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Abstract— Our work consists of developing a generalized
customizable simulation for students. Fixed and flexible
events are considered over the term of a 16-week semester.
Scheduling decisions are processed in a reverse sequential
approach, where parent levels direct child levels on how to
best achieve the parent optimum. Specifically, a semester
dictates fixed events to the weeks, which dictate goals to the
days. User preferences and fixed events shape and scale the
goals throughout all levels of the simulation. Constrained
optimization with exact gradients along with gradient-free
genetic algorithms are used to achieve simulation optimal-
ity. Results are presented and discussed. The influence and
consequence of user preferences are seen in how time is
allocated toward various activities.

I. INTRODUCTION

What is the best use of our time? This is a question
we often ask ourselves, especially when we struggle to
complete the necessary tasks in a given day or week.
In this paper, we develop a generalized customizable
simulation for students. Life schedules can vary from
student to student or semester to semester. There are
several factors that can influence our levels of satisfac-
tion and productivity. For example, how much time do
we spend in class, at work, sleeping, exercising, eating,
socializing, etc. Our simulator draws upon these many
factors as well as personal preferences of the student
to predict and create the best day, week, or semester
schedule to meet the needs and desires of their life.

For the scope of our project, we assume that the
end user is a student. We center the schedule around
the hypothetical classes the student is taking and work
responsibilities they hold. As optimization constraints,
we assume that the user will have taken a survey to
determine their personal preferences and specifics of
their lifestyle. They will have expressed how much
they value different types of activities, such as the
length of meal times or the spacing of similar activities.
Developing the survey, gathering responses, and fine
tuning the preferences is outside the scope of the project,
but a mock set of responses is used as an inputs to our
algorithm.

A personalized schedule simulator allows students to
gain insight into how they can best use their time. It also
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reveals how personal preferences influence the things we
have time for.

II. METHODOLOGY

The implementation of our simulator consists of a
multi-level optimization process, similar to system level
optimization approaches we have discussed in class. The
user supplies personal preferences and a set of fixed
activities in the semester that cannot be shifted to another
time such as specific times set aside for class, exams,
sleep and work schedules. The optimization routine con-
sists of a nested iteration from the semester-level down
to the week and day-levels, in reverse chronological
order. The optimizer begins at the semester level and
surveys what fixed activities have been set by the user,
such as class schedule, project deadlines, etc. For each
week in the semester, the total activity time is optimized
to fit the user’s preferences (see Section II-B). Certain
activities, such as semester long projects, are distributed
across several weeks. The weeks in the semester are
processed in reverse order so that end of term deadlines
are accounted for with adequate preparation. Once the
desired total time for each activity in each week has been
calculated, that time is allocated into the appropriate
days based on deadlines and desired locations of specific
events in the week. Finally, given the allocated times for
each activity in a day, the events are sorted and placed in
optimized locations throughout the day to achieve user
performance and satisfaction (see Section II-D).

A. Semester-level

The semester is defined as a 16-week period, filled
with fixed and flexible event types. Fixed activities are
scheduled first by giving each activity the specific time
slot for the day on which it occurs. Repeated fixed events
such as classes and work are scheduled multiple times
in the slots that they require. All of the fixed events are
scheduled first in order to properly constrain the other
variables in the following steps. Once all of the fixed
events have been applied, the total remaining times for
each week are passed to the week-level optimizations.
As mentioned above, to properly anticipate and prepare
for deadlines, the weeks are processed in reverse order.
As an example, if there was a project deadline set during
week 11, project activities would most likely become
more dense near the deadline than earlier on in the



semester, corresponding to high scaling factors and low
scaling factors respectively.

B. Week-level

The week-level process requires that we abstract the
various activities of life into simple utility functions,
where the independent variable is the number of hours
in a week spent on the activity and the dependent
variable is the utility a person gains from the activity.
The specific functions vary depending on the activity
that they describe. These abstracted utility functions
serve as the first level of optimization in our project.
Their scale and shape are determined by various user
preferences related to the activity. An example would
be how strongly the user feels about the activity’s value
in their schedule. A high preference would result in
greater scaling, making the relative utility greater than
that of other activities. The specific activities we address
in our project include: school, exams, fixed work (work
1), flexible work (work 2), sleep, homework, projects,
breakfast, lunch, dinner, and family. Of these categories,
we model school, exams, sleep and work 1 as fixed
obligations which the optimizer cannot change, and thus
they add constant utility to the schedule. In other words,
the gradient of these activities is zero for all time. For
each remaining category we have assigned a function
and parameters to describe their individual utility. The
describing functions can be seen in Table I.

