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RESEARCH ARTICLE

EHF is essential for epidermal and colonic epithelial homeostasis,
and suppresses Apc-initiated colonic tumorigenesis
Camilla M. Reehorst1,2, Rebecca Nightingale1, Ian Y. Luk1,2, Laura Jenkins1,2, Frank Koentgen3,
David S. Williams1,2, Charbel Darido4,5, Fiona Tan4, Holly Anderton6, Michael Chopin6, Kael Schoffer1,2,
Moritz F. Eissmann1,2, Michael Buchert1,2, Dmitri Mouradov6, Oliver M. Sieber6,7,8,9, Matthias Ernst1,2,
Amardeep S. Dhillon10 and John M. Mariadason1,2,11,*

ABSTRACT
Ets homologous factor (EHF) is a member of the epithelial-specific
Ets (ESE) family of transcription factors. To investigate its role in
development and epithelial homeostasis, we generated a series of
novel mouse strains in which the Ets DNA-binding domain of Ehf was
deleted in all tissues (Ehf−/−) or specifically in the gut epithelium.
Ehf−/− mice were born at the expected Mendelian ratio, but showed
reduced body weight gain, and developed a series of pathologies
requiring most Ehf−/− mice to reach an ethical endpoint before
reaching 1 year of age. These included papillomas in the facial skin,
abscesses in the preputial glands (males) or vulvae (females),
cataracts and corneal ulcers. Ehf−/−mice also displayed increased
susceptibility to experimentally induced colitis, which was confirmed
in intestinal-specificEhf knockout mice. Gut-specific Ehf deletion also
impaired goblet cell differentiation, induced extensive transcriptional
reprogramming in the colonic epithelium and enhanced Apc-initiated
adenoma development. The Ets DNA-binding domain of EHF is
essential for post-natal homeostasis of the epidermis and colonic
epithelium, and its loss promotes colonic tumour development.

KEY WORDS: EHF, Ets, Epidermis, Colon, Epithelium,
Differentiation, Adenoma

INTRODUCTION
Ets homologous factor (EHF) is a member of the Ets family of
transcription factors, which consists of 35 members in humans. All
Ets family members share a conserved winged helix-turn-helix ETS
DNA binding domain, through which they bind to 5′-GGAA/T-3′
sequence elements in DNA (Brembeck et al., 2000). Among these,
EHF is a member of the ESE subfamily, comprising ELF3, ELF5,
EHF and SPDEF, which are grouped together based on their
common epithelial-specific expression profile. All ESE members
also share an N-terminal Pointed (PNT) domain comprising ∼80

amino acids (Seidel and Graves, 2002), which is involved in protein-
protein interactions, kinase docking, RNA-binding and lipid
molecule interactions, and can have strong transactivation activity
(Piggin et al., 2016).

EHF is located on chromosome 11p13 and encodes a 300 amino
acid protein. Expression of EHF in normal human tissues is highest
in the salivary gland, oesophagus, vagina, prostate, colon, skin,
bladder and breast (Luk et al., 2018). The role of EHF in tumour
progression has been relatively well studied, with loss of expression
and a potential tumour suppressive role suggested in prostate
(Albino et al., 2012), pancreatic (Zhao et al., 2017) and oesophageal
squamous cell carcinoma (Wang et al., 2015), where EHF loss has
been shown to promote epithelial-to-mesenchymal transition and
cell migration. Conversely, EHF has been shown to promote
proliferation in cell line models of gastric (Shi et al., 2016), thyroid
(Lv et al., 2016) and ovarian cancer (Cheng et al., 2016).

In contrast to its role in cancer, few studies have investigated the
role of EHF in normal tissue homeostasis. In line with its high
expression in the skin, a study using primary cell cultures suggested
a key role for EHF in keratinocyte differentiation (Rubin et al.,
2017). Profiling of enhancer regions in keratinocytes identified the
GGAA Ets-binding motif as the most enriched transcription factor-
binding site, and EHF knockdown in organotypic human epidermal
tissue revealed that EHF regulates ∼400 genes, including several
associated with keratinocyte differentiation (Rubin et al., 2017).
EHF is also highly expressed in the intestinal epithelium, and a role
for EHF in maintaining the colonic stem cell compartment was
recently proposed (Zhu et al., 2018). However, the impact of Ehf
deletion on homeostasis in these tissues has not been systematically
addressed in vivo.

In this study, we induced whole-body deletion of the Ets DNA-
binding domain of EHF. Ehf knockout (Ehf−/−) mice were viable
but developed a range of pathologies over their lifespan, including
infections in the preputial glands of males or vulvae of females, skin
papillomas and, less frequently, corneal ulcers. Ehf deletion also
impacted intestinal epithelial homeostasis, and increased
susceptibility to DSS-induced acute colitis. Finally, colon-specific
deletion of Ehf increased Apc-initiated adenoma development.
These findings identify a key role for EHF in maintaining epidermal
and intestinal epithelial homeostasis, and that its loss promotes
colonic tumour development.

