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Abstract— Because the field of inflatable robotics is new there
are very few methods that result in adequate control of these
systems. Optimal control is one area that has shown promise in
controlling other underdamped systems and may be useful in
controlling inflatable robotic systems as well. In this paper we
describe the work we have done to lay the foundation for online
optimal control of inflatable robots. We have implemented
optimization in order to adapt a simple control model such
as PID control to work more effectively with inflatable robots.
Our work shows that optimization can be performed to find
an optimal Kp and Kd in order to minimize rise time and
settling time to a step pressure input. We describe the work we
have done to extend this work further towards more complete
adaptive and optimal control and illustrate how the results are
both novel and very useful for future work in this area.

I. INTRODUCTION

The area of soft robotics is a new and emerging area in
the field of robotics. Soft robots are of interest in many
industries because of the increased level of human-robot
interaction made possible by the softness and compliance of
these robots [1]. One of the main downsides to soft robots
and particularly inflatable robotics is that they are typically
underdamped and often compliant, making them difficult
to control accurately [2]. In the Robotics and Dynamics
(RAD) Lab at BYU we do research in the area of soft and
compliant robots in order to develop novel control methods
to allow them to be useful in a variety of situations. One
area of interest in soft robotics (particularly of late due to
the popularity of Disney’s movie ”Big Hero 6”) is that of
inflatable robots. Inflatable robots have many benefits when
compared to standard industrial and soft robots. NASA is
interested because inflatable robots can be as little as a tenth
of the weight and volume (when deflated) of a standard robot
[3]. Other industries are interested because inflatable robots
can interact with humans relatively safely [1].

The inflatable robot used for this research (Figure 1) was
made by Pneubotics (a robotics company in San Francisco,
California) and was purchased through a NASA Early Career
Faculty grant. He has been affectionately named King Louie
due to his long arms. Inflatable robots (and underdamped
robots in general) are often not adequately controllable
using traditional control methods. One area that has shown
promise in controlling these types of robots is optimal control
using methods such as Model Predictive Control (MPC)
and Moving Horizon Estimation (MHE). Research has been
done to demonstrate the effectiveness of these methods for
controlling more traditional robots [4], but no research has
yet been done to extend this work to inflatable robots. In this
paper we describe a basic method to begin to extend optimal
control methods to inflatable robots. Although the work of

Fig. 1: Soft inflatable robot (King Louie) used for control
optimization.

applying MPC and MHE to inflatable robots must wait until
adequate models have been built for these systems, we have
applied optimization in a more general sense to traditional
control methods (PID in this case) in order to create an
optimal control scheme that has improved the controllability
of the system.

II. METHODS & RESULTS

King Louie is operated using the Robot Operating System
(ROS) with control scripts written in Python. For initial
optimization, simple PID control was used to control King
Louie during a step command where his arm was raised by
commanding between one and three pneumatic actuators to
increase in pressure from ambient pressure (14.7 psi) to 25
psi. The position is held for 10 seconds to allow the motion to
settle. The rise time and settling time for the step command
are calculated from the pressure and time data and the sum
of the two is then returned to the optimizer as the function
evaluation. The formal optimization can be formulated as
follows:

minimize
Time

Σ(Trise + Tsettle)

For all Kp&Kd

For optimizations performed for multiple joints, the sum
of all rise and settling times is returned and each joint has
it’s own control parameters. The number of variables given to
the optimizer is 2∗(#ofjoints). Figure 2 shows the original



and final position of the arm during the step command for a
single joint.

Fig. 2: Images taken while running King Louie for the
optimization. The left image shows the original position with
the joint deflated and the right image shows the arm when
the joint is inflated.