The functions were chosen based solely on our opin-
ion of the relative utility for each activity. Our reasoning
was that they, first, quantify the qualitative benefit for
each category, and second, because they are mathemat-
ically simple and computing their derivative is trivial.
No additional reformulation, scaling or parameterization
seems intuitive, thus making any attempt at such unnec-
essary. Some activities (i.e., personal, and work 2) have
local maxima, and others (i.e., homework, projects, and
family) have points of diminishing benefit.

The defined week optimization problem is as follows:

min.
x

Utility(t)

s.t. lb ≤ t ≤ ub
n∑

i=1

ti = Tweek

The major objective function is simply the sum of utility
from all categories. The role of optimization at this
stage is to determine lumped allocations of time to each
activity that will produce the greatest overall utility for
a given week. The main constraints are the number of
hours in a week (i.e. 168 hours), the lower and upper
bounds, and the user preferences regarding an activity.

C. From Week to Day

Once a given week has optimized the times for
each activity, those times must be divided intelligently
between the days of the week. The simplest procedure
would be to equally divide between seven days, but
that is not always appropriate, nor does it guarantee
the optimum week for the user. There will be fixed
events that occur in the week, and they influence the
distribution of times to different days in the week. For
example, suppose there was an exam on Thursday, more
exam preparation or homework would likely occur on
and before Thursday than after. In essence, the fixed
events and deadlines that occur in the week are not only
constraints on the other variables, but clearly influence
the placement of activities throughout a week. In gen-
eral, user preferences would determine which activities
are fixed and important to the user, resulting in time
allocations toward those priorities. It is important to note
that the days are processed in reverse order in similar
manner to how the weeks are processed in reverse order.
The same reasoning and motivations apply here.

D. Day-level

The day-level optimization is performed by sorting
constant-length events throughout a day until a max-
imum user performance is achieved. The number of
events in each category is defined by what the week
supplies to the given day. Essentially, the day will
attempt to reach the target time for each activity type
that the week has requested. We define the available
time slots in the day to be half-hour increments so there
are 48 possible time slots to work with. The defined
time slots create the discrete nature of our variables, so
a gradient-free method is needed. This is also intuitive
for the problem because most people do not schedule
their day in arbitrary time increments. For example,
it is unlikely that one would schedule lunch at 12:38
PM, but would instead place a 12:30 pm or 1:00 pm
slot for lunch. Our algorithm uses the existing gradient-
free GODLIKE() function to perform the optimization.
Using a gradient-free method (i.e., a genetic algorithm),
we calculate several combinations of events during the
day and evaluate their performance compared to the user
preferences. The defined day optimization problem is as
follows:

min.
x

Performance(t)

s.t. lb ≤ t ≤ ub

ti 6= tj
t 6= tfixed

The main considerations at the day-level are these:
bounds, flexible events, and fixed events. Bounds are
placed on events to designate times when they can



TABLE I: User Preferences: Each category is described by various user preferences that scale and shape the function and its gradient. The
functions were chosen based solely on our opinion of the relative utility for each activity. Our reasoning was that they, first, quantify the qualitative
benefit for each category, and second, because they are mathematically simple and computing their derivative is trivial. Some activities (i.e.,
personal, and side jobs) have a local maximum, and others (i.e., homework, projects, and family) have an upper region of diminishing benefit.
The variables C, S, τ , p, and LS stand for scalar constant, scaling factor, time constant, power factor, and linear slope respectively.

Activity Preferences Function Gradient

School • Credit Hours J = C G = 0
• Attendance %

Exams • Quantity J = C G = 0
Work 1 • Expected Hours/Week J = C G = 0

• Desire
Sleep • Average Sleep J = C G = 0

• min(Sleep)
• max(Sleep)

Work 2 • Expected Hours/Week J = S ∗ (e−t/τ ∗ (t/τ)p) G = S ∗ (1/τ)p ∗ e−t/τ ∗ t(p−1) ∗ (p− t/τ)
• min(Hours/Week)
• max(Hours/Week)
• Desire

Homework • Homework outside of Class J = S ∗ (1− e−t/τ ) G = S/τ ∗ e−t/τ
• Expected Grade
• Desire