RESULTS
Whole-body Ehf knockout mice are viable
To induce Ehf deletion in the whole animal EhfLox/+ mice were
crossed to CMVCre mice to induce Cre-mediated recombination in
all tissues, including germ cells. Resulting Ehf+/− progeny lacking
CMVCre were then inter-crossed to generate constitutive Ehf−/−Received 2 March 2021; Accepted 19 May 2021
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mice, and the colony maintained by Ehf heterozygous matings.
Genotyping of multiple tissues confirmed systemic Ehf deletion
(Fig. S1A). Ehf mRNA expression was also examined across
multiple tissues using primers specific for exon 8 encoding the
floxed Ets domain. In Ehf+/+ mice, Ehf mRNA expression was
highest in the salivary and preputial glands, prostate, colon and
stomach, while no expression was detected in any tissues in Ehf−/−

mice (Fig. S1B). Notably, the 5′ region of the EHF transcript was
expressed in Ehf−/−mice at similar levels to Ehf+/+ control mice
raising the possibility that non-DNA binding-related functions of
EHF protein may be retained (Fig. S1C).
To assess the impact of homozygous Ehf deletion on viability

during embryogenesis, the genotype of 658 pups generated from
100 litters born to Ehf+/−×Ehf+/−breeders (average 6.6 pups per
litter) was investigated. Of the 649 pups successfully genotyped,
175 were Ehf+/+, 332 were Ehf+/− and 142 were Ehf−/−. The slightly
lower percentage (21.9%) of Ehf−/− mice born compared with the
expected Mendelian percentage (25%) was not statistically
significant (P=0.314, two-sided χ2 test) and was similar for males
(21.7%) and females (22.1%), indicating constitutive Ehf deletion
does not result in embryonic lethality.

Ehf−/− mice have reduced weight gain and develop
multiple pathologies
To assess the impact of Ehf deletion on animal health, Ehf−/− and
Ehf+/+ mice were routinely monitored for 12 months, including
weekly body weight measurements for the first 27 weeks. Male
Ehf−/−miceweighed less than their wild-type littermates at 4 weeks,
and this difference became progressively more pronounced as
the mice aged (Fig. 1A). Female Ehf−/− mice weighed the same as

wild-type littermates at 4 weeks, but subsequent weight gain was
significantly less than wild-type littermates (Fig. 1B). The reduced
body weight of Ehf−/− female mice was not due to differences in
daily food intake, which was similar between genotypes (Fig. S2).

Ehf−/− mice developed a series of pathologies as they aged, the
most prominent being the onset of suppurative inflammation and
abscesses of the preputial glands (9/10 male mice) or vulva (10/10
female mice). Consistent with this aetiology, growth of the
opportunistic bacteria Staphylococcus aureus and Proteus
mirabilis was detected in bacterial isolates from these lesions. A
high proportion of Ehf−/− mice (45%) also developed papules,
swelling and ulcers around the chin and mouth, which would
resolve then reoccur, while 25% of mice also developed corneal
ulcers. Comparatively, none of these pathologies were observed in
Ehf+/+ mice (Fig. 1C-F). The median age of onset of genital
abscesses and facial papules was 16 weeks, while the corneal ulcers
presented later with a median age of onset of 36 weeks (Fig. 1G).
Histological analysis of the papules that developed around the
chin and mouth of Ehf−/− mice revealed them to be papillomas
with evidence of hyperplasia, hyperkeratosis and immune cell
infiltration. Histological features reminiscent of squamous cell
carcinoma were also evident, including keratinous pearls, enlarged
nuclei and intercellular bridging (Fig. 1H). PCR testing for polyoma
virus returned a negative result, suggesting a non-viral aetiology.

The development of these pathologies resulted in the majority
of Ehf−/− mice reaching an ethical endpoint within 12 months
(Fig. 1I,J). The most common reason for euthanasia was the
development of abscesses in the preputial glands and vulvae or
restricted urination, in 20% (4/20) and 40% (8/20) of mice,
respectively. The resulting lifespan was 48 weeks for Ehf−/− female

Fig. 1. Impact of Ehf deletion on body weight and animal health. (A,B) Body weight of (A) male and (B) female Ehf+/+ and Ehf−/− mice, 4-27 weeks of
age. Values shown are mean±s.e.m. of n=4 mice per genotype. (C-E) Representative images of (C) enlarged preputial gland abscesses, (D) facial papules
and (E) corneal ulcers in Ehf−/− mice. Corresponding regions in Ehf+/+ mice are shown for comparison. (F) Percentage of Ehf+/+ and Ehf−/− mice that develop
preputial gland/vulval abscesses, facial lesions and corneal ulcers from analysis of n=20 mice per genotype. (G) Distribution of age of onset of abscesses,
facial lesions and corneal ulcers from analysis of n=20 Ehf−/− mice. (H) Haematoxylin and Eosin stain of a facial papule from Ehf−/− mice. Scale bar: 100 µm.
Keratinous pearls are indicated by asterisks and intercellular bridging by arrows. (I,J) Ethically determined survival of (I) male and (J) female Ehf+/+ and
Ehf−/− mice. Mice were censored after 52 weeks. Curves were generated from n=10 mice per genotype. **P<xxxx, ****P<xxxxx (xxxx test).
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mice and only 17 weeks for Ehf−/− male mice, which was due
mostly to the greater severity of the preputial gland abscesses
compared with those that arose in the vulvae.

Ehf deletion disrupts epidermal morphology in adult mice
Given the development of skin pathologies in Ehf−/− mice, and
previous findings that EHF plays a role in basal keratinocyte
differentiation in vitro (Rubin et al., 2017), we examined the impact
of Ehf deletion on normal skin histology. No difference in the
histology of the chin skin was observed between Ehf+/+ and Ehf−/−

mice at 6 weeks, with the epidermis consisting of a well-defined
single cell basal layer and a thin layer of the stratum corneum in both
cases (Fig. 2A). Comparatively, at 27 weeks, although the chin skin
of Ehf+/+ mice was normal, three out of five Ehf−/− mice displayed
areas of hyperplasia and hyperkeratosis despite not displaying
macroscopic facial papules (Fig. 2A), while a further subset
developed Munro’s microabscesses (one out of five) and small
keratinous pearls (two out of five).

