EPV Demo

Supplement to “A Multiresolution Stochastic Process Model for Predicting
Basketball Possession Outcomes”

Daniel Cervone, Alex D’Amour, Luke Bornn and Kirk Goldsberry

This document provides a demonstration of the code, methodology, and inferential results for the EPV
model discussed in our paper.

1 Loading the data

To begin, we must first set the directories containing the supplemental data and code, and install/load all
necessary packages.

code.dir <- "./code"
data.dir <- "./data"

Now we load the csv file containing a full game of optical tracking data. As mentioned in the paper,
data from this game was not used in parameter inference for any model related to EPV.

dat <- read.csv(file=sprintf("%s/2013_11_01_MIA_BKN.csv", data.dir))

Each row of dat represents a time point (sampled 25 times per second), and columns include

Column ‘ Value Notes

time | Real time (ms)
game | Game ID
quarter | Quarter

shot_clock | Time remaining on shot clock NA for this game
game_clock | Time remaining in quarter (s)
x, v, z | Ball position (ft) Court region is [0, 94] x [0, 50]

al_ent | ID number of player 1 on away team (al)
al x, al_y | Position of al
al_event | Event code for player al See Table 5 for reference
a#_x, h#_*x | As for al

Table 1: Description of variables in optical tracking data sample.

Let’s plot the data for some arbitrary moment in the game in Figure 1.

source(sprintf ("%s/constants.R", code.dir))
source(sprintf ("%s/graphics.R", code.dir))
par (mar=c(0, 0, 0, 0))
data.plotter(dat, 1800)

Figure 1: Plotting a single moment of optical tracking data.

1.1 Transformed data

In this format, the data lacks information necessary for computing EPV. Most importantly, the identity of
the ballcarrier is not labeled, and most be inferred by the record of game actions (and positional data). We
also need to record the covariates used by our multiresolution transition models, and perform some simple
data manipulations, such as rotating all data to the offensive half-court and removing moments where the
gameplay is suspended. The following code performs these data tasks:

source(sprintf ("%s/data_formatting.R", code.dir))
source(sprintf ("%s/covariates.R", code.dir))

poss <- possession.indicator(dat)

tdat <- rearrange.data(dat, poss)

tdat <- offensive.halfcourt(tdat)

tdat <- offensive.ballcarrier(tdat)

touchID <- get.touchID(tdat)

covariates <- getAllCovars(tdat)

tdat <- data.frame(tdat, touchID=touchID, covariates)
save(tdat, file=sprintf(")s/tdat.Rdata", data.dir))

Or, since this takes few minutes to complete, it may be easier to load a pre-computed version of the
transformed data set, tdat:

load(sprintf ("%s/tdat.Rdata", data.dir))

2 Components of hierarchical models

2.1 Player similarity adjacency matrix, H

The hierarchical models used to estimate parameters for the multiresolution transition models rely on prepro-
cessed data summaries. First, the conditional autoregressive model priors used for many model parameters
rely on a graph H of player similarity, represented using an adjacency matrix. As discussed in the paper,
this graph is constructed based on the similarity in players’ court occupancy distributions. We can visualize
these court occupancy distributions, as well as the similarity scores we calculate between them.

load(sprintf ("%s/playerbases.Rdata", data.dir))
players <- read.csv(sprintf ("%s/players2013.csv", data.dir))

head(players)

player_id firstname lastname position height weight byear rookie position.number
1 3306 Elton Brand Forward-Center 81 254 1979 1999 8
2 58293 Kyle Korver Guard-Forward 79 212 1981 2003 4
3 292401 Lou Williams Guard 73 1756 1986 2005 2
4 237675 Paul Millsap Forward-Center 80 258 1985 2006 8
5 280587 Al Horford Forward-Center 82 250 1986 2007 8
6 398043 Jeff Teague Point-Guard 74 181 1988 2009 1

players is a directory of the 461 NBA players in the 2013-14 season, and playerbases.Rdata contains
summaries of their court occupancy patterns. df is the matrix G from the paper: plotting its rows reveals
stark differences in players’ spatial occupancy patterns:

par (mfrow=c(1,5))
for(i in 1:5)
spatialPlotO(df[i,], legend=F)

Figure 2: Court occupancy distributions.

