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This supplement provides two additional simulation examples to illustrate the advantage

of the proposed computational method for robust L2E regression. In Section A, we report

an example of robust convex regression to show the advantage of the proposed method

in computational efficiency and estimation accuracy over the original one in Chi and Chi

(2022). In Section B, we compare distance penalty to l1 penalty for robust trend filtering

under the L2E framework. Recall that we refer to the proposed method in our paper as

“MM”, the original method in Chi and Chi (2022) as “PG”, and the ordinary least squares

as “LS.”

A Robust convex regression

Convex regression shares the same squared loss with isotonic regression but imposes dif-

ferent constraints βi+1 ≤ 1
2
(βi + βi+2) for 1 ≤ i < n− 1. Collectively, these constraints can
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Figure A.1: Simulation results for convex regression under different numbers of outliers.

Boxplots depict the MSE (left panel) and run time (right panel) over 100 replicates.

be expressed as the constraint set S1 = {β ∈ Rn : Dβ ≥ 0}, where D is the correspond-

ing second-order difference matrix. In the L2E version of the problem, we apply the 0/∞

penalty φ(β) = ιS1(β). The MM update of β can be computed by the conreg function

in the cobs R package (Ng and Maechler, 2007). The MM β update for convex regression

again requires the same computational cost as the PG β update (Chi and Chi, 2022).

In our numerical experiment, the components of the mean vector β ∈ R500 conforms to

the quartic function x4i +xi. Two kinds of perturbations are added to generate the responses

yi = x4i +xi+si+εi. Here the xi are sampled evenly from [−2, 2], the si shift the underlying

quartic signal, and the εi are i.i.d. standard normal deviates. Outliers are introduced at

consecutive responses by setting the shifts si = 14 for i = 126, 127, · · · , 125 + m where m

is the number of outliers; for all other responses si = 0. We use the same initialization as

in the isotonic regression example for PG and MM.

Figure A.1 presents boxplots of the MSEs and run times in seconds in fitting the convex

regression model with 100 replicates. The estimation accuracy of LS and PG degrades as
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Figure A.2: Boxplots of the mean number of outer block descent iterations (left panel), the

mean number of inner iterations for updating β per outer iteration (middle panel), and the

mean number of inner iterations for updating τ per outer iteration (right panel). All plots

refer to the experiment summarized in Figure A.1.

the number of outliers increases, while MM behaves stably with outliers. As the right

panel of Figure A.1 shows, the run times of PG quickly increase as the number of outliers

increases, while the run times of MM are immune to outliers and comparable to those of LS.

Thus, MM under the L2E loss enjoys the speed advantages of LS while protecting against

outliers. To fully comprehend the difference in run times between PG and MM, Figure A.2

displays boxplots of the mean number of outer block descent iterations, the mean number of

inner iterations for updating β per outer iteration, and the mean number of inner iterations

for updating τ per outer iteration. MM takes not only fewer outer iterations than PG but

also fewer average inner iterations to update β and τ . This contributes to the distinct

speed advantage of MM over PG on convex regression.

In the second experiment, we investigate the performance of PG and MM under different

contamination levels. For that purpose, we vary the contamination level by setting the shifts

3



Figure A.3: Simulation results for convex regression under different contamination levels.

Boxplots depict the MSE (left panel) and run time (right panel) over 100 replicates.

si = {2, 5, 8, 14, 20} for i = 126, 127, · · · , 125 + m with a fixed number of outliers m = 50.

Initialization is the same as in the previous experiment.

Figure A.3 summarizes the estimation and computation results for convex regression

under different contamination levels. As with the isotonic regression example, PG and MM

perform comparably with the non-robust LS when the data are slightly contaminated. As

the level of contamination increases, LS produces increasingly large MSE values, while MM

consistently obtains small MSE values. The MSEs of PG slowly decline and get close to

those of MM as the level of contamination si grows, suggesting that PG is less efficient in

detecting outliers when the contamination level is modest. The right panel of Figure A.3

displays the computational advantage of MM over PG under varying contamination levels.

Run times of MM are much shorter than those of PG and stable with the contamination

level. In contrast, run times of PG increase as the contamination level increases. Figure

A.4 reveals the reason for the difference in computation speed between PG and MM. As

the amount of shifts increases, PG requires more inner iterations for updating β as well
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Figure A.4: Boxplots of the mean number of outer block descent iterations (left panel), the

mean number of inner iterations for updating β per outer iteration (middle panel), and the

mean number of inner iterations for updating τ per outer iteration (right panel). All plots

refer to the experiments summarized in Figure A.3

as more outer block descent iterations to converge. The required numbers of both inner

and outer iterations for MM are always small and relatively immune to the contamination

level, leading to the fast and stable computational performance of MM.

B Robust Trend Filtering

Trend filtering is a good example to illustrate the complexities encountered in combining

L2E regression with distance penalization, sparsity recovery, and fusion constraints. The

simplest version of trend filtering imposes sparsity on the differences βi+1−βi. The penalty

can be expressed as φ(β) = ‖Dβ‖0, where D is a difference matrix and ‖θ‖0 counts the

number of nonzero entries of θ. Thus, if the underlying trend is piecewise constant, then

D is a first-order difference matrix. If the trend is piecewise affine, then D is a second-
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order difference matrix. In practice, the problem is often convexified by substituting an `1

penalty for the `0 penalty. With this change, it is possible to treat the MM update of β

as a generalized lasso problem and use the genlasso function in the R package genlasso

(Arnold and Tibshirani, 2019) to compute the solution.

A brief study of trend filtering under the L2E loss and the distance and `1 penalties

is illuminating. The simulated data consists of six consecutive segments with β values

0, 6, 3, −1, 6, and 0 and jumps at 40, 60, 90, 140, and 160. The components of β are

randomly perturbed by Gaussian deviates εi ∼ N(0, 0.5) to create the observed responses yi.

Random responses are then shifted by 5 to produce outliers. Distance penalization invokes

the constraint set S2 = {β ∈ R200 : ‖Dβ‖0≤ k} where D is the first-order difference matrix

and the tuning parameter k denotes the number of jumps in β. Ideally, we should find the

sparsity level k = 5. We examine k over the grid {3, 5, 7, 9, 11, 13, 15} and employ five-fold

cross-validation to select k. The penalty constant ρ is set to 108. Under the `1 penalty

λ‖Dβ‖1, we also choose λ by five-fold cross-validation and declare a jump whenever the

magnitude of a component Dβ̂ exceeds 0.1. For both penalties, we measure estimation

accuracy by the MSE of the trend estimate β̂. Structure recovery is determined by the

number of true and false jumps. To initialize the L2E estimation, we set η0 = − log MAD(y)

and β0 = ỹ, where ỹ is the denoised signal from a median filter.

Figure B.5 summarizes the average performance of the `1 and the distance penalties in

robust trend filtering under different numbers of outliers over 50 replicates. As expected,

MSE increases as the number of outliers increases. Distance penalization always achieves

a lower MSE than `1 penalization. In terms of structure recovery, distance penalization
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Figure B.5: Simulation results for trend filtering under different numbers of outliers. Av-

erage performance based on 50 replicates for each method.

performs comparably with l1 penalization in capturing true jumps in the trend component,

but it typically ignores undesirable false jumps, except for the case of m = 50. Both

penalization methods miss more than half of the true jumps when the number of outliers

exceeds 30, indicating that trend filtering is a difficult task when data are contaminated.

This trend filtering example once again shows the flexibility of the L2E framework and the

advantages of distance penalization.
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