Assessment of the dorsal skin of these mice also revealed no
difference in histology at 6 weeks (Fig. 2B). At 27 weeks, the dorsal

Fig. 2. Impact of Ehf deletion on epidermal histology. (A,B) Representative Haematoxylin and Eosin stained sections showing the histology of the skin
taken from the (A) chin or (B) dorsal region of Ehf+/+ and Ehf−/− littermates at 6 and 27 weeks. Single asterisks indicate hyperplasia, double asterisks indicate
hyperkeratosis, arrow indicates Munro’s microabscess. Scale bars: 300 µm. (C-E) Immunofluorescence staining for (C) K14, (D) loricrin and (E) K6a in the
dorsal skin of Ehf+/+ and Ehf−/− mice at 6 and 27 weeks.
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skin ofEhf+/+micewas largely normal, although onemouse displayed
mild hyperkeratosis and another developed Munro’s microabscesses.
Comparatively, the majority of Ehf−/− mice (four out of five)
displayed abnormal dorsal skin histology with varying degrees of
hyperkeratosis and hyperplasia. Two of these mice also developed
Munro’s microabscesses and wounds accompanied by immune cell
infiltrates in the dermal and epidermal skin layers (Fig. 2B).
We next stained the dorsal and chin skin for keratin 14 (K14) and

loricrin to determine whether keratinocyte differentiation was
impaired. Clear staining of K14 in the basal keratinocyte layer,
and of loricrin in the stratum corneum was observed in both Ehf+/+

and Ehf−/− mice (Fig. 2C,D), demonstrating that Ehf deletion does
not impact on the capacity of basal keratinocytes to differentiate into
corneocytes.We also stained the dorsal and chin skin with keratin 6a
(K6a), which is typically expressed in hair follicles but also during
epidermal hyperproliferation as part of the wound healing response.
At 6 weeks there was no K6a staining in the epidermis; however, at
27 weeks, clear K6a staining was observed in areas of damaged skin
in Ehf−/− mice demonstrating this feature of epidermal regeneration
is also not impacted by Ehf deletion (Fig. 2E).

Ehf deletion does not impact themorphology of the prostate,
salivary gland, preputial gland or gastric epithelium
As EHF is highly expressed in the prostate, salivary gland, preputial
gland and stomach epithelium (Fig. S1) we undertook a gross
histological assessment of these tissues in 6-week-old Ehf+/+ and
Ehf−/− mice. No major histological abnormalities were observed

in these tissues inEhf−/−mice (Fig. S3), indicating loss ofEhf does not
impact the gross morphology of these tissues, at this time point.

Ehf deletion impacts intestinal cell proliferation and
differentiation
As EHF is also highly expressed in the colonic epithelium, we next
investigated the impact of Ehf deletion on proliferation and
differentiation during homeostatic renewal of this tissue. Although
the overall architecture of the colonic epithelium remained similar
between Ehf+/+ and Ehf−/−mice, Ki67 staining revealed a significant
expansion of the proliferative colonic crypt compartment in Ehf−/−

mice (Fig. 3A,B). To investigate effects on intestinal cell
differentiation, expression of markers of the major intestinal
epithelial cell lineages were investigated by immunohistochemistry.
Staining and quantitation of the enterocyte marker KRT20
(Fig. 3C,D), the enteroendocrine cell marker chromogranin
(Fig. 3E,F) and the tuft cell marker DCLK1 (Fig. 3G,H) revealed
no differences between Ehf+/+ and Ehf−/− mice, indicating Ehf
deletion has little impact on the differentiation andmaturation of these
lineages. In contrast, Ehf deletion caused a significant decrease in the
number of goblet cells in the colon, as demonstrated by reduced PAS/
AB staining (Fig. 3I,J).

Ehf deletion increases susceptibility to dextran sodium
sulphate-induced colitis
Given the impact of Ehf deletion on colonic cell proliferation and
differentiation, we next compared the response of Ehf−/− and Ehf+/+

Fig. 3. Impact of Ehf deletion on cell proliferation and lineage-specific differentiation in the colonic epithelium. (A) Staining and (B) quantitation of the
cell proliferation marker Ki67. Arrows indicate xxxxx. Staining and quantitation of the (C,D) enterocyte marker KRT20; (E,F) the neuroendocrine marker
chromogranin A (CHGA); (G,H) the tuft cell marker DCLK1; and (I,J) goblet cells using periodic acid-Schiff/Alcian Blue (PAS/AB) staining in the colonic
epithelium of 6-week-old Ehf+/+ and Ehf−/− mice. Scale bars: 100 µm. Values shown in B,D,F,H,J are mean±s.e.m. of n=5 mice per genotype. **P<xxxx,
***P<xxxxx (xxxx test)
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mice to acute dextran sodium sulphate (DSS)-induced colitis.
Weight loss was significantly more pronounced in Ehf−/− compared
with Ehf+/+ mice over the 5-day treatment period (Fig. 4A).
Furthermore, the disease severity score was 2.5-fold higher in
Ehf−/− compared with Ehf+/+ mice (Fig. 4B). In addition, 25% of
Ehf−/−mice displayed hunching behaviour, indicative of discomfort
and/or pain at the end of the experimental period, while all Ehf+/+

mice displayed normal behaviour. Consistent with these changes,
the length of the colon was significantly shortened in DSS-treated
Ehf−/− mice (Fig. 4C,D), and histological analysis of the colon
revealed that Ehf deletion increased the extent and depth of immune
cell infiltration, increased the area of crypt loss and ulceration, and
led to more widespread oedema (Fig. 4E-M).