In the paper, we use non-negative matrix factorization to obtain a rank 5 approximation of the court
occupancy distribution matrix. The basis surfaces of this approximation, given in Figure 8 of the paper, are
reproduced here:

par (mfrow=c(1,5))
for(i in 1:5)
spatialPlotO(nmf.basis[i,], legend=F)

9 D =9k s

Figure 3: Court occupancy distribution bases.

Projected onto this basis, the court occupancy distributions shown in Figure 2 look like:

df .lowrank <- nmf.coef %#J, nmf.basis
par (mfrow=c(1,5))
for(i in 1:5)
spatialPlot0(df.lowrank([i,], legend=F)

¥ N

Figure 4: Low rank court occupancy distributions for players shown in Figure 2.

It’s better to compute player similarity using distance in the space of basis loadings, rather than the
original court occupancy distributions, as such distances are calculated across axes that best describe player
variation. We calculate K, a distance matrix comparing the loadings for the court occupancy distributions
of all 461 players, then map this to a symmetric adjacency matrix H based on finding each player’s closest
eight neighbors:

K <- matrix(NA, nrow=nrow(df), ncol=nrow(df))
for(i in 1:nrow(X)){
this.coef <- nmf.coefl[i,] / sum(amf.coef[i,])
K[i,] <- apply(anmf.coef, 1, function(r) sum((r / sum(r) - this.coef)"2))
}
H<-0 %K
for(i in 1:nrow(H)){
inds <- order(K[i,])[1:8 + 1]
H[i,inds] <- H[inds, i] <- 1

}

To check any player’s “neighbors” according to H, we can do (for Al Horford):

this.player <- grep("Horford", players$lastname)

paste(players$firstname, players$lastname) [which(H[this.player,] == 1)]

[1] "Brandon Bass" "J.J. Hickson" "Andre Drummond" "Tony Mitchell"
[6] "David Lee" "Dwight Howard" "Blake Griffin" "Zach Randolph"
[9] "Anthony Davis" "Amar'e Stoudemire" "Jason Maxiell" "Glen Davis"

[13] "DeMarcus Cousins" "Jonas Valanciunas" "Enes Kanter"

2.2 Spatial effect basis functions

Similarly, let’s load the basis functions that are used in representing the spatial effects in players’ macro-
transition entry models: we denote these basis functions ¢;;, where ¢ = 1,...,10, and j indexes shot-taking,
four different pass options, and turnovers (recall that for the spatial effects in the shot probability model
(Equation 10 in the paper), we use the same basis functions as we do for the shot-taking hazard model). To
recreate Figure 6 of the paper, which plots the shot-taking bases, we’d do:

par (mfrow = c(2,5))
for(i in 1:10)
spatialPlotl(take.basis[i,], legend=F)

Figure 5: Shot-taking spatial bases; this plot is the same as Figure 6 of the paper (though the ordering is
different).

3 Loading parameters and model estimates

3.1 Microtransition model

Here, we will load and illustrate the results of the multiresolution transition models discussed in Section
3 of the paper. First, let’s load the (offensive) microtransition model output for LeBron James, print the
parameter estimates, and plot of the acceleration effects ., /J§7 as in Figure 4 of the paper.

player.id <- players$player_id[which(players$firstname == "LeBron")]
load(sprintf ("%s/micros/Ys.Rdata", data.dir, player.id))

xtable(with.ball$io.x$summary.fixed[, 1:5])

mean sd 0.025quant 0.5quant 0.975quant
dif 0.98 0.00 0.98 0.98 0.98
intercept 0.00 0.01 -0.03 0.00 0.03

par (mfrow=c(1,2), mar=c(0,0,0,0))
vectorPlot (with.ball)
vectorPlot (without.ball)

. ! e 2N
g\\/)/i) ‘\\j
Z /

Aa /K //
| 7227 4 4 44 .~

Figure 6: Plots of acceleration effect for LeBron James’ offensive microtransition model.

