
APPENDIX A. ADDITIONAL TECHNICAL DETAILS

In this appendix we provide additional details on steps used in fitting multiresolution models

and deriving basketball metrics from EPV estimates.

A.1 Time-Varying Covariates in Macrotransition Entry Model

As revealed in (8), the hazards λ�
j(t) are parameterized by spatial effects (ξ�j and ξ̃�j for

pass events), as well as coefficients for situation covariates, β�
j. The covariates used may be

different for each macrotransition j, but we assume for each macrotransition type the same

covariates are used across players �.

Among the covariates we consider, dribble is an indicator of whether the ballcarrier has

started dribbling after receiving possession. ndef is the distance between the ballcarrier and

his nearest defender (transformed to log(1+d)). ball lastsec records the distance traveled

by the ball in the previous one second. closeness is a categorical variable giving the rank

of the ballcarrier’s teammates’ distance to the ballcarrier. Lastly, open is a measure of how

open a potential pass receiver is using a simple formula relating the positions of the defensive

players to the vector connecting the ballcarrier with the potential pass recipient.

For j ≤ 4, the pass event macrotransitions, we use dribble, ndef, closeness, and

open. For shot-taking and turnover events, dribble, ndef, and ball lastsec are included.

Lastly, the shot probability model (which, from (10) has the same parameterization as the

macrotransition model) uses dribble and ndef only. All models also include an intercept

term. As discussed in Section 4.1, independent CAR priors are assumed for each coefficient

in each macrotransition hazard model.

A.2 Player Similarity Matrix H for CAR Prior

The hierarchical models used for parameters of the macrotransition entry model, discussed

in Section 4.1, are based on the idea that players who share similar roles for their respective

teams should behave similarly in the situations they face. Indeed, players’ positions (point

guard, power forward, etc.) encode their offensive responsibilities: point guards move and

distribute the ball, small forwards penetrate and attack the basket, and shooting guards
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get open for three-point shots. Such responsibilities reflect spatiotemporal decision-making

tendencies, and therefore informative for our macrotransition entry model (7)–(8).

Rather than use the labeled positions in our data, we define position as a distribution of

a player’s location during his time on the court. Specifically, we divide the offensive half of

the court into 4-square-foot bins (575 total) and count, for each player, the number of data

points for which he appears in each bin. Then we stack these counts together into a L× 575

matrix (there are L = 461 players in our data), denoted G, and take the square root of all

entries in G for normalization. We then perform non-negative matrix factorization (NMF)

on G in order to obtain a low-dimensional representation of players’ court occupancy that

still reflects variation across players (Miller et al. 2013). Specifically, this involves solving:

Ĝ = argmin
G∗

{D(G,G∗)}, subject to G∗ =

�
U
L×r

��
V

r×575

�
and Uij, Vij ≥ 0 for all i, j,

(A.1)

where r is the rank of the approximation Ĝ to G (we use r = 5), and D is some distance

function; we use a Kullback-Liebler type

D(G,G∗) =
�

i,j

Gij log
�
Gij/G

∗
ij

�
−Gij +G∗

ij.

The rows ofV are non-negative basis vectors for players’ court occupancy distributions (plot-

ted in Figure 8) and the rows of U give the loadings for each player. With this factorization,

Ui (the ith row of U) provides player i’s “position”—a r-dimensional summary of where

he spends his time on the court. Moreover, the smaller the difference between two players’

positions, ||Ui −Uj||, the more alike are their roles on their respective teams, and the more

similar we expect the parameters of their macrotransition models to be a priori.

Formalizing this, we take the L×LmatrixH to consist of 0s, then setHij = 1 if player j is

one of the eight closest players in our data to player i using the distance ||Ui−Uj|| (the cutoff

of choosing the closest eight players is arbitrary). This construction of H does not guarantee

symmetry, which is required for the CAR prior we use, thus we set Hji = 1 if Hij = 1. For
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Figure 8: The rows of V (plotted above for r = 5) are bases for the players’ court occupancy
distribution. There is no interpretation to the ordering.

instance, LeBron James’ “neighbors” are (in no order): Andre Iguodala, Harrison Barnes,

Paul George, Kobe Bryant, Evan Turner, Carmelo Anthony, Rodney Stuckey, Will Barton,

and Rudy Gay.