The shoulder joint was chosen for the single joint opti-
mization because it is more likely to oscillate than other
joints (such as a wrist joint) due to the mass and compliance
of the entire arm after the shoulder. The most basic imple-
mentation of PID control includes three control parameters:
Kp which will have the greatest effect on rise time, Kd which
will have the greatest effect on settling time, and Ki which
is used to reduce steady state error. We have chosen not
to optimize Ki since we are optimizing for Trise + Tsettle

which is primarily affected by Kp and Kd.
Initially we attempted a gradient based optimization

(SLSQP & BFGS were both used) in which initial values
of Kp = 0.1 and Kd = 0.0001 are passed into the pressure
controller and the step response at 25 psi is recorded. Rise
time and settling time are returned to the optimizer as the
value of the objective function. The response is insensitive
to small changes in Kp and Kd because the physical system
does not perform consistently every time and can return a
range of function values when using constant parameters.
This makes finding a gradient infeasible.

Because of the initial difficulties with gradient-based
optimization techniques, we decided to use gradient-free
methods that will search the space with a range of parameter
values that show an appreciable difference in objective func-
tion value for different parameters. Gradient-free methods
were able to find improved values for a single joint. Because
the data from the gradient free optimizer was still noisy we
created a surrogate model to smooth the data. We then used
this model to find an optimal solution. Multiple orders were
tested to find the best fit for the data (Figure 3). The models
show a relatively large flat area. This is consistent with our
tests that show a large range of values will yield a similar
(though not same) objective function. This means that there
is a range of values that will all be very close to the optimum
and with some margin of error the system should respond
optimally for parameters in the optimal range.

The optimal parameters found by the
Scipy.optimize.differential evolution optimizer were [0.2,

Fig. 3: Surrogate models developed for the single joint
optimization. The top image is a quadratic model and the
lower image is 4th order. In both images a large flat area
can be seen. The small blue circles are the points taken to
build the surrogate model.

0.0017] which resulted in a function value of 0.92 seconds1.
The surrogate model for one joint found the optimal
Kp and Kd to be very similar to the Scipy results with
values of [0.17, 0.0013] and predicted a function value of
0.884 seconds. These optimal values show a significant
improvement over the original values of [0.1, 0.0001] which
yields a function value of 1.75 seconds. This means the
optimizer was able to find values that resulted in a 47%
decrease in rise and settling time.

We next ran optimization on 3 joints (6 variables) to extend
the usefulness of our work. For the 3 joint optimization both
shoulder joints and a single wrist joint were given a step
command (Figure 5) from ambient pressure (14.7 psi) to
command pressure (25 psi). The objective function was the
sum of the rise and settling time for all three joints.

1Due to the lack of consistency in the system response reported function
values are the average of 10 function values measured while using the listed
parameters.



Fig. 4: Step command for 3 joint optimization. Notice that
both shoulder joints are inflated as well as a single wrist joint
that pushes the hand to the robots right.

The optimization ran successfully for 3 joints after proper
bounds were determined to prevent the control from becom-
ing unstable. The optimization ran for several iterations but
was unable to converge. It did identify enough points to build
a surrogate model. Tests were run at the best value found by
the genetic algorithm, the optimum found by the surrogate
model, and using the original Kp & Kd [0.1, 0.0001] at all
3 joints. For each test the function value was 10.6 seconds
(to the first decimal place). We believe that this is because
using 3 joints causes the input to saturate which means that
the different sets of values don’t affect the overall system
performance.

The lack of variety in system response with changes in
control parameters is both a pro and a con. The downside
is that this means this method of optimization will likely
not be very effective for optimizing several joint controls
simultaneously. However it also means that the control will
likely be more robust to changes in system conditions such
as source pressure and commanded pressure.

III. CHALLENGES

Challenges in various aspects of the optimization process
caused our methods to be reformulated several times. Out-
lined below is an overview of a few specific areas where
changes needed to be made in order to accommodate our
specific problem. This is included primarily as a reference for
future research in this area as similar problems would likely
occur for any optimization performed on inflatable robotic
systems.

A. Hardware

One of the main challenges we encountered in this project
was with the hardware. We frequently found that we could
have the software implemented correctly and be ready to
run an optimization but would have to wait due to hardware
issues. During initial attempts, software would consistently
run at 500 Hz, but the pressure controller would respond at
only 20 Hz. Figure 5a shows initial attempts that did not have
a settling time, but instead resulted in a purely oscillatory
response.
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(a) Initial trials with inconsistent hardware response. Hardware
running at 20 Hz.
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(b) Filtered trials with inconsistent hardware response. Hardware
running at 20 Hz.