The defensive microtransition model is less complicated, and we can fit it very quickly. The code below
estimates the same model parameters for all players on defense:

source(sprintf ("}s/parameters.R", code.dir))
def .micro <- microDefModel(tdat)

xtable (summary (def .micro$mod.x)$coef [, 1:3])

Estimate Std. Error t value

(Intercept) -0.00 0.00 -29.74
def.eps.x[-length(def.eps.x)] 0.96 0.00 1315.54
residual.x[-length(residual.x)] -0.00 0.00 -27.12
opt.eps.x[-length(opt.eps.x)] 0.00 0.00 3.99

3.2 Macrotransition entry models

We have six macrotransition entry models (from Section 3.2 of the paper). Each is fit hierarchically for all
players in the NBA using the R-INLA software, as discussed in Section 4 of the paper. Let’s load the results
of the shot-taking macrotransition entry model, and interpret some of the results.

load(sprintf ("%s/INLA_TAKE.Rdata", data.dir))

xtable(inla.out$summary.fixed[, 1:2])

bl is the coefficient for the loading on the first basis function (Figure 5). These are fixed effects, so
that player-specific coefficient values are represented as random effects. Parameter inference for the random
effects are presented somewhat confusingly in the output from R-INLA. Inference for random effects on the
situational covariates are stored in matrices where rows represent different players. For instance, for Chris
Bosh, we get the mean, SD, and quantiles of his player-specific dribble parameter! by running:

this.player <- grep("Bosh", players$lastname)
xtable(inla.out$summary.random$p.dribble[this.player, 2:6])

However, the random effects on the spatial basis coefficients are stacked in a (1 + 10) x 461 matrix (there
are 461 players in our full NBA data), with 11 461-row submatrices giving the random effects on the intercept
and each 10 basis function coefficient, in order. This matrix is copied across all 11 corresponding output
fields in the inla.out$summary.random object:

1See Appendix A.1 of the paper for explanations on the meaning of the covariates used

mean sd

(Intercept) -3.30 0.63
dribble -0.32 0.01
ndef -0.08 0.01
ball.lastsec 0.06 0.00
bl 1.79 0.63

b2 -1.62 0.63

b3 -0.52 0.64

b4 0.82 0.63

b5 -6.80 0.64

b6 -1.60 0.64

b7 -3.25 0.63

b8 -2.89 0.64

b9 -3.62 0.63

b10 -0.80 0.64

mean sd 0.025quant 0.5quant 0.975quant
237 031 0.09 0.14 0.31 0.49

n.player <- nrow(players)
anference for Chris Bosh's intercept and first basis coefficient
xtable(inla.out$summary.random$p.int [this.player + 0:1, 2:6])

mean sd 0.025quant 0.5quant 0.975quant
237 -0.02 047 -0.95 -0.02 0.90
238 -0.56 0.49 -1.52 -0.56 0.40

xtable(inla.out$summary.random$p.bl[this.player + 0:1, 2:6]) # identical

The following code rearranges the output into a single matrix, with each row giving the player-specific
parameters’ posterior mean (fixed + random effects) for all model components (situational covariates and
spatial effects).

param.names <- row.names(inla.out$summary.fixed)
n <- nrow(players)
player.params <- matrix(NA, nrow=n, ncol=length(param.names))
y.fix <- inla.out$summary.fixed[, "mean"] # fized effects
temp <- names(inla.out$summary.random)
basis.inds <- c(which(temp == "p.int"), grep("p.b[0-9][0-9]*", temp))
cov.inds <- setdiff(seq(length(inla.out$summary.random)), basis.inds)
for(pl in 1:n) {
add players' random effects to fized effects
y.rand <- c(inla.out$summary.random$p.int[pl, "mean"],
sapply(cov.inds,
function(k) inla.out$summary.random[[k]] [pl, "mean"]),
inla.out$summary.random$p.bli[pl + n * (1:n.basis), "mean"])
player.params[pl,] <- y.fix + y.rand