Projects • Projects outside of Class J = S ∗ (1− e−t/τ ) G = S/τ ∗ e−t/τ
• Desire

Personal • Personal Time Desire J = S ∗ (e−t/τ ∗ (t/τ)p) G = S ∗ (1/τ)p ∗ e−t/τ ∗ t(p−1) ∗ (p− t/τ)
• Shower
• Brush Teeth
• Meals

Family • Family Time J = S ∗ (1− e−t/τ + LS ∗ t/τ) G = S/τ ∗ (e−t/τ + LS)
• Desire

and cannot occur. According to our implementation, the
populations are not allowed to violate the bounds. Free
events are the focus of the design. The user preferences
specify the duration and so forth, but the day simulator
must determine when each flexible event starts. In con-
trast, fixed events are activities that occur at designated
times which are not adjustable. The fixed events act
as constraints on the flexible events. The simulator is
allowed to “double book” the schedule, but at a penalty
to the overall score. The day receives points for placing
events in windows of preferred time, and penalties for
overlapping activities according to the user preferences.

Here is an example of inputs to the optimized day
simulator as seen in Table II and Table III. The activities
are listed along with their related properties. The flexible
events are work 2, homework, projects, breakfast, lunch,
dinner, and family. We assume that the week tells the day
to place the objectives seen in Table III. In addition to

TABLE II: Fixed inputs to our optimized day simulator. Fixed activi-
ties are listed along with their duration (hr) and constraints based on
fixed event times.

Fixed Activity Duration (hr) Constraints

School 1 10 am, 11 am
Exams 1 n/a
Work 1 1 8 am, 9 am, 12 pm
SleepAM 6 12 am, 2 am, 4 am
SleepPM 2 10 pm

TABLE III: Design inputs to our optimized day simulator. Flexible
activities are listed along with their duration (hr), lower bound, upper
bound, and objective hours for the day. The start times for these
activities are chosen by the simulator

Flexible Activity Duration (hr) LB UB Objectives (hr)

Homework 0.5 7 am 9 pm 3.5
Projects 0.5 8 am 9 pm 1
Work 2 1 8 am 9 pm 1
Breakfast 0.5 6 am 8 am 0.5
Lunch 0.5 11 am 2 pm 0.5
Dinner 1 5 pm 7 pm 1
Family 0.5 5 pm 10 pm 1.5

these, we assume some constraints seen in Table II. The
lower and upper bounds in Table III were implemented
so that most activities occurred in the day time between
7am - 9pm.

It is important to note that, at the week level, an activ-
ity may be composed of several sub-activities with large
amounts of time allotted to collection. For example, on
the week level, “personal time,” encapsulates meal times,
preparation time, and nightly routine time throughout
each day. Meal time is divided into breakfast, lunch and
dinner. Sleep, which was optimized for total time at the
week-level becomes a fixed variable at the day-level.
The day simply positions sleep at the correct time so as
to retire and rise according to the user preferences.

In order to solve this optimization problem, an ob-
jective function gives appropriate amounts of points for
positioning events in the day according to the user pref-



erences. We define a “grouping” parameter from values
1-10, which the objective function awards points for
grouping events in the day according to that preference.
For example, if the grouping parameter is 10, then the
user will prefer that all events be grouped together as
much as possible. A grouping value of 0 would elicit
no grouping, while a value of 5 would indicate no
preference. Constraints are created as events are placed,
so we apply large penalties to the objective function
value when flexible events overlap. Even larger penalties
are applied to events which overlap with fixed events
in the day, like school or a defined work schedule.
The resulting schedule is returned to the week-level for
display.

E. Google Calendar Display

In order to effectively analyze the optimized results,
the schedule must be visualized appropriately. From
MATLAB, the final form of the schedule is a CSV
file with a list of events labeled with their event type,
start date, start time, end date, end time, and other
relevant information. This can easily be imported into
other calendaring software such as Google Calendar.
This allows the user to see what their schedule looks
like from day to day.