A.3 Basis Functions for Spatial Effects ξ

Recalling (13), for each player � and macrotransition type j, we have ξ�j(z) =
�d

i=1 w
�
jiφji(z),

where {φji, i = 1, . . . , d} are the basis functions for macrotransition j. During the inference

discussed in Section 4, these basis functions are assumed known. They are derived from a

pre-processing step. Heuristically, they are constructed by approximately fitting a simplified

macrotransition entry model with stationary spatial effect for each player, then performing

NMF to find a low-dimensional subspace (in this function space of spatial effects) that

accurately captures the spatial dependence of players’ macrotransition behavior. We now

describe this process in greater detail.

Each basis function φji is itself represented as a linear combination of basis functions,

φji(z) =

d0�

k=1

vjikψk(z), (A.2)

where {ψk, k = 1, . . . , d0} are basis functions (as the notation suggests, the same basis is used

for all j, i). The basis functions {ψk, k = 1, . . . , d0} are induced by a triangular mesh of d0

vertices (we use d0 = 383) on the court space S. In practice, the triangulation is defined on

a larger region that includes S, due to boundary effects. The mesh is formed by partitioning

S into triangles, where any two triangles share at most one edge or corner; see Figure 9 for
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an illustration. With some arbitrary ordering of the vertices of this mesh, ψk : S → R is the

unique function taking value 0 at all vertices k̃ �= k, 1 at vertex k, and linearly interpolating

between any two points within the same triangle used in the mesh construction. Thus, with

this basis, φji (and consequently, ξ�j) are piecewise linear within the triangles of the mesh.

Figure 9: Triangulation of S used to build the functional basis {ψk, k = 1, . . . , d0}. Here, d0 = 383.

This functional basis {ψk, k = 1, . . . , d0} is used by Lindgren et al. (2011), who show

that it can approximate a Gaussian random field with Matérn covariance. Specifically, let

x(z) =
�d0

k=1 vkψk(z) and assume (v1 . . . vk)
� = v ∼ N (0,Σν,κ,σ2). The form of Σν,κ,σ2 is

such that the covariance function of x approximates a Matérn covariance:

Cov[x(z1), x(z2)] = ψ(z1)
�Σν,κ,σ2ψ(z2) ≈

σ2

Γ(ν)2ν−1
(κ||z1 − z2||)νKν(κ||z1 − z2||), (A.3)

where ψ(z) = (ψ1(z) . . . ψd0(z))
�. As discussed in Section 4.2, the functional basis represen-

tation of a Gaussian process offers computational advantages in that the infinite dimensional

field x is given a d0-dimensional representation, as x is completely determined by v. Further-

more, as discussed in Lindgren et al. (2011), Σ−1
ν,κ,σ2 is sparse ((A.3) is actually a Gaussian

Markov random field (GMRF) approximation to x), offering additional computational sav-

ings (Rue 2001).

The GMRF approximation given by (A.2)–(A.3) is actually used in fitting the micro-

transition models for offensive players (5). We give the spatial innovation terms µ�
x, µ

�
y

representations using the ψ basis. Then, as mentioned in Section 4.3, (5) is fit independently
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for each player in our data set using the software R-INLA.

We also fit simplified versions of the macrotransition entry model, using the ψ basis, in

order to determine {vjik, k = 1, . . . , d0}, the loadings of the basis representation for φ, (A.2).