For Chris Bosh, for instance, we can view his parameter estimates and see where each ranks relative to
the rest of the league:

mean sd 0.025quant 0.5quant 0.975quant
237 -0.02 0.47 -0.95 -0.02 0.90
238 -0.56 0.49 -1.52 -0.56 0.40

values <- player.params[this.player,]
ranks <- apply(player.params, 2, function(col) rank(col) [this.player])
xtable(data.frame(param.names, values, ranks), digits=c(0,0,2,0))

param.names values ranks

1 (Intercept) -3.32 218
2 dribble -0.00 361
3 ndef -0.02 251
4 balllastsec 0.07 234
5 bl 0.21 57
6 b2 -2.32 110
7 b3 0.10 322
8 b4 0.49 185
9 bb -5.02 439
10 b6 -2.17 146
11 b7 -2.47 335
12 b8 -1.80 245
13 b9 -3.60 231
14 blo -2.00 97

The most notable values here a small bl coefficient relative to the rest of the league, and a large b5.
Referring to Figure 5, we see that this means his shot-taking hazard is relatively low in the right-handed
layup area, and relatively high in three point range. This suggests that, adjusting for his baseline shooting
rate (intercept) and other situation covariates, Bosh attempts threes at a high rate (per time controlling
the ball from three point range), and right-handed layups/dunks at a low rate. This behavior is generally
shared among other stretch-4 type players who are catch-and-shoot three-point shooters, and whose touches
near the basket come more from slow-developing plays or those that don’t lead to shots—Ilike “isolations”
or offensive rebounds—than from layups or attacking (also, note that Bosh is left handed). For instance,
players such as Kevin Love and Dirk Nowitzki exhibit similar behavior.

Analagous to Figure 5 in the paper, we can plot players’ spatial effect surfaces. It is also helpful to plot
only the random effects, to see where players’ spatial tendencies differ from typical league behavior. For
Chris Bosh’s shot-taking hazard, we get these side-by-side with:

vars <- pasteO("b", seq(n.basis))
spat.fixed <- as.numeric(inla.out$summary.fixed[" (Intercept)", "mean"] +
t(take.basis) %x*), inla.out$summary.fixed[vars, "mean"])
spat.random <- as.numeric(inla.out$summary.random$p.int[this.player, "mean"] +
t(take.basis) %*J% inla.out$summary.random$p.int[this.player + n * (l:n.basis), "mean"])

par (mfrow=c(1,2), mar=c(1,4,1,6))
spatialPlotl(spat.fixed + spat.random, axis.args=list(cex.axis=0.75))
spatialPlotl(spat.random, axis.args=list(cex.axis=0.75))

Figure 7: Shot-taking spatial effect for Chris Bosh (left). The difference in this surface relative to the rest
of the league is illustrated on the right.

To view the spatial effect on a passing hazard (for instance, to player 1—the point guard), we would do:

load(sprintf ("%s/INLA_PASS1.Rdata", data.dir))
vars <- paste0("b", seq(n.basis))
spat.fixed <- as.numeric(inla.out$summary.fixed["(Intercept)", "mean"] +
t(passl.basis) Y%*% inla.out$summary.fixed[vars, "mean"])
spat.random <- as.numeric(inla.out$summary.random$p.int[this.player, "mean"] +
t(passl.basis) %#*J inla.out$summary.random$p.int[this.player + n * (1:n.basis), "mean"])

par (mfrow=c(1,2), mar=c(1,4,1,6))
spatialPlot2(head(spat.fixed + spat.random, mesh$n),
tail(spat.fixed + spat.random, mesh$n),
axis.args=list(cex.axis=0.75))

Figure 8: Spatial effect for passes from Chris Bosh to the point guard. The effect of Bosh’s location is on
the left, and the effect of the PG’s location is on the right.