III. RESULTS

A. Week-level optimization

Taking one of the weeks of the semester as an exam-
ple, we show the results for optimizing hour allotments
for each flexible activity. Convergence required 23 major
iterations and 63 function evaluations. At the week-level,
the optimum utility results in a unique combination of
times in each category. These are plotted with their
respective utility functions in Fig. 1 and convergence
history is shown in Fig. 2. Fig. 1 shows the optimum
time values plotted for each function. It shows the
tradeoffs of the optimum solution. It is interesting to note
that the optimum values differ between activity type.
This demonstrates the great purpose of optimization: to
weigh the tradeoffs of a complex design, in light of the
constraints, and produce an optimal solution. It appears
that the optimum values occur at locations where the
gradients are roughly equal. This is intuitively correct,
since the optimum would strive to take advantage of
potential gains, higher gradients, that would outweigh
that of another category. The fact that they are equal
demonstrates that they are properly competing for time.
In Fig. 2, the top figure displays the convergence history
of the function value and the bottom displays the con-
vergence history of the first-order optimality. It should
be noted that this solution is tightly converged with a
first-order optimality of 3.92e-05.

Fig. 1: This figure shows the optimum time values plotted for each
function. The plot shows the tradeoffs of the optimum solution. It
is interesting to note that the optimum values differ between activity
type. This demonstrates the great purpose of optimization: to weigh
the tradeoffs of a complex design, in light of the constraints, and
produce an optimal solution. It appears that the optimum values occur
at locations where the gradients are roughly equal. This is intuitively
correct, since the optimum would strive to take advantage of potential
gains, higher gradients, that would outweigh that of another category.
The fact that they are equal demonstrates that they are properly
competing for time.

Fig. 2: The top figure displays the convergence history of the function
value and the bottom displays the convergence history of the first-order
optimality. It should be noted that this solution is tightly converged
with a first-order optimality of 3.92e-05.

B. Day-level Optimization

We will examine one of the days in the semester to
demonstrate how well our methods perform in building
a daily schedule. The number of events are calculated
from the information given by the week-to-day logic.
Based on those values, the events are optimally sorted
throughout the day using the genetic algorithm. The



output of our optimization is shown in Table IV. The
first thing we check is that the schedule seems reason-
able. This is a subjective process, since much of the
schedule is based on user preferences. All the same, after
initial review, the schedule for this kind of day seems
reasonable. The order of events agrees with the bounds
and preferences we specified and fall in the preferred
windows of time. However, our main concern with the
output is that there are two instances where the schedule
is double-booked. This gives reason for future work in
developing a conflict resolution phase. Given the time
constraints of our report and this project, the conflicting
flexible events are simply discarded, leaving a non-
overlapping schedule. This is clearly an inefficiency in
our process, which cause each week to operate at utility
levels slightly below their optimum.

A few comments on the convergence of the
Godlike() optimization function: it runs
three passes and in this instance it calls our
schedulePerformance() function a total of
17280 times. In our opinion, that total is larger than
expected and is only borderline acceptable. But it is a
reasonable cost to pay in order to optimize our discrete
design variables.

TABLE IV: Schedule outputs from our optimized day simulator. The
activity, start time, stop time, and duration are listed for each event.
Events are grouped in alternating colors with no significance, except
that red items indicate scheduling conflicts. For example, Work 1 is
fixed from 8-10 am, but the optimizer scheduled a Work 2 appointment
from 8:30-9:30 am. Scheduling conflicts are temporarily acceptable,
and will be handled during conflict resolution.

Activity Start Stop Duration (h:mm)

SleepAM 12:00 am 02:00 am 2:00
SleepAM 02:00 am 04:00 am 2:00
SleepAM 04:00 am 06:00 am 2:00
Breakfast 06:30 am 07:00 am 0:30
Homework 07:00 am 07:30 am 0:30
Homework 07:30 am 08:00 am 0:30
Work 1 08:00 am 09:00 am 1:00
Work 2 08:30 am 09:30 am 1:00
Work 1 09:00 am 10:00 am 1:00
School 10:00 am 11:00 am 1:00
School 11:00 am 12:00 pm 1:00
Work 1 12:00 pm 01:00 pm 1:00
Project 01:00 pm 01:30 pm 0:30
Lunch 01:30 pm 02:00 pm 0:30
Homework 02:00 pm 02:30 pm 0:30
Homework 02:00 pm 02:30 pm 0:30
Homework 02:30 pm 03:00 pm 0:30
School 03:00 pm 04:00 pm 1:00
Family 05:00 pm 05:30 pm 0:30
Family 05:30 pm 06:00 pm 0:30
Homework 06:30 pm 07:00 pm 0:30
Dinner 07:00 pm 08:00 pm 1:00
Homework 08:00 pm 08:30 pm 0:30
Project 08:30 pm 09:00 pm 0:30
Family 09:30 pm 10:00 pm 0:30
SleepPM 10:00 pm 12:00 am 2:00

C. Distribution of Time

In light of the fixed events and due dates through-
out the semester, the schedule will adjust accordingly
to account for changes in priority, shown in Fig. 3.
For example, assuming that homework deadlines occur
almost every week, homework time may have priority
over project time. However, when a project deadline
approaches, priority will shift. Indeed, this is what
happened for our set of user preferences. For the other
flexible activity types, no logic is currently implemented
to distribute the time allotments differently than an equal
distribution.