Intestinal-specific Ehf deletion increases sensitivity to
DSS-induced colitis
To confirm that these effects were due to alterations in the intestinal
epithelium, we generated intestinal-specific Ehf knockout mice
(EhfIKO) by crossing EhfLox/Lox mice to VillinCreERT2 mice, followed
by treatment of the EhfLox/Lox;VillinCreERT2 offspring with
tamoxifen. Genotyping of small intestinal epithelial cells isolated
from 6-week-old EhfIKOor sunflower oil-treated controls (EhfWT)
confirmed selective deletion of exon 8 of Ehf in the tamoxifen-
treated group (Fig. S4A). As expected, Ehf mRNA levels were
significantly downregulated in small intestinal and colonic
epithelial cells in EhfIKO but not in EhfWT mice (Fig. S4B). The
absence of Ehf mRNA was also examined in 6-month-old EhfIKO

mice, which confirmed sustained deletion of Ehf and that no

compensatory repopulation of the intestinal epithelium by Ehf WT
cells occurs over time (Fig. S4C).

We next assessed the susceptibility of EhfIKO mice to DSS-
induced colitis. As observed in whole-body Ehf−/− mice, the onset
of colitis was markedly more severe in EhfIKO compared with EhfWT

mice, assessed by both the disease severity (Fig. S4D) and histology
scores (Fig. S4E-M), confirming EHF-mediated disruption of
colonic homeostasis is epithelial driven.

Intestinal-specific Ehf deletion induces extensive
transcriptional reprogramming in the colonic epithelium
To further elucidate the role of EHF in the colonic epithelium, we
performed RNA-seq analysis of colonic epithelial cells isolated
from 6-week-old EhfWT and EhfIKO mice. To account for possible
transcriptional changes induced by tamoxifen, Villin CreERT2 mice
treated with tamoxifen (VillinCreERT2-TMX) were also analysed as a
further control. Principal components analysis of the RNA-seq data
resulted in clear separation of the EhfIKO samples from the two
control groups (Fig. S5), indicating Ehf deletion induces extensive
transcriptional reprogramming in the colonic epithelium. Analysis
of the gene expression changes identified 146 differentially
expressed genes between the EhfIKO mice and both control strains,
of which 75 were upregulated and 71 were downregulated in the
EhfIKO mice (Fig. 5A, Table S2). Of the top differentially expressed
genes, increased expression AQ2

¶
of Reg4, Id4 and Pla2g21 AQ3

¶
, and

reduced expression of Lpo in EhfIKO mice was confirmed by q-
RT-PCR, demonstrating the reproducibility of the RNA-seq data
(Fig. 5B).

Fig. 4. Sensitivity of Ehf−/− mice to DSS-induced colitis. (A) Change in body weight of Ehf+/+ and Ehf−/− mice with or without treatment with 2.5% DSS.
(B) Summary of the disease severity score of Ehf+/+ and Ehf−/− mice treated with or without 2.5% DSS. (C) Representative images of the colon lengths of
Ehf+/+ and Ehf−/−mice treated with or without 2.5% DSS and (D) corresponding quantitation of these data. (E,F) Representative Haematoxylin and Eosin
stained sections of the entire colon from Ehf+/+ and Ehf−/−mice treated with 2.5% DSS. Regions of ulceration are highlighted by a red border, areas of
oedema with a blue border, and areas of epithelial erosion and/or crypt loss with a green border. (F-H,J-L) High-power fields of regions of (F,J) ulceration,
(G,K,L) oedema, and (H,L) epithelial erosion and/or crypt loss. Scale bars: 200 µm. (M) Summary of the histology scores from Ehf+/+ and Ehf−/−mice treated
with or without 2.5% DSS. Values shown in A,B,D and M are mean±s.e.m. of n=4 and n=8 mice per genotype in the control and DSS-treated groups
respectively. **P<xxxx, ***P<xxxxx (xxxx test)
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Consistent with the increase in colonic cell proliferation induced
by Ehf deletion (Fig. 3A), gene set enrichment analysis (GSEA)
using the ‘Hallmark gene sets’ in the MSigDB database identified
an enrichment of the G2M checkpoint category, which included
increased expression of genes involved in cell cycle progression
(E2f3, Cenpf and Rad21) in EhfIKO mice (Fig. 5C, Table S3). This
analysis also identified an enrichment of the epithelial to
mesenchymal transition (EMT) gene signature, which included
increased expression of Vcam1, Itgb3, Fap, Fbn2, Tfpi2, Adam12,
Eln, Wnt5a, Spp1, Bgn, Slit3, Serpinh1, Fbln2, Plaur, Capg, Tnc,
Timp3, Lamc1, Pmp22 and Itgb5 and several collagens
(Col1a1, Col1a2, Col3a1, Col4a1, Col4a2, Col5a1, Col5a2,
Col6a2 and Col6a3) in EhfIKO mice (Fig. 5C, Table S4). Similar
enriched categories were identified following comparison to
the ‘Curated gene sets’, including ECM proteoglycans, ECM
receptor interaction, zhou_cell cycle genes in IR response and
molenaar_targets of CCND1 and CDK4 (Table S5).