Lastly, it’s useful to check the hyperparameter estimates to make sure they are sensible. The hyper-
parameters for the macrotransition entry models (and shot probability model) and log precision terms for
the CAR model, described in Sections 4.1 and 4.2 of the paper. In this implementation, we’ve fixed the
hyperparameters for all spatial basis loadings to be the same within each macrotransition entry model.

inla.out$mode$theta # parameter wvalues

[1] -2.36010142 -0.04486083 0.53744864 4.00845149 -0.12840774 0.46386675 0.88176478 -0.21073187

inla.out$mode$theta.tags

[1] "Log precision for p.int" "Log precision for p.dribble"

[3] "Log precision for p.ndef" "Log precision for p.ball.lastsec"
[5] "Log precision for p.doffl" "Log precision for p.doff2"

[7] "Log precision for p.doff3" "Log precision for p.ddef"

3.3 Transition probability matrices

The last model component needed to calculate EPV are the transition probability matrices for C;, described
in Section 3.4 of the paper. We load these—for instance, for Dwyane Wade, by running:

player.id <- players$player_id[grep("Wade", players$lastname)]
load(sprintf("%s/tmats/%s.Rdata", data.dir, player.id))
names (tmat.ind)

[1] "micros" ‘'"passesl" "passes2" "passes3" "passes4" "absorbs"

tmat.ind is a list with each element representing blocks (sub-matrices) of N, the transition count matrix
for C; given the players on the court (see Section 3.4 of the paper). The rows in each block represent the 14
{region} x {defended} states we use in C; for a given ballcarrier, as expalined in Section 2.2 of the paper.
Columns in these blocks also represent such states, except for the absorbs block, where columns represent
absorbing states in Cenq. Depending on the lineup used, different blocks will be used to construct P. Also
note, the tmat.pos object contains blocks used in calculating EPV-Added, as discussed in Section A.4 of
the paper.

4 Calculating EPV

4.1 Coarsened state expected point values

Given estimates of our parameters, EPV is calculated using Monte Carlo. The general idea, introduced in
Section 3 of the paper, is to alternate draws from the micro- and macrotransition entry models until a macro-
transition (pass, shot attempt, turnover) occurs. Then, given the predicted outcome of this macrotransition,
we calculate EPV using the transition probability matrix of coarsened states. Before actually simulating
EPV draws, it’s useful to look at what the expected point values are of each coarsened state, as EPV will
always be a weighted average of these values:

source (sprintf ("%s/parameters.R", code.dir))
hyper <- getHyperParams(tdat)
ev.out <- evLineups(tdat)

In ev.out, teammates.all is a matrix of 5-man lineups that appear in tdat (there may be duplicate
rows). For instance, we have the starting 5 for the Miami Heat:

lineup.ids <- ev.out$teammates.all[2,]
this.lineup <- players[match(lineup.ids, players$player_id),]
this.lineup[, 2:4]

firstname lastname position
243 Mario Chalmers Point-Guard
238 Dwyane Wade Guard
236 LeBron James Forward
240 Udonis Haslem Power-Forward
237 Chris Bosh Forward-Center

10

For each 5-man lineup, there are 5 x 2 (defended or not) x 7 (court regions) = 70 coarsened state
expected values. To check these for LeBron James’ possession states, for instance, we’d do:

lineup.states <- paste(rep(this.lineup$lastname, each=14), state_nms)
xtable(data.frame(state=lineup.states, EV=ev.out$evs[[2]]) [grep("James", lineup.states),], digits=2)

state EV
29 James behind-TRUE 1.06
30 James per-TRUE 1.03
31 James rest-TRUE 1.42
32 James key-TRUE 1.24

33 James cor3-TRUE 1.09
34 James cen3-TRUE 1.02
35 James other-TRUE 0.99
36 James behind-FALSE 1.05

37 James per-FALSE 1.03
38 James rest-FALSE 1.60
39 James key-FALSE 1.34

40 James cor3-FALSE 1.21
41 James cen3-FALSE 1.03
42 James other-FALSE 1.00

These results seem pretty sensible, as, for instance, EVs are uniformly higher for uncontested states, with
the difference especially great within the restricted area (1.60 versus 1.42) and corner 3 (1.21 versus 1.09).
Note that with different teammates, we would see slightly different EVs for these states.