A full simulated week is shown in Fig. 4. From first
glance, the event times are reasonable and appear when
they should. Most of the fixed events have blocked
out the morning and flexible events have obeyed their
constraints by sorting into other available slots through-
out the day. There is noticeable variation from day to
day, which is mainly the result of our using a GA
to implement the day-level optimization. Upon closer
inspection, there are gaps between events which can be
attributed to inefficiencies in the GODLIKE() GA. Also,
on some days important flexible events are missing, such
as lunch on Tuesday and Thursday. This may be due to
the specific optimization method or to a lack of priority
on such an event. It is also likely that some routine
to handle conflict resolution could restore important
flexible events to new our schedule during open time
slots. Because user preference define the constraints on
an activity such as lunch, perhaps widening the range
of possible lunch hours may increase the probability of
lunch being sorted. Overall, the allotment of time and
sorting of activities throughout the week was successful
with respect to this set of defined user preferences.

Fig. 3: This figure shows time allotments from week to week through-
out the semester. About 50% of the time is currently committed toward
fixed events. This is emphasizes the important of prudence when
committing to other responsibilities. Also, it is apparent the balance of
time between homework and projects as project deadlines get closer.



Fig. 4: This figure shows a simulated week in the semester using Google Calender.



D. Strengths and Weaknesses

Noticeable strengths of these methods include limit-
less potential for customization, reliable adherence to
personal preferences and easy integration with calendar-
ing software (e.g., Google Calendar, etc.). Every step of
the logic and optimization is determined by the param-
eters defined in each user’s preferences. This allows the
simulation of a realistic and desirable semester schedule
for that user. By viewing the schedule in a calendaring
software environment, it becomes easy for the user to
gain insight into how their simulated schedule compares
to real life.

While the simulator fundamentally works, there are
some weaknesses to these methods. They are not robust
to conflicting events that may occur while iterating
through the semester. The failure to handle conflicting
events causes the results to be slightly inefficient on
some days because a desired event was ultimately not
included into the day. As well, most of the focus has
been on a Monday through Friday set of events without
regard to special days such as weekends or holidays.
What a person does on these days should be logically
determined by the user preferences.

IV. FUTURE WORK

Our day-level method occasionally produces conflict-
ing events, and currently they are discarded from the
schedule. In order to implement conflict resolution for
each week, the day should communicate with the week
when these events occur and the week should determine
the final placement of the event. The week would be
allowed to decide which activities to preserve during a
conflict, and what to do with the rejected event. In this
manner, the optimizer algorithm becomes robust toward
conflicts at both the day and week-levels.

We chose the GODLIKE() GA as our gradient-
free optimizer. Further work is needed to validate the
effectiveness of this optimizer by comparing it to other
gradient free methods (Particle Swarm, Branch and
Bound, etc.) and packages in their total run time and
solution accuracy.

The distribution of events throughout the week is also
in need of further work. For several of the flexible
activities, the optimized week allotment was divided
equally amongst each day. Additional user preferences
could be developed to determine how those activities
should be divided throughout a week.

V. CONCLUSION

Our schedule simulator, designed to help students
become more effective with and aware of the ways they
spend their time, provides a tool to adequately account
for fixed events throughout a semester, while optimizing
the amount and placement of flexible activities for utility

and personal satisfaction. It is not intended to be an
autonomous secretary, rather a tool to help us predict the
consequences of our preferences and fixed obligations.
Also, it is important to acknowledge that any resulting
schedule will need periodic updating or re-optimization
to account for shifts in user preferences and fixed events
throughout a semester.

Our work confirms that user preferences play a sig-
nificant role in how we spend our time. Indeed, the
priorities we pursue may directly determine what we
can and cannot accomplish with our time.
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