EHF protects against Apc-initiated colonic adenoma
development
Finally, to extend these findings, we examined the impact of Ehf
deletion on tumour development specifically in the colon. To achieve
this, EhfLox/Lox mice were crossed to Cdx2CreERT2 deleter mice
(EhfCKO), and in turn to ApcLox/+ mice, to induce compound
homozygous deletion of Ehf and heterozygous deletion of Apc
(ApcCKO/+) in the epithelium of the colon and caecum. EhfCKO;
ApcCKO/+ and EhfWT;ApcCKO/+ controls were subsequently monitored
for colon tumour development over 52 weeks. Although there was no

difference in ethically determined survival, EhfCKOApcCKO/+ male
mice had significantly lower body weight compared with EhfWT;
ApcCKO/+ mice, although this difference was not observed in female
mice (Fig. S6A-C). At the end of the 52-week experimental period,
mice were culled, and tumours quantified and histopathologically
assessed. Notably, more EhfCKO;ApcCKO/+ mice (6/11–55%)
developed adenomas compared with EhfWT;ApcCKO/+ mice (four
out of 12; 33%) and the number of colonic adenomas per mouse was
higher in the EhfCKO;ApcCKO/+mice; however, this differencewas not
statistically significant (Fig. 6A). Comparatively, colonic tumour
burden was significantly higher in EhfCKOApcCKO/+ mice compared
with EhfWT;ApcCKO/+ mice, demonstrating that EHF suppresses the
growth of Apc-initiated colonic adenomas (Fig. 6B,C). No difference
in tumour grade or evidence of metastases were observed in
either genotype. Although adenomas arose predominantly in the
caecum in EhfWT;ApcCKO/+ mice, a higher proportion of tumours in
the proximal, middle and distal colon were observed in
EhfCKOApcCKO/+ mice, demonstrating loss of EHF preferentially
promotes tumour formation in these regions (Fig. 6D). Notably, EHF
expression was sixfold higher in the colon relative to the cecum (Fig.
S7), which AQ4

¶
may explain the shift in location of tumour onset.

DISCUSSION
By generating a novel whole body knockout mouse lacking the Ets
DNA-binding domain of EHF, we demonstrate an essential role for
the EHF transcription factor in the maintenance of epidermal and
intestinal epithelial cell homeostasis. Ehf−/− mice were born at the
expected Mendelian ratio, demonstrating that EHF is not essential

Fig. 5. Ehf deletion induces extensive transcriptional reprogramming of the colonic epithelium. (A) Heatmap of genes differentially expressed between
EhfIKO and both EhfLox/Llox and Villin CreERT2−TMX mice. (B) q-PCR validation of selected differentially expressed genes. Values shown are mean±s.e.m. of
n=4, n=4 and n=5 for Villin CreERT2−TMX, EhfLox/Llox and EhfIKOmice, respectively. *P<xxxx,**P<xxxx, ***P<xxxxx (xxxx test) (C) Gene set enrichment plots
showing significant enrichment of the epithelial to mesenchymal transition (146 genes) and G2M checkpoint (192 genes) hallmarks in EhfIKO mice. NES,
normalized enrichment score; FDR, False discovery rate q-value.
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for embryonic development. This contrasts with the whole animal
knockout phenotype of the related ESE family member Elf5, which
results in lethality by embryonic day 7.5 (Donnison et al., 2005;
Zhou et al., 2005), and Elf3, which results in embryonic lethality in
∼30% of mice (Ng et al., 2002). Comparatively, the viability of
Ehf−/−mice at birth is similar to that of whole-body Spdef knockout
mice, which are born at expected Mendelian ratios (Gregorieff et al.,
2009; Horst et al., 2010).
In our model, we specifically deleted the major known function

of EHF, its DNA binding and transcriptional activity, by targeted
deletion of the Ets DNA-binding domain. It is possible to conclude
therefore that the effects observed on epidermal and colonic
epithelial homeostasis are a consequence of loss of EHF
transcriptional activity. It is also possible that some DNA
binding-independent functions of EHF may be retained in this
model, although this is yet to be confirmed. For example, the
pointed domain of Ets proteins mediates protein-protein
interactions, and although it was initially shown that isolated
pointed domains from Ets transcription factors did not retain
functionality (Mackereth et al., 2004), a recent study of SPDEF
demonstrated functionality of the pointed domain independent of
the Ets domain (Lo et al., 2017). Specifically, when the Ets domain
was deleted, the pointed domain of SPDEF was able to bind
and sequester β-catenin in the cytoplasm more effectively.
Comparatively, deletion of the Ets DNA-binding domain of Elf5
resulted in complete loss of ELF5 protein (Choi et al., 2009).
Despite extensive effort, wewere unable to identify an antibody that
could reliably detect mouse EHF protein by western blot or
immunohistochemistry. We therefore cannot rule out the possibility
that some functionality of EHF may be maintained in Ehf−/− mice.
Nevertheless, our current findings establish that deletion of the
DNA-binding domain of EHF is sufficient to induce a series of
phenotypes in multiple tissues.

Most notable among these was the reduced body weight of both
male and female Ehf−/−mice compared with Ehf+/+ littermates, and
the development of abscesses in the preputial glands/vulvae,
papillomas in the chin/facial skin and corneal ulcers in Ehf−/−

mice. Preputial glands in mice are susceptible to bacterial infections
(Bertrand et al., 2016) and, once infected, can cause pain, self-
mutilation, restricted urination, penile prolapse and fistulation; this
was the most common reason for Ehf−/− male mice having to be
euthanized within 1 year.

Examination of the epidermal layer of Ehf−/− mice revealed
minimal differences in 6-week-old mice, and normal staining of
loricrin was observed in the stratum corneum, demonstrating that
Ehf deletion does not impact on the capacity of basal keratinocytes
to differentiate into corneocytes. Nevertheless, hyperplasia,
hyperkeratosis and microabscesses were observed in over 60% of
mice at 27 weeks of age. The later onset of these lesions and the
observation that they mostly occur in areas of high exposure to
damage-inducing behaviours, such as grooming and fighting,
suggests a potential role for Ehf in repair of the skin epithelium.
Such a role is consistent with a recent study involving genome-wide
profiling analysis of enhancer regions in human keratinocytes which
identified the Ets motif as the most enriched transcription factor
binding site in these cells, and revealed that EHF regulates ∼400
genes in these cells, including several associated with keratinocyte
differentiation (Rubin et al., 2017).