4.2 EPV curves

As mentioned in the paper, given estimates of all parameter values, EPV is computed by Monte Carlo sam-
pling from the multiresolution transition models. This is a computationally expensive procedure, dominated
by computing spatial effects for every player-position update from the microtransition model and hazard
calculation from the macrotransition entry/exit models. However, it is straightforward to sample multiple
time points together.

To supply EPV curves for a full game, it’s most efficient to draw a single EPV estimate for all time points
in a game, and then parallelize this across multiple machines that don’t need to share memory. The code
executes an EPV draw at each time point for every offensive possession in our sample game:

source (sprintf ("%s/EPV_calcs.R", code.dir))
draw.raw <- multiresDraw(tdat, hyper, def.micro, ev.out, nmic=50, save.positions=F)
draw <- compressEPV(tdat, draw.raw$fv.epv.list)

The nmic argument specifies 50 iterations (2 seconds) of the microtranistion model, which is usually
sufficient to observe 7y, a macrotransition entry. The save.positions argument stores the player-position
innovations supplied by the micro model. These are necessary to reproduce Figure 7, which shows players’
predicted motion paths, but necessitate lots of additional storage, as they essentially replicate the full
positional data nmic times for each EPV draw.

We can load a pre-computed version of draw:

load(sprintf ("%s/draw.Rdata", data.dir))
names (draw)

[1] "epv" "probs" "vals" "probs.now" "vals.now"

11

Here, epv is a vector of EPV values corresponding to each row of tdat. probs is a data frame where
each row gives the probabilities associated with each possible macrotransition event at time ¢ (P(Cp, |.7-"t(Z)))7
and vals gives the associated expected point values conditional on these macrotransitions: E[X|Cs,] (these
probabilities/values are illustrated in Figure 7 of the paper). probs and vals contain an “other” state which
represents no macrotransition occurring within the 50 simulated microtransitions. In this case, to calculate
the expected value, we use the coarsened state expected value associated with the final microtransition draw,
in this case E[X|Cj42]. probs.now and vals.now are the instantaneous macrotransition probabilities and
associated expected values.

For instance, during the first possession in this game, after Udonis Haslem brings the ball into the offensive
halfcourt, we see the next action to most likely be pass to Chalmers or Chris Bosh (the next play is a pass to
Bosh). A shot attempt is extremely unlikely, and there is a 0.226 probability that Haslem will still possess
the ball 2 seconds down the road. Among his passing options, James is the most valuable, though also the
least likely to occur (James is near the basket, but the passing lane doesn’t appear to be open).

transformed.data.plotter(tdat, 30)

Figure 9: Udonis Haslem with ball possession. His four passing options are 1: Mario Chalmers, 2: Dwyane
Wade, 3: LeBron James, 4: Chris Bosh.
draw$probs[30,]

passl pass2 pass3 pass4 make miss TO other
30 0.5747731 0.02065291 0.01900831 0.1448298 0.000981215 0.00157953 0.01181597 0.2263592

draw$vals[30,]

passi pass2 pass3 pass4 make miss TO other
30 0.9676442 1.017705 1.105218 1.014151 3 0.156 0 0.9707326

Because each EPV draw executes independent multiresolution transition simulations for each time point
t, the resultant EPV curve is not very smooth. For instance, at time ¢, we might simulate a player driving
toward the basket and attempting a layup, whereas at time t 4+ ¢ we simulate the same player passing to a
teammate. We see this below:

plot (720 - tdat$game_clock[1:100], draw$epv[1:100], xlab="game clock", ylab="EPV")

12

o
o ° o © 00 d® o
o
o — o (9 0%00 [o] (9
— VD @@ ° o6 0 © ®"%q o 9 o
E Q)%ooq’ &%&“’?o 090 50°% 05°,°° o%
L] o © o° © o ° °
o o ° o °
o
o
© o
I I I I I
7 8 9 10 11
game clock