This simplified model replaces the macrotransition hazards (8) with

log(λ�
j(t)) = c�j +

d0�

k=1

u�
jkψk(z

�(t)) + 1[j ≤ 4]

d0�

k=1

ũ�
jkψk (zj(t)) , (A.4)

thus omitting situational covariates (β�
j in (8)) and using the ψ basis representation in place

of ξ�j . Note that for pass events, like (8), we have an additional term based on the pass

recipient’s location, parameterized by {ũ�
jk, k = 1, . . . , d0}. As discussed in Section 4.3,

parameters in (A.4) can be estimated by running a Poisson regression. We perform this

independently for all players � and macrotransition types j using the R-INLA software. Like

the microtransition model, we fit (A.4) separately for each player across L = 461 processors

(each hazard type j is run in serial), each requiring at most 32GB RAM and taking no more

than 16 hours.

For each macrotransition type j, point estimates û�
jk are exponentiated

6, so that [Uj]�k =

exp(û�
jk). We then perform NMF (A.1) on Uj:

Uj ≈
�
Qj
L×d

��
Vj
d×d0

�
. (A.5)

Following the NMF example in Section A.2, the rows of Vj are bases for the variation in

coefficients {u�
jk, k = 1, . . . , d0} across players �. As 1 ≤ k ≤ d0 indexes points on our court

triangulation (Figure 9), such bases reflect structured variation across space. We furthermore

use these terms as the coefficients for (A.2), the functional basis representation of φji, setting

6The reason for exponentiation is because estimates û�
jk inform the log hazard, so exponentiation converts

these estimates to a more natural scale of interest. Strong negative signals among the û�
jk will move to 0

in the entries of Uj and not be very influential in the matrix factorization (A.5), which is desirable for our
purposes.
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vjik = [Vj]ik. Equivalently, we can summarize our spatial basis model as:

ξ�j(z) = [w�
j]
�φj(z) = [w�

j]
�Vjψ(z). (A.6)

The preprocessing steps described in this section—fitting a simplified macrotransition entry

model (A.4) and performing NMF on the coefficient estimates (A.5)—provide us with basis

functions φji(z) that we treat as fixed and known during the modeling and inference discussed

in Section 4.

Note that an analogous expression for (A.6) is used for ξ̃�j in terms of w̃�
j and Ṽj for

pass events; however, for the spatial effect ξ�s in the shot probability model, we simply use

V5. Thus, the basis functions for the shot probability model are the same as those for the

shot-taking hazard model.

A.4 Calculating EPVA: Baseline EPV for League-Average Player

To calculate the baseline EPV for a league-average player possessing the ball in player �’s

shoes, denoted ν
r(�)
t in (19), we start by considering an alternate version of the transition

probability matrix between coarsened states P. For each player �1, . . . , �5 on offense, there

is a disjoint subset of rows of P, denoted P�i , that correspond to possession states for player

�i. Each row of P�i is a probability distribution over transitions in C given possession in

a particular state. Technically, since states in Cposs encode player identities, players on

different teams do not share all states which they have a nonzero probability of transitioning

to individually. To get around this, we remove the columns from each P�i corresponding to

passes to players not on player �i’s team, and reorder the remaining columns according to

the position (guard, center, etc.) of the associated pass recipient. Thus, the interpretation

of transition distributions P�i across players �i is as consistent as possible.

We create a baseline transition profile of a hypothetical league-average player by averaging

these transition probabilities across all players: (with slight abuse of notation) let Pr =
�L

�=1 P�/L. Using this, we create a new transition probability matrix Pr(�) by replacing

player �’s transition probabilities (P�) with the league-average player’s (Pr). The baseline
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(league-average) EPV at time t is then found by evaluating ν
r(�)
t = EPr(�)[X|Ct]. Note that

ν
r(�)
t depends only on the coarsened state Ct at time t, rather than the full history of the

possession, F (Z)
t , as in νt (4). This “coarsened” baseline ν

r(�)
t exploits the fact that, when

averaging possessions over the entire season, the results are (in expectation) identical to using

a full-resolution baseline EPV that assumes the corresponding multiresolution transition

probability models for this hypothetical league-average player.
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