Interestingly, a subset of Ehf−/− mice developed corneal ulcers.
Notably, a recent study identified Ehf as one of the few genes
significantly upregulated during ageing in the mouse corneal
epithelium (Stephens et al., 2013), and ChIP analysis demonstrated
EHF binding to Tcf4, a transcription factor required for corneal stem
cell maintenance (Lu et al., 2012). EHF knockdown in corneal
epithelial cells also resulted in decreased expression of SPRR, which
is required for keratin crosslinking and maintenance of the barrier

Fig. 6. EHF protects against Apc-initiated tumour formation in the colon. (A,B) Effect of Ehf deletion on (A) tumour number and (B) tumour burden
determined by macroscopic counting and measurement at endpoint. Values shown are mean±s.e.m. of n=12 and n=11 for EhfWT;ApcCKO/+ and
EhfCKOApcCKO/+ mice, respectively. *P<xxxx (xxx test). (C) Representative Haematoxylin and Eosin stained images of adenoma development in the colon of
EhfWT;ApcCKO/+ and EhfCKOApcCKO/+ mice. (D) Distribution of adenomas in the ceacum and colon of EhfWT;ApcCKO/+ and EhfCKOApcCKO/+ mice.
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function of the skin (Stephens et al., 2013). These findings suggest
that the corneal defects observed in Ehf−/− mice may be due to
defective corneal differentiation during ageing.
We also observed that Ehf−/− mice were more sensitive to DSS-

induced colitis, which was phenocopied in gut epithelial-specific
Ehf knockout mice, confirming this effect was epithelial cell
dependent. Interestingly, we noted a reduced number of mucin-
producing goblet cells in Ehf−/− mice. Given the important role of
mucin in protecting the colonic epithelium from damage (Velcich
et al., 2002), it is possible that the reduced number of goblet cells
may underpin the susceptibility of Ehf−/− mice to DSS-induced
colitis. Ehf deletion also significantly decreased expression of Spdef
and Creb3l1, which are important determinants of the goblet cell
lineage in the intestinal epithelium (Gregorieff et al., 2009; Noah
et al., 2010), providing a possible mechanistic explanation for the
reduction in goblet cell differentiation in these mice.
Importantly, Zhu et al. recently reported that EHF is a downstream

target of the lncRNA lncGata6 (Zhu et al., 2018), and generated a
mouse with whole-body deletion of Ehf using CRISPR-Cas9-
mediated genome editing. They reported that EHF was required for
the maintenance of small intestinal stem cells by driving expression
of Lgr4 and Lgr5, and that Ehf deletion significantly decreased
Olfm4-positive stem cells and reduced the number of all secretory
lineage cell types in the small intestine (Paneth, tuft, enteroendocrine
and goblet cells). Although the focus of our study was the colonic
epithelium where EHF is most highly expressed, examination of
Olfm4-positive stem cells in the small intestine revealed no difference
between Ehf+/+ and Ehf−/− mice (data not shown). One explanation
for the difference between colonic epithelium and small intestineAQ5

¶
may

be that the Ehf knockout mice generated by Zhu et al. completely
lacked any functional part of the Ehf gene, as transcription was
prematurely terminated in exon 2, whereas only the DNA-binding
domain was deleted in our model.
Notably, we observed a significant increase in intestinal epithelial

cell proliferation in Ehf−/− mice evidenced by increased Ki67
staining. Consistent with this finding, gene-set enrichment analyses
revealed a significant enrichment of G2/M checkpoint genes in
EhfIKO mice. Whether EHF impacts cell proliferation by directly
regulating expression of these genes, or indirectly by altering
key colonic epithelial signalling pathways, or through other
mechanisms, remains to be determined. The GSEA analysis also
identified a significant enrichment of genes involved in epithelial-
to-mesenchymal transition and relating to the extracellular matrix in
EhfIKO mice. Interestingly, examination of the corresponding
protein expression profile of these genes in the normal human
colon using the human protein atlas database (Uhlen et al., 2015)
revealed that several of these genes (Itgb3, Fbn2, Tfpi2, Eln, Bgn,
Fbln2,Capg, Tnc, Lamc1,Col3a1,Col4a1,Col4a2 andCol6a3) are
not normally expressed in glandular colonic epithelial cells.
Therefore, although these analyses were performed on isolated
epithelial cells, further investigation is needed to determine
whether these changes are occurring in the epithelial or stromal
compartment, or both.
Consistent with the increase in cell proliferation and EMT

following Ehf deletion, we identified a potential tumour suppressive
role for EHF in the colon, as loss of Ehf increased Apc-initiated
colonic adenoma formation and burden. The mechanisms driving
this effect remain to be determined, but may be related to the
increased rate of colonic cell proliferation in these mice, or to
epithelial-to-mesenchymal transition, which transcriptional
profiling revealed to be altered in EhfIKO mice. Additionally, the
loss of goblet cells may also contribute to the increased tumour

incidence previously reported for Muc2−/− mice (Velcich et al.,
2002), either through impaired barrier function or through
alterations to the microbiome, as mucins are a source of binding
sites and nutrients for the microbiota (Bell and Juge, 2020).
Extrapolating these findings to human colorectal cancer (CRC) is a
logical next step. In this regard, although EHF is rarely mutated in
human CRCs (Luk et al., 2018), we have recently observed that EHF
expression is lost in a subset of CRCs (unpublished AQ6

¶
) and are

currently investigating its role in this context.
In summary, our findings represent the first systematic study of

the role of the EHF transcription factor in development and tissue
homeostasis in vivo. We reveal an essential role for EHF in the
maintenance of epidermal and colonic homeostasis, and that its loss
promotes colonic tumour development.