Figure 10: EPV estimates of a single draw

Of course, averaging over multiple EPV draws offers more smoothness—though by design, we see spikes
in EPV exactly at moments when passes/shots/turnovers occur. The files EPV_draw.R and combine_draws.R
execute independent EPV draws for this game on a computing cluster. We have combined 200 of these draws
to obtain a final Monte Carlo EPV estimate (as well as Monte Carlo estimates of the transition probabilities
and values). Below we load this, and merge these EPV estimates into the original full data set dat, where
EPV is NA when the ball is not in the offensive halfcourt with the game clock moving. We also compute a
”smoothed EPV” to (very slightly) interpolate the pointwise EPV estimates over time.

source (sprintf ("%s/EPV_calcs.R", code.dir))
load(sprintf ("%s/combined.epv.draws.Rdata", data.dir))
e.dat <- combineDatEPV(dat, epv.table)

We can now plot out EPV “tickers”, as in Figure 2 of the paper:

par (xpd=NA, bty="n", mfrow=c(1, 2))
poss.1 <- which(e.dat$possID == 1)
plot (720 - e.dat$game_clock[poss.1], e.dat$epv.smooth[poss.1],
xlab="game clock", ylab="EPV", type="1", 1lwd=2, ylim=c(.5, 1.5))
points(720 - e.dat$game_clock[poss.1], e.dat$epv[poss.1], pch=20, cex=0.5)

poss.90 <- which(e.dat$possID == 90)
plot (720 - e.dat$game_clock[poss.90], e.dat$epv.smooth[poss.90],
xlab="game clock", ylab="EPV", type="1", lwd=2, ylim=c(.5, 1.5))
points (720 - e.dat$game_clock[poss.90], e.dat$epv[poss.90], pch=20, cex=0.5)

13

-JU\/‘-"V\NJ'LHJ\V

EPV

06 08 10 12 14
|
EPV

06 08 10 12 14
|

[I I | [I I I I I |
5 10 15 20 408 410 412 414 416 418 420

game clock game clock

Figure 11: EPV curves for two possessions in this game. The line slightly smooths the actual EPV values
(dots).

One of the best ways to view EPV results is by generating gifs that show EPV curves side-by-side with
the possession evolution. Below we’ve generated gifs for a pair of long and interesting-looking possessions
(they’re located in the gifs folder):

makeGIF (e.dat, which(e.dat$possID == 12), "poss_12")
makeGIF (e.dat, which(e.dat$possID == 24), "poss_24")

4.3 Derived metrics

The derived metrics presented in the paper, EPV-Added (EPVA) and shot satisfaction, are most meaningful
when computed using a large sample of data, such as a full season. However, just as with any other basketball
metric, we can calculate per-game versions of these statistics. For instance, to get these metrics for LeBron
James and Deron Williams, we’d do:

id <- players$player_id[grep("LeBron", players$firstname)]
sum(EPVA (tdat, id))

[1] 8.336796
mean (shotSatis(tdat, id))
[1] 0.2229599

id <- players$player_id[grep("Deron", players$firstname)]
sum(EPVA (tdat, id))

[1] 0.774197
mean (shotSatis(tdat, id))

[1] 0.1002303

14

5 Appendix

Raw data event_id codes:

Event ID ‘ Event 1D ‘ Event 1D ‘ Event ID ‘ Event 1D
FT Made 1 | Def. Rebound 6 | Timeout 11 | Clock Sync 16 | Dribble 21
FT Missed 2 | Turnover 7 | Jump Ball 12 | Instant Replay 17 | Pass 22
Shot Made 3 | Foul 8 | Ejection 13 | Replay Ruling 18 | Possession 23
Shot Missed 4 | Violation 9 | Start Period 14 | Game Over 19 | Shot Block 24
Off. Rebound 5 | Substitution 10 | End Period 15 | Stoppage 20 | Assist 25

Table 2: Glossary of event_id codes in optical tracking data.

15

