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Abstract

The consistency of the transreals, relative to the reals, was previously
proved by constructing the transreals as tuples of reals. We now give a
more fundamental construction of the transnaturals as elementary objects
in the set theory New Foundations with Urelements (NFU), which set
theory we extend by making certain operations total over atoms as well
as sets. Hence the transnumbers are established in the (new) foundations
of mathematics.

1 Introduction

Transreal arithmetic augments real arithmetic with three definite, non-
finite numbers. Critically it delivers a total and consistent arithmetic.
Totallity is essential to the use of transnumbers in computer science as a
means of avoiding logical exceptions. Totality ensures that every syntac-
tically correct program is semantically correct in the sense that it does
not crash for any logical reason when executed, though it may crash for
a physical reason. Totality also enables very strong mathematical rea-
soning by exclusion. During the present development of the transnatural
numbers, we shall totalise certain operations of the set theory New Foun-
dations with Urelements (NFU). Thus we also provide a, possibly slight,
extension of set theory.

There is a machine proof [2] of the consistency of transreal arith-
metic and a human, constructive proof [4] of the consistency of transreal
and transcomplex arithmetic relative to real arithmetic. The constructive
proof is expressed in Zermelo-Fraenkel set theory with the axiom of Choice
(ZFC), using tuples of a real numerator and denominator such that, for all
positive k: positive infinity is defined by∞ = 1/0 ≡ k/0; negative infinity
is defined by −∞ = −1/0 ≡ −k/0; and nullity is defined by Φ = 0/0.

The arrangement of the transreal numbers is shown in Figure 1. The
real numbers are shown on a finitely long line. All of the non-finite,
transreal numbers – negative infinity, nullity, and positive infinity – are
separated from the real-number line by gaps. (This arrangement may be
deduced by calculating ε-neighbourhoods in transreal arithmetic.) Nullity
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Figure 1: Transreal-Number Line.

is unordered and so may be shown anywhere off the extended-real-number
line from negative infinity to positive infinity; it is shown, here, above zero.
Some simple theorems of transreal arithmetic establish that nullity is the
only unordered, transreal number; that infinity is greater than any other
ordered, transreal number and that negative infinity is less than any other
ordered, transreal number. So much for proof. We then rely on an in-
tuition that positive infinity is the greatest ordinal. This intuition gains
credence when we recall that non-Archimedean number systems have in-
finitesimal numbers whose magnitude is greater than zero but less than
any real number [8] [3]. The reciprocals of these infinitesimal numbers are
transfinite numbers, infinities, arranged such that the closer an infinites-
imal is to zero, the greater the magnitude of its reciprocal infinity. We
suppose that this relationship continues to zero so that the reciprocal of
zero has the greatest magnitude. Hence transreal, positive infinity is the
unique reciprocal of zero, ∞ = 1/0, and transreal, negative infinity is the
unique, negative of the reciprocal of zero, −∞ = −1/0. The non-zero
infinitesimals form, negative and positive, open intervals about zero and
their reciprocals form, negative and positive, open intervals far from zero.
We say that these infinities are non-terminal. Each of the non-terminal
infinities has a magnitude which is strictly less than the magnitude of
transreal, positive and negative, infinity, which we call terminal infinities.
As transreal, positive infinity is terminal, it has an ordinal position: just
as zero is the first ordinal, so its reciprocal – transreal, positive infinity
– is the last ordinal. One of the goals of the present paper is to put this
intuition on a firmer footing by establishing the transnatural numbers as
elementary objects in a suitable set theory.

ZFC is the most popular set theory. It is usual, in ZFC, to represent
natural numbers, and all non-terminal, ordinal numbers, with the von
Neumann Ordinals: 0 = {}; 1 = {0} = { {} }; 2 = {0, 1} = { {}, {{}} };
3 = {0, 1, 2} = { {}, {{}}, {{}, {{}}} }; and so on. The von Neumann
ordinals, ni, have the advantage that cardinality and ordering emerge in
the elementary way: ni = |ni| and n1 < n2 iff n1 ∈ n2. But the set
theory ZFC is incompatible with a greatest ordinal so we cannot use it
to represent transreal infinity in an elementary way. We must use some
other set theory.
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By contrast the set theory NFU provides a universal set [7] [6]. Having
a universal set ensures that set complement exists as part of a Boolean
algebra. Boolean algebras enable reasoning by exclusion so NFU is very
well placed to exploit the totality delivered by transarithmetics.