MATERIALS AND METHODS
Mice
EhfLox/Lox mice were generated by flanking exon 8 and the coding region of
exon 9 with loxP sites in C57Bl/6 embryonic stem (ES) cells. The targeting
vector contained a neomycin cassette for selection in ES cells and was
flanked by FRT sites for Flp-recombinase-mediated removal of the
neomycin cassette. ES cell clones were selected based on neomycin
resistance, screened by Southern hybridization, and correctly targeted
clones were microinjected into C57BL/6 murine blastocysts, and implanted
into pseudo-pregnant females. Resulting chimeras were bred to wild-type
C57Bl/6 mice to generate mice heterozygous for the floxed allele.
Heterozygous mice were then crossed with C57Bl/l OzFLP mice to
induce removal of the neomycin cassette. Mice heterozygous for the floxed
Ehf allele were subsequently mated to generate homozygous EhfLox/Lox

mice. EhfLox/Loxmice were subsequently mated with C57Bl/6 Tg(CMV-cre)
mice [original source, Mouse Genetics Cologne (MGC) Foundation;
provided by Warren Alexander, Walter and Eliza Hall Institute,
Melbourne, Australia] to induce constitutive Ehf deletion. CMV-cre was
then bred out of the colony, and germline Ehf−/− and Ehf+/+ control progeny
obtained by Ehf+/− heterozygous mating.

To selectively induce Ehf deletion in intestinal epithelial cells, EhfLox/Lox

mice were crossed to C57Bl/6 Villin CreERT2 mice (provided by Dr Sylvie
Robine) (el Marjou et al., 2004) to generate EhfLox/Lox;Villin CreERT2 mice.
At 4-5 weeks of age, mice were intraperitoneally injected with a total of
9 mg of tamoxifen solution (10 mg/ml) dissolved in sunflower seed oil, over
4 consecutive days. Control mice received sunflower seed oil only. To
determine the impact of Ehf deletion on Apc-initiated colon tumour
development, EhfLox/Lox mice were bred to Cdx2CreERT2;ApcLox/+ mice to
generate EhfLox/Lox;ApcLox/+;Cdx2CreERT2 (EhfCKOApcCKO/+) and Ehf+/+;
ApcLox/+;Cdx2 CreERT2(EhfWTApcCKO/+) control mice. ApcLox/Lox (580S)
(Shibata et al., 1997) and Cdx2-CreER mice (Hinoi et al., 2007) have been
described previously. At 4-5 weeks of age, mice were treated with 9 mg of
tamoxifen, as above. All mouse strains were on a pure C57Bl/6 background.
All animal breeding and procedures were performed in accordance with
approval obtained from the Animal Ethics Committee, Austin Health
(Melbourne). All animals were housed in open-top boxes with basic
enrichment, and provided with standard mouse chow and drinking water ad
libitum. Primers used for DNA genotyping were as follows:

intron 7 (outside floxed region)-3′UTR exon 8 (outside floxed region) –
Ehf (F), GTCCAAAATGAAGCCCAGGGTA; Ehf (R), 5′-CGTCCGGT-
TCTTCATTGATCAG and intron 7 (inside floxed region)-3′UTR
exon 8 (outside floxed region) – Ehf (F), 5′-TGTGTCTTGCT-
TTCCACCAG; Ehf (R), 5′-CGTCCGGTTCTTCATTGATCAG;
CMVCre (F), 5′-CTGACCGTACACCAAAATTGCCTG, CMVCre

(R), 5′-GATAATCGCGAACATCTTCAGGTT; VillinCreERT2 (F),
5′-CAAGCCTGGCTCGACGGCC; VillinCreERT2 (R), 5′-CGCGA-
ACATCTTCAGGTTCT; Apc (F), 5′-GTTCTGTATCATGGAAA-
GATAGGTGGTC; Apc (R), 5′-CACTCAAAACGCTTTTGA-
GGGTTGATTC; Cdx2CreERT2 (F), 5′-CATGGTGAGGTCTGCT-
GATG; Cdx2CreERT2 (R), 5′-CATGTCCATCAGGTTCTTGC.
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Periodic acid-Schiff and Alcian Blue stains
For detection of goblet cells, deparaffinized sections were stained with
Alcian Blue 8GX (ProSciTech, Australia) for 15 min. Slides were then
rinsed thoroughly in water and stained in 0.5% periodic acid in distilled
water (Sigma-Aldrich) for 5 min. Slides were then washed and stained with
Schiff’s reagent (VWR International) for 10 min, counterstained with
Haematoxylin, dehydrated through serial ethanol and xylene washes, and
mounted using DPX (Sigma Aldrich).