Fig. 5: Initially the slow control speed led to an oscillatory
response which was filtered to calculate the amplitude.
Eventually we were able to increase the hardware control
speed to 500 Hz which eliminated the oscillations for a large
range of control values.

We began to work as if this would be the best response
to work with and began adjusting our cost function to use
the amplitude as a cost function to minimize the amplitude
of the oscillations. In order to make the results more useable
we implemented a filter to smooth the data. Figure 5b shows
the results of the data filter.

The hardware did eventually give an underdamped re-
sponse and we were able to continue the optimization as
planned. However, working with hardware inherently caused
errors in the system. The dynamics of the robot itself and
the lack of consistency led to problems and errors beyond
just getting the proper motion out of the hardware.



B. Gradients

This error in the hardware made finding appropriate gra-
dients to be nearly impossible. Because there is no working
model, a theoretical optimum could not be found from
numerical derivatives. In order to approximate the gradients,
the system required the pressure controller run several times
and return the cost function for each incremental change in
the input variables. This exposed the inconsistent nature of
the system. It was not uncommon for different cost values
to be returned for two consecutive runs with the exact same
input variables. This caused inconsistent gradient data for
the optimizer. We abandoned any attempts to optimize via
gradient-based algorithms and began exploring other options.

C. Surrogate Models

There were challenges in building an accurate model.
When running the gradient-free optimization a large sam-
pling of random points was generated along with their
function value. This data was used in a linear solve operation
to build a vector of coefficients to be used with either a
quadratic or higher order polynomial model. This process
was used for both one joint and three joint optimization.

One source of variation in the results of our models was
the section of data that was used to build the model. Initially,
a complete data set of about 200 points was read in and a
model built using all possible points. These models often had
high error when compared to a model built from a subset of
30 points taken from the full data set. A separate optimization
process was implemented for a single joint to determine the
section of data points that would result in the lowest total
error for the system. This sub-optimization process used a
quadratic model fit. Further work could be done to improve
this sub-optimization by including several different possible
polynomial models to find a higher order model with lower
overall error.

For single joint optimization, the quadratic model pro-
duced results with lower error than higher order models.
However, the average error for this model was still about
10%. Once a model and optimum was found for one joint
we extended the model for 3 joint optimization. This model
proved to be even less accurate than the models used for 1
joint. The error for these models was generally above 20%
and was greater than 100% for many points.

A major cause of this error was the large portions of data
that had very similar function values. Polynomial models do
not handle flat areas very well which led to a poor fit for the
data. Despite poor models, the surrogate optimization still
found optimal solutions that compared favorably with the
best points found by the gradient-free optimizer.

IV. CONCLUSION

We have demonstrated the viability of optimizing the
control parameters for PID control of pneumatically actuated
joints on an inflatable robot. Although we were unable to
demonstrate an improvement when extending the optimiza-
tion to 3 joints, we have demonstrated that such an opti-
mization is feasible and would likely show an improvement

if the allowable input were increased to prevent saturation.
Surrogate models for a single joint successfully found an
optimum in the vicinity of the optimum found by the
optimizer. The lessons learned and the data gathered will
be helpful in future work.

It was shown that gradient-free and surrogate model opti-
mization work well for our system for a single joint. As long
as there are no mathematical models to predict the behavior
of our system, gradient based optimizers will be ineffective
for a system such as the one described here. These models
will need to be developed in order to improve the speed
and the applicability of these methods to real-time control
of multiple joints.

We will extend these results to find optimal control
parameters for each joint (likely on an individual basis
to avoid saturation) and integrate the optimization with an
observer to adapt the system to maintain an optimum as the
system changes. This work will be integrated into an adaptive
control scheme that will allow the system to maintain desired
operational parameters despite wear and tear or other system
changes that occur over time.
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