NFU has a stratified comprehension rule which exploits type theory to
block Russell’s paradox, making the set theory consistent [7]. However,
stratified comprehension has a number of profound influences. Firstly the
member relation, ∈, does not exist as an elementary relation; instead it
is defined via the subset relation so that x ∈ y is identical to {x} ⊆ y.
Secondly stratified comprehension complicates the construction of some
sets. In particular the construction of the von Neumann ordinals cannot
proceed in the usual way. Instead, in NFU, it is usual to construct each of
the non-terminal ordinals – 0, 1, 2, and so on – as the set of all sets with
n elements [6]. This is adequate for developing ordinal arithmetics but
it blocks elementary cardinality and ordering as instantiated by the von
Neumann ordinals. This structure also means that ordinal arithmetic, in
NFU, is implemented, not on sets, but on an arbitrarily chosen element
of a set, all of which elements must have the same cardinality. But this
means that NFU’s ordinal arithmetic is not defined on any set which lacks
this structure, making the arithmetic partial, not total, over all sets. This
loss of totality would be grievous to the transarithmetics.

We address these problems by exploiting two further properties of
NFU. In addition to providing sets, NFU also provides urelements, that
is it provides atoms, and it adopts the Axiom of Choice so all sets are
well ordered. In particular the set of all atoms is well ordered. Given
ordered atoms, αi, we define the canonical form of the transordinal num-
bers: nullity, Φ, is the atom Φ = α0; zero, 0, is the empty set of atoms,
0 = {}; every non-zero, non-terminal, transordinal, n, has 0 < n < ∞
and is the set n = {α1, α2, ..., αn}; infinity, ∞, is the set of all atoms
∞ = {α0, α1, α2, ..., α∞}. This restores an elementary instantiation of
cardinality and ordering, in NFU, as ni = |ni| and n1 < n2 iff n1 ⊂ n2.

We then take transordinal nullity, Φ, equivalent to each free atom and
take each transordinal set of atoms equivalent to any set with the same
cardinality. We reduce any atom or set to its canonical form, before per-
forming arithmetic, and reduce the result of each arithmetical operation
to canonical form. Hence transordinal arithmetic is total over all NFU
objects and, in particular, transnatural arithmetic is total over all NFU
objects equivalent to a transnatural number.

We suppose that transnatural arithmetic may be extended, in the usual
way, to other arithmetics, such as transinteger, transrational, transreal,
and transcomplex arithmetic; but we do not undertake that work here.

It will be helpful to recall that transreal arithmetic is totally associa-
tive and commutative and that it has some absorptivities. Nullity is to-
tally absorptive over the arithmetical operations of addition, subtraction,
multiplication and division but is not generally absorptive; for example
nullity may appear as an argument of functions whose value is not nullity.
Infinity is partially absorptive. Also we shall want some of the non-finite
powers of two for discussion of the powerset.
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Observation 1. For all transreal x: Φ ◦ x = Φ, where ◦ is any one of
the operations of addition, subtraction, multiplication, division.

Observation 2. For all transreal x:

∞+ x =

{
Φ , if x ∈ {Φ,−∞}
∞ , otherwise

.

Observation 3. For all transreal x:

∞× x =


Φ , if x ∈ {Φ, 0}
∞ , if x > 0
−∞ , if x < 0

.

Observation 4. For all transreal x: Φ 6< x and x 6< Φ.

Observation 5. For all transreal x 6∈ {Φ,−∞,∞}: −∞ < x <∞.

Observation 6. It is a theorem of transreal arithmetic that 2Φ = Φ,
2∞ =∞.

2 Construction

Our goal is to construct transnatural arithmetic [2] using elementary ob-
jects in the set theory NFU. We begin by recalling two axioms of NFU,
given here as Axiom 7 and Axiom 9. Compare with [6].

Axiom 7. The universal set V := {x | x = x} exists.

Observation 8. Observe, in passing, that the Not-a-Number objects of
floating-point arithmetic are not members of the universal set because
NaNi 6= NaNj for all i, j – including i = j! This complicates the writing
of numerical programs, as discussed in [1], with corrections in [5].

Axiom 9. If x is an atom then for all y: y 6⊆ x.

Observation 10. The empty set, x = {}, is not an atom because there
is a y = {} such that y ⊆ x.