Immunohistochemistry
Deparaffinized and rehydrated formalin fixed paraffin-embedded (FFPE)
sections were treated with 3% H2O2 (Science Supply Associates, Australia)
for 10 min at room temperature and antigen retrieval performed by
incubation in citrate buffer [10 mM sodium citrate and 0.05% Tween (pH
6.0)] at 100°C for 30 min. Slides were then washed in Tris-buffered saline
with Tween [TBST; 0.05 M Tris, 0.9% NaCl and 0.05% Tween (pH 7.6)],
blocked and stained with primary antibody overnight at 4°C. Antibodies
used in immunohistochemical analyses were: anti-chromogranin A
(ab85554, Abcam, 1:500), lysozyme/muramidase Ab-1 (RB-372-A,
Thermo Fisher Scientific, 1:300), Ki-67 monoclonal antibody (MA5-
14520, Thermo Fisher Scientific, 1:150), anti-DCLK1 antibody (ab31704,
Abcam, 1:600) and anti-keratin 20 antibody (D9Z1Z) (ab13063, Cell
Signaling Technology, 1:500). Slides were then washed in TBST and
incubated with Dako envision anti-rabbit or anti-mouse labelled polymer-
HRP (Dako) secondary antibody for 30 min at room temperature, washed in
TBST and incubated with 3, 3-diaminobenzidine (DAB) solution (Dako)
until signal was detected. Image analysis was performed using the Aperio
ImageScope software v12.0.1.5027, using the specifically designed Nuclear
v9.1 or Positive Pixel Count v9.1 algorithms. The algorithm was tested on
three separate slides before being applied to all slides to be analysed.

Immunofluorescence
Sections prepared as above were stained overnight at 4°C with the following
antibodies: rabbit anti-keratin 14 (Biologend, 905304, 1:500), Purified anti-
mouse keratin 6A (Biolegend, 905701, 1:500) and purified anti-loricrin
antibody (Biolegend, 905104, 1:500). The following day, sections were
washed in TBST and incubated with Alexa Fluor 594 AffiniPure Goat Anti-
Rabbit IgG (H+L) (Abacus DX, Australia) with Spectral DAPI (FP1490)
added (1/1000) (Perkin Elmer) for 1 h at room temperature. Sections were
then washed in TBST and mounted using DPX/Vectashield mounting
media (Vector Laboratories). Stained slides were scanned on an Olympus
IX-81 inverted fluorescence microscope slide scanner and imaged using the
HALO software v3.1.1076.

Intestinal epithelial cell collection
For isolation of intestinal epithelial cells, mice were euthanized and the
small intestine (duodenum, jejunum and ileum), cecum and colon were
removed and opened longitudinally. The tissue was washed in warm PBS
and incubated in pre-warmed buffer 1 (PBS 93%, 0.5 M EDTA 3% and
RNA secure 4%, Thermo Fisher Scientific) at 37°C on a shaker for 10 min.
Samples were then vortexed, the smooth muscle removed and the epithelial
cells pelleted by centrifugation at 1400 g for 5 min at 4°C. The pellet
was washed in 1-2 ml of Buffer 2 (PBS 96% and RNA secure 4%),
centrifuged at 17,000 g for 1 min, and pellets snap-frozen on dry ice and
stored at −80°C.

RNA isolation and quantitative real time polymerase chain
reaction (q-RT-PCR)
RNA was extracted from isolated epithelial cells or tissue using the
ReliaPrep RNA Tissue Miniprep System (Promega) as per the
manufacturer’s instructions. RNA (500 ng) was converted to cDNA using
the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems)
as per the manufacturer’s instruction using random primers. Relative gene
expression was determined by quantitative real time PCR (q-RT-PCR) using
the ViiA 7 Real Time PCR system (Applied Biosystems). The reaction
mixture consisted of 0.75 µl 500 nM forward primer, 0.75 µl 500 nM
reverse primer, 1 µl of 1:10 diluted cDNA, 2.5 µl 2x Power SYBR Green

PCRMaster Mix (Thermo Fisher Scientific). Samples were amplified using
the following program: 95°C for 10 min followed by 40 cycles of 95°C for
15 s and 60°C for 1 min. Primers used for q-RT-PCR are provided in
Table S1.

RNA-seq analysis
RNA isolated from colonic epithelial cells was prepared for next-generation
sequencing using the stranded RNA library preparation kit with rRNA
depletion (Illumina) and sequenced using an Illumina HiSeq 2500 with
100 bp single reads. Library preparation, sequencing and initial data
analysis (read mapping) was performed by an external service provider
(Australian Genome Research Facility WEHI). Gene set enrichment
analyses were performed using the publicly available GSEA v4.1.0
software from the Broad institute (Subramanian et al., 2005), by
comparison with the MSigDB ‘hallmarks’ and ‘curated’ gene set
signatures (Liberzon et al., 2015). The ‘Signal2Noise’ metric was used
for gene ranking and the threshold for false discovery rate (FDR) was set at
q<0.05.

Dextran sodium sulphate treatment
Mice (n=8 per group, equal number of males and females) were given
dextran sodium sulphate (DSS, 2.5% w/v, Lot#Q8378, MP Biomedicals) in
autoclaved drinking water ab libitum for 5 days. A control group was
included in which n=4 mice per genotype (equal number of males and
females) were given autoclaved water without DSS for 5 days. During the
experimental period, mice were weighed and monitored daily. Two hours
prior to cull, all mice were given an intraperitoneal injection of BrdU
solution (10 µl/g mouse). The disease severity score was assessed by
computing the cumulative score from the following four criteria: (1) weight
loss: 0=normal, 1=<5%, 2=6-10%, 3=11-20%, 4=>20%; (2) faeces:
0=normal, 1=pasty, semi-formed, 4=liquid, sticky or unable to defecate
>5 min when stimulated; (3) blood: 0=no blood, 1=traces of blood in the
stool or the rectum, 2=free-flowing blood from the rectum or blood on fur;
and (4) general appearance: 0=normal, 1=piloerection, hunching,
2=lethargy and piloerection, 4=motionless.

Statistical analysis
Statistical analyses were performed using GraphPad Prism v8.0 software.
Groups were compared using the Student’s t-test with Welch’s correction or
using χ2-square analysis. In all cases, P<0.05 was considered statistically
significant.
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