.

[8] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, and
X. Tian, Data Parallel C++: Mastering DPC++ for Programming
of Heterogeneous Systems using C++ and SYCL. Apress, 2021. DOI:
10.1007/978-1-4842-5574-2.

[9] Y. Sitsylitsyn, “Methods and tools for teaching parallel and distributed
computing in universities: A systematic review of the literature,”
SHS Web Conf., vol. 75, p. 04 017, 2020. DOI: 10 . 1051 / shsconf /
20207504017.

[10] J. Ciesko, D. Poliakoff, D. S. Hollman, C. C. Trott, and D. Lebrun-
Grandié, “Towards generic parallel programming in computer science
education with Kokkos,” in 2020 IEEE/ACM Workshop on Education
for High-Performance Computing (EduHPC), 2020, pp. 35–42. DOI:
10.1109/EduHPC51895.2020.00010.

[11] A. Qasem, D. Bunde, and P. Schielke, “A module-based introduction
to heterogeneous computing in core courses,” Journal of Parallel and
Distributed Computing, vol. 158, Aug. 2021. DOI: 10 .1016 / j . jpdc .
2021.07.011.

[12] J. Dokulil, “Let’s put the memory model front and center when
teaching parallel programming in C++,” in Proc. 2021 NSF/TCPP
Workshop on Parallel and Distributed Computing Education (EduPar-
21), May 2021. [Online]. Available: https://tcpp.cs.gsu.edu/curriculum/
sites/default/files/main.pdf.

[13] J. Fuentes, D. López, and S. González, “Teaching heterogeneous
computing using DPC++,” in Proc. 2022 NSF/TCPP workshop on
parallel and distributed computing education (EduPar-22), May 2022.

[14] D. M. Rao, “Fall-12: Using C++11 to teach concurrency and paral-
lelism concepts,” in Proc. Third NSF/TCPP Workshop on Parallel and
Distributed Computing Education (EduPar-13), Cambridge, MA, USA,
May 2013. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.360.7348&rep=rep1&type=pdf.

[15] N. Dale, C. Weems, and T. Richards, C++ Plus Data Structures, 6th.
Jones & Bartlett, 2018, ISBN: 9781284089196.

[16] M. Blesel, M. Kuhn, and J. Squar, “Heimdallr: Improving compile time
correctness checking for message passing with Rust,” in High Perfor-
mance Computing, H. Jagode, H. Anzt, H. Ltaief, and P. Luszczek,
Eds., Cham: Springer International Publishing, 2021, pp. 199–211,
ISBN: 978-3-030-90539-2.

[17] J. C. Adams and M. C. Wissink, “Hearing program behavior with
TSAL,” in 2019 IEEE/ACM Workshop on Education for High-
Performance Computing, EduHPC@SC 2019, Denver, CO, USA,
November 17, 2019, IEEE, 2019, ISBN: 978-1-7281-5975-1.

[18] A. Danner, T. Newhall, and K. C. Webb, “ParaVis: A library for visual-
izing and debugging parallel applications,” in 2019 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
2019, pp. 326–333. DOI: 10.1109/IPDPSW.2019.00062.

[19] S. K. Prasad, T. Estrada, S. Ghafoor, et al., “NSF/IEEE-TCPP cur-
riculum initiative on parallel and distributed computing - core topics
for undergraduates (version 2-beta),” Nov. 2020. [Online]. Available:
https://tcpp.cs.gsu.edu/curriculum.

[20] V. Eijkhout, Introduction to High Performance Scientific Computing,
3rd edition. Jul. 2022. [Online]. Available: https://theartofhpc.com/istc.

https://unoapi.cs.luc.edu
https://unoapi.cs.luc.edu
https://github.com/LoyolaChicagoCode/unoapi-dpcpp-examples
https://github.com/LoyolaChicagoCode/unoapi-dpcpp-examples
https://doi.org/10.1109/MCSE.2007.51
https://doi.org/10.48550/ARXIV.1611.07409
https://performanceportability.org
https://www.khronos.org/registry/SYCL
https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1007/978-1-4842-5574-2
https://doi.org/10.1051/shsconf/20207504017
https://doi.org/10.1051/shsconf/20207504017
https://doi.org/10.1109/EduHPC51895.2020.00010
https://doi.org/10.1016/j.jpdc.2021.07.011
https://doi.org/10.1016/j.jpdc.2021.07.011
https://tcpp.cs.gsu.edu/curriculum/sites/default/files/main.pdf
https://tcpp.cs.gsu.edu/curriculum/sites/default/files/main.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.360.7348&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.360.7348&rep=rep1&type=pdf
https://doi.org/10.1109/IPDPSW.2019.00062
https://tcpp.cs.gsu.edu/curriculum
https://theartofhpc.com/istc

[21] M. A. Heroux, “Reproducibility in scientific software,” Jun. 2018.
[Online]. Available: https://www.osti.gov/biblio/1525948.

[22] M. Ardis, D. Budgen, G. W. Hislop, J. Offutt, M. Sebern, and W.
Visser, “Se 2014: Curriculum guidelines for undergraduate degree
programs in software engineering,” Computer, vol. 48, no. 11, pp. 106–
109, 2015.