The binary operations of ZFC are total because all of the objects
of ZFC are pure sets but the corresponding binary operations of NFU
are partial because NFU also provides atoms. The question of how each
binary operation should be totalised is delicate so we provide an axiom
scheme, to handle many operations, and say which particular operations
we totalise here. The scheme employs nullity, Φ, which is defined as an
NFU object in Axiom 12 below. The totalisations are disjoint from the
usual operations and so are trivially consistent with them.

Axiom Scheme 11. The binary operation A◦B = Φ when A or B is an
atom and ◦ is a specified operation. Here we specify: set union, ∪; subset,
⊂; disjoint sum, ⊕; Cartesian product, usually written × but written here
as ⊗; set difference, \.

In ZFC two sets have the same cardinality iff there is a bijection be-
tween the elements of the sets. This is a total definition because all of
the objects of ZFC are pure sets but the corresponding definition in NFU
is partial because NFU also provides atoms. We define the cardinality of
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free atoms in Axiom 13 below. The totalisation of cardinality is disjoint
from the usual cardinality and so is trivially consistent with it.

NFU adopts the Axiom of Choice so all sets are well ordered. In
particular there is an ordering of the atoms α0, α1, α2, and so on. This
ordering defines the predecessor relationship, ≺, for all atoms. We obtain
each transordinal number as a unique atom or set of atoms, relative to
a given ordering; but there are many orderings so it is more helpful to
observe that our definitions are unique up to an isomorphism of atoms
and sets. The invariants of all such descriptions are the cardinalities and
subset relations developed below.

Axiom 12. Transordinal nullity, Φ, is the free atom Φ := α0.

Axiom 13. Each free atom, αi, has cardinality nullity, |αi| := Φ.

Axiom 14. Transordinal zero, 0, is the empty set of atoms 0 := {}.
Axiom 15. Each non-terminal, transordinal, n, is the set of atoms n :=
{α | α0 ≺ α ≺ αn} ∪ {αn}.
Axiom 16. The last atom, α∞, such that αi ≺ α∞ for all αi 6= α∞,
exists.

Axiom 17. Terminal, transordinal infinity, ∞, is the set of all atoms
∞ := {α | α is an atom}.
Observation 18. The atom α0 is a marker for the strictly transordinal
numbers, Φ and ∞, in the sense that α0 is equal only to Φ and is an
element only of ∞. The atom α0 plays a critical role in establishing the
topology shown in Figure 1. Firstly, as a free atom, α0 is disjoint from
all of the transordinal numbers described by sets so it describes the point
at nullity, Φ, which is disjoint from all other transreal numbers. Secondly
every transordinal {α1, α2, ..., αn}, including zero, {}, that is less than
infinity, has an immediate successor, {α1, α2, ..., αn, αn+1}, but infinity
is not the immediate successor to any of these, non-terminal, ordinals
because infinity contains α0. Thus α0 is intimately related to the gaps in
Figure 1. This inclines us to the view that α0 is the vacuum or empty
atom. We shall hold this thought in mind in case we find any further
parallels between the empty set and the empty atom that provide deeper
insights into our modified set theory.

Definition 19. For all x, the canonical form of x as a transordinal num-
ber, C(x), is given by:

C(x) =


Φ , if x is an atom
{} , if x = {}
∞ , if x is bijective with ∞
{α1, ..., αn} , otherwise if x is bijective with {α1, ..., αn}

.

Axiom 20. Transordinal ordering is provided by the less-than relation,
<, such that x < y iff C(x) ⊂ C(y).
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Theorem 21. Nullity is unordered with respect to every other transordi-
nal. As required by Observation 4.

Proof. In other words, nullity is equal to itself but is not less than or
greater than any transordinal, including itself. It is sufficient to show
that Φ 6< x where x is any transordinal. Thus Φ < x ⇐⇒ C(Φ) ⊂
C(x) ⇐⇒ Φ ⊂ C(x) but Φ is an atom so, by the inclusion of the subset
relation in Axiom Scheme 11, it is the case that Φ 6⊂ C(x). Therefore
Φ 6< x.

Theorem 22. The universal set has cardinality infinity.

Proof. Every atom is an element of V so |V | ≥ |∞|. Name each element
of V with a distinct atom then |∞| ≥ |V |. Hence |V | = |∞|. Naming may
be done as follows. For each set in V there is a distinct atom in V which
we take to be the name of the set. If there are any additional atoms in V
then we take it that each atom names itself.

Observation 23. Infinity is the greatest transordinal because it is ordered
and infinity is the greatest cardinal. To see this cardinality consider any
object x. Regardless of whether x is an object of NFU, x itself and each
distinct subcomponent of x, if any, can be named as a distinct atom in V .
Thus the cardinality of any collection of objects in x is no greater than |V |
but |V | = |∞|. It follows that every component of the class of all classes
and every object and arrow in the category of all categories can be named
by atoms in V . Compare with Observation 5.

NFU supports a powerset function, which we write as P(X) = Y ,
where X is an arbitrary set and Y is the set of all subsets of X. In
general |P(X)| = 2|X|. We now totalises the power function and consider
it further in the Discussion.

Axiom 24. For each atom, α, |P(α)| = Φ.

The cardinality of the powerset of a largest set is considered in various
set theories. We present a theorem here and consider it further in the
Discussion.

Theorem 25. If |X| = |∞| then |P(X)| = |∞|.

Proof. For each element, e ∈ X, there is a distinct singleton set, {e} ∈
|P(X)|, so |P(X)| ≥ |X| or, identically, |P(X)| ≥ |∞|. Name each element
of |P(X)| with a distinct atom then |∞| ≥ |P(X)|. Hence |P(X)| =
|∞|.

Observation 26. Taking the general case |P(X)| = 2|X| of NFU and
other set theories, together with Axiom 24 and Theorem 25, we have
|P(X)| = 2|X| for all X, where 2|X| is calculated in transreal arithmetic.
See Observation 6.

We have now instantiated infinity and nullity in NFU. The arithmetic
of the natural numbers, along with many other number systems, has al-
ready been given in NFU [6]. It remains only to totalise NFU’s operations
of addition, +, and multiplication, ×, so that they may involve the strictly
transnatural numbers infinity and nullity. We begin by rehearsing a usual
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Definition 27. The disjoint sum of sets S and T , written S ⊕ T , is the
set {(x, y) | (x ∈ S and y = 0) or (x ∈ T and y = 1)}.

In ZFC this definition is total because all objects are sets but in NFU
the definition is partial because the disjoint sum, as given so far, is not
defined for a sum of atoms. We totalise the disjoint sum by specifying it
in Axiom Scheme 11.

Axiom 28. The transordinal sum of atoms or sets x, y is x+y := C(x⊕y).

Theorem 29. For all transordinal x: x+ Φ = Φ. As required by Obser-
vation 1.

Proof. x+ Φ = C(x⊕ Φ) = C(Φ) = Φ.

Theorem 30. For all transordinal x 6= Φ: x +∞ = ∞. As required by
Observation 2.

Proof. x + ∞ = C(x ⊕ ∞) = C(y) for some y ∈ V so |V | = |∞| ≥
|y| but (αi, 1) ∈ y for all atoms αi so |y| ≥ |∞|. Hence |y| = |∞|, there-
fore C(y) =∞.

Axiom 31. The transordinal product, ×, of atoms or sets x, y is as
follows. Firstly ∞ × 0 = Φ, as required by Observation 3. Otherwise
x× y := C(x⊗ y).

Theorem 32. For all transordinal x: x× Φ = Φ. As required by Obser-
vation 1.

Proof. x× Φ = C(x⊗ Φ) = C(Φ) = Φ.

Theorem 33. For all transordinal x 6∈ {0,Φ}: x×∞ =∞. As required
by Observation 3.

Proof. x × ∞ = C(x ⊗ ∞) = C(y) for some y ∈ V so |V | = |∞| ≥
|y| but (xi, αj) ∈ y for all elements xi ∈ x and for all atoms αj so |y| ≥
|∞|. Hence |y| = |∞|, therefore C(y) =∞.

We have now obtained transordinal arithmetic.
NFU has a type system in which atoms are of type 0 and the empty set

is of type 1. It follows from stratified comprehension that, in particular,
if all of the elements of a set are of type t then the set is of type t + 1.
Our transordinal arithmetic is adequate for implementing this type system
over all non-terminal sets. In addition we have the terminal type ∞ and
we have the type Φ which is the type of all objects that are not in V . We
consider types further in the Discussion.

When the transordinals are restricted to the transnaturals we obtain
transnatural arithmetic.
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3 Discussion

The motivation for the present paper comes from computer science where
total functions are extremely desirable because, self evidently, there is
no need to write code or have hardware to process exceptional cases,
because there are none! During the course of the paper we totalise various
operations of set theory.