[23] K. Läufer and G. K. Thiruvathukal, “Managing concurrency in mobile
user interfaces with examples in android,” in Topics in Parallel and
Distributed Computing: Enhancing the Undergraduate Curriculum:
Performance, Concurrency, and Programming on Modern Platforms,
S. K. Prasad, A. Gupta, A. Rosenberg, A. Sussman, and C. Weems,
Eds. Cham: Springer International Publishing, 2018, pp. 243–285. DOI:
10.1007/978-3-319-93109-8 9.

[24] K. Beck, Test Driven Development: By Example. Addison-Wesley
Professional, 2002.

APPENDIX

A. Artifact Description

The artifact associated with this submission is a
CMake-based C++ project along with unit tests in source
form. The artifact is publicly available as a GitHub
repository under the Apache 2.0 open-source license at
github.com/LoyolaChicagoCode/unoapi-dpcpp-examples.

This artifact includes a README file with instructions
for building and running on Debian-based Linux systems
(including Ubuntu), as well as the scripts needed to run the
experiments described in this paper. External input data is not
required.

1) Running the artifact on GitHub as a fork of the original
repo (browser-based)

The repository is configured with continuous integration
(CI) using the following GitHub Actions workflow:

steps:
- name: Checkout project code
uses: actions/checkout@v2

- name: Install Intel oneAPI
timeout-minutes: 5
run: ./install-dpcpp.sh

- name: Set oneAPI environment
run: |

source /opt/intel/oneapi/setvars.sh
printenv >> $GITHUB_ENV
echo /opt/oneapi/compiler/latest/linux/bin \
>> $GITHUB_PATH

- name: CMake configure
run: cmake -S . -B $BUILD_DIR

- name: CMake build
run: cmake --build $BUILD_DIR

- name: CMake test
run: |
for test_bin in $BUILD_DIR/bin/*tests; do
"./$test_bin"

done

It relies on this prerequisite installation script, which one
can also invoke manually on a local workstation:

echo Add Intel Apt repository

wget -qO- \
https://apt.repos.intel.com/intel-gpg-keys/\

GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | \
sudo tee /etc/apt/trusted.gpg.d/\

GPG-PUB-KEY-INTEL-SW-PRODUCTS.asc
echo "deb https://apt.repos.intel.com/oneapi" \

"all main" | \
sudo tee /etc/apt/sources.list.d/oneAPI.list

sudo apt update

echo Install Intel oneAPI

sudo apt install intel-oneapi-compiler-dpcpp-cpp

Every commit or pull request to the repository triggers a
build and results in an indication of successful or unsuccessful
completion of the build, including execution of the unit test
suite. This option is subject to limitations in devices available
through the actual CI container (i.e., not usually accelerators).

These are the steps to copy, build, and run the artifact in a
web browser without involving a local build environment.

• Visit github.com/LoyolaChicagoCode/unoapi-dpcpp-
examples.

• Near the top right corner, look for the Fork button, click
on the dropdown, and select “Create a new fork.”

• Create the new fork in your GitHub account or organiza-
tion.

• Visit the Actions tab, where you will see the message
“Workflows aren’t being run on this forked repository.”

• Click on the green button labeled “I understand my
workflows, go ahead and enable them.”

• Use the web interface to create a file, say “dummy.txt”,
to trigger a workflow run. This will create an entry
under the GitHub actions tab for this workflow run. To
observe execution in real time or after completion, one
can drill into this entry until the step-by-step execution
log appears.

2) Running the artifact locally
This option requires a physical or virtual Debian-based

system on Intel hardware, which may include an accelerator,
such as a GPU. The specific steps are documented in the top-
level README file in the GitHub repository. The artifact’s
main executable is self-documenting using the -h or --help
CLI option.

3) Running the artifact on the Intel DevCloud
This option requires a (free) account on Intel’s DevCloud

for working with oneAPI and provides access to various types
of accelerators, such as GPUs based on the gen9 architecture
we’ve used for the sample runs shown above; it thereby
provides the highest degree of reproducibility. Once access
to DevCloud has been established, the specific steps are
documented in the top-level README file in the GitHub
repository. The artifact’s main executable is self-documenting
using the -h or --help CLI option.

https://www.osti.gov/biblio/1525948
https://doi.org/10.1007/978-3-319-93109-8_9
https://github.com/LoyolaChicagoCode/unoapi-dpcpp-examples
https://github.com/LoyolaChicagoCode/unoapi-dpcpp-examples
https://github.com/LoyolaChicagoCode/unoapi-dpcpp-examples

	Introduction
	Background and Related Work
	UnoAPI Curricular Goals
	Methods
	The Platform: Intel oneAPI/Khronos SYCL
	Device Selection and Task Queues
	Buffers Shared Between Host and Device
	parallel_for() Construct

	The Language: Modern C++
	const and constexpr
	auto Variable Type
	Lambda Expressions
	C++ Standard Library
	C++ Namespaces
	Variadic Templates
	Separate Compilation and External Functions
	Performance Timing

	Best-of-breed External Libraries
	Logging: spdlog
	Formatting: {fmt}
	Command-line Option Parsing: CLI11
	Unit Testing: GoogleTest

	Software Engineering Practices: Techniques and Tools
	Build and Configuration Management: CMake
	Version Control: git/GitHub
	Continuous Integration: GitHub Actions
	Automated Testing
	Rootless Package Management for Libraries and Tools

	Evaluation and Future Plans
	Conclusion
	Appendix
	Artifact Description
	Running the artifact on GitHub as a fork of the original repo (browser-based)
	Running the artifact locally
	Running the artifact on the Intel DevCloud