We set out to describe the transnatural numbers, which have a single
unordered number, Φ, called nullity, and a greatest number, ∞, called
infinity. The usual set theory ZFC is not suitable because it is inconsistent
with a greatest cardinal or ordinal number so we cannot have ∞ as an
elementary object. We turn, instead, to the set theory NFU which has
a universal set, V , and which has many atoms. We define infinity as the
set of all atoms and prove |∞| = |V | in Theorem 22. Thus infinity is the
greatest cardinal. It takes a little more work to establish the ordering of
the transnatural numbers.

We find it convenient to work with the larger set of transordinal
numbers. Our Axiom 16 asserts that there is a last atom, α∞. Hence
a well ordering of the atoms exists which has a first, α0, and a last,
α∞, element: α0, α1, α2, ..., α∞. We define that nullity is the first atom,
Φ := α0; that zero is the empty set, 0 := {}; that each non-terminal,
transordinal, n 6= 0, is the set of atoms with first element α1, thus
n := {α1, α2, ..., αn}; and that, as has been said, infinity is the set of
all atoms: ∞ = {α0, α1, α2, ..., α∞}. We then totalise the subset relation,
⊂, using Axiom Scheme 11, so that x ⊂ y = Φ iff x or y is an atom.
This leads to the result that: Φ is unordered, as established in Theorem
21; that all of the non-terminal numbers, including zero, are ordered, by
construction; and that∞ is the greatest, therefore terminal, transordinal,
as noted in Observation 23.

There is a subtlety in the construction of ∞. Let us express a fine
distinction: there is a last, non-terminal, transordinal, n, such that n =
{α1, α2, ..., α∞−1} where α∞−1 is the predecessor to α∞ but this is not
the last transordinal, because n <∞, nor is it the immediate predecessor
to ∞ because ∞ contains α0 and n does not. Thus nullity, Φ = α0,
introduces a gap in the sequence of transordinal numbers, reflecting the
gap in Figure 1 between the real-number line and infinity.

There is a subtlety, too, in the construction of nullity. The atom
α0 occurs, as a free atom, only in the number nullity, Φ = α0, and is
unordered with respect to every other transordinal. This is reflected by
the fact that the point at nullity, Φ, is the only isolated point in Figure 1.

Taking these two subtleties together, we see that the atom α0 is a
marker for the strictly transordinal numbers, Φ and ∞, and is related to
the gaps in Figure 1. For this reason we consider that the atom α0 is the
vacuum or empty atom. We shall bear this thought in mind in case we
come across further examples of how nullity behaves as an empty atom
with respect to atoms, paralleling the behaviour of the empty set with
respect to sets.

We then establish transordinal arithmetic but observe that when the
transordinals are restricted to transnaturals, we obtain transnatural arith-
metic as elementary operations on elementary objects of a set theory. This
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is as much as we set out to do. That our use of set theory is consistent is
established by construction: we have constructed a model of transnatural
arithmetic and that arithmetic is known to be consistent.

We might, however, have had a wider ambition to show that the whole
of our extension of the set theory NFU is consistent. Let us now address
some remarks to this extended set theory, in the hope of demonstrating
that it is sufficiently valuable to justify the labour of proving it consistent.

In Observation 26 we generalise the power function, |P(x)| = 2|x|, for
all atoms and sets, x, where 2|x| is calculated in transreal arithmetic. Thus
the power function is established as a total function with no exceptions.
It does, however, stand in contrast to results obtained in other domains of
discourse. Specker’s theorem, reported in [6], establishes that the cardinal-
ity of the powerset is |P(V )| < |V |; we establish |P(V )| = |V |; and Cantor,
reported in [6], establishes |P(V )| > |V |. This is a trilemma. It might have
been worse. One can conceive of exploiting the quadrachotomy of tran-
sreal arithmetic to obtain the unordered result |P(V )| = Φ! The trilemma
is easily resolved. We note that Specker’s theorem involves a proof by con-
tradiction where it is shown, in effect, that the type of the universal set is
one greater than the cardinality of the universal set, T {|V |} > |V |. This is
taken to be a contradiction but we have |V | =∞ and∞+1 =∞ so there
is no contradiction and the proof of Specker’s theorem fails in our domain
of discourse. The proof of Cantor’s theorem involves a non-terminating
iteration and is taken to prove that the universal set, V , does not exist
in any domain of discourse where Cantor’s theorem holds. However, we
establish our result statically, without iteration, so Cantor’s theorem does
not hold and, secondly, we require terminating iterations to get to the ter-
minal value ∞ so, again, Cantor’s theorem does not hold in our domain
of discourse. Thus we obtain the total and intuitive result, |P(x)| = 2|x|

for all atoms and sets, x.
We have established that ∞ is the greatest ordinal, hence there is no

cardinal or ordinal number too large to be expressed in our extension of
NFU. In particular there is no cardinal objection to having proper classes
in our extension of NFU. We are free to label each component of a proper
class with a distinct atom and then use tuples to record the class relations.
Thus our extension of NFU has considerable expressivity.

Let us see how far we can get in instantiating Russel’s set of all sets
that are not elements of themselves. We begin with the universal set,
V . This is the set of everything, atoms and sets, that are well formed in
our set theory. This is not the set of everything, for example the Not-a-
Number objects of floating-point arithmetic are not elements of V . See
Observation 8. The universal set is, precisely, the set of all elements that
are well formed in our set theory. We now form the set, S = V \ ∞,
which is the set of all sets that are well formed in our set theory. Next we
exclude from S the elements which are elements of themselves, leaving the
set R as the well formed set of all well formed sets that are not elements of
themselves. This might produce some cognitive dissonance in the reader
so let us perform the exclusion using the methods of computer science
before expressing the exclusion in mathematical notation.

We take the transreal-number line, in Figure 1, as an abstract data
structure representing a set, X. We suppose that there is a bijection,
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obtained by well ordering, between the points on the line and the ele-
ments of V . We associate one bit with each point on the line. If the bit
is set, the corresponding element of V is in X, otherwise the bit is clear
and the corresponding element is not in X. We provide a fragment of a
programming language in which variables are declared on first use. We
provide a function: retract(x, X) which clears the bit corresponding to
element x in the variable X. The loop foreach x in X do <body> end-
foreach associates a machine with every element x in X which executes
the <body>. We allow ourselves conditionals and mathematical notation,
including the name, V , of the universal set, and ∞ of the set of atoms.
So as to avoid confusion between program assignment and mathematical
equality, we take it that x → y assigns the value of x to the variable y.
Let us now construct R.

V → R
foreach x in R do

if x ∈ ∞ then retract(x, R) endif
endforeach
foreach x in R do

if x ∈ x then retract(x, R) endif
endforeach

The first foreach loop sets R equal to the set of all sets, which is the
set S, above. The second foreach loop removes, from R, all of the sets
that are elements of themselves. This leaves R as the well formed set of
all well formed sets that are not elements of themselves. The set R is not
empty; it contains, at least, the empty set because the empty set is not
an element of itself. The program uses an unstratified predicate, x ∈ x,
but this is harmless.

Now let us carry out the same exclusion, taking up from where S is
the well formed set of all well formed sets.

R = S \ {x | x ∈ S & x ∈ x}

Here {x | x ∈ S & x ∈ x} is unstratified but requiring that x is an
element of the previously defined S blocks Russel’s paradox. If we want
more, we may have it by describing R in category theory, expressed in
our set theory, using our atoms for the objects of category theory and our
tuples for the arrows of category theory.

An important property of our abstract machine is that we may have
distinct machines associated with every point in a data structure. For
the machines, there are no inaccessible elements, though there may be
elements that are inaccessible to any particular program, such as one
written in the usual mathematical notation. Seen as a specification for
our machine, our transordinal arithmetic applies to infinity, nullity and to
all ordinal numbers; a restriction of it applies to the transordinals.

4 Conclusion

We extend the set theory New Foundations with Urelements (NFU) by
making its operations, including the powerset function, total over free
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atoms and by introducing a last atom to terminate well orderings. This
leads to new cardinality results. Trivially we have sufficient cardinality,
among the atoms, to describe the proper class of all classes and to de-
scribe the category of all categories in category theory. We find that the
powerset of the universal set has the same cardinality as the universal set,
thereby disposing of the paradoxes of Cantor and Specker. By removing
elements from the universal set, we give a non-paradoxical construction
of Russel’s set of all sets that do not contain themselves. We describe
abstract machines which can access every set in the universal set, though,
as usual, particular programs, for the machines, may be unable to access
some sets. We construct transreal nullity as the empty atom and transreal
infinity as the set of all atoms, thereby describing these numbers in an
elementary way in our set theory. We describe transordinal arithmetic, a
restriction of which delivers transnatural arithmetic.
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