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Abstract

We assert that the universe of all classes is partitioned by the universe
of all sets and the universe of all antinomies. The usual set operations
are applied to all classes, giving a total transset-theory that contains a set
theory and an antinomy theory. Transset theory is just naive set-theory
with antinomies so it is pedagogically simple.

We define that a transset that contains only itself is an atom and that
all other transsets, including the empty transset, are molecules. Transset
theory can model all set-theories, including those with atoms, and the
whole of category theory, using atoms as category objects and molecules
as category relations.

We construct the transnatural numbers such that: the natural num-
bers are von Neumann ordinals; transnatural infinity, being the greatest
ordinal, is built from the universal set; and transnatural nullity, being
the only unordered, transnatural number, is built from the universal anti-
nomy.

We extend transnatural arithmetic to transordinal arithmetic and show
that the classical paradoxes of set theory are dissolved in transset theory,
with counting that is consistent with transordinal arithmetic.

We use the fact that all antinomies have subsets to provide a foun-
dation for paraconsistent logics and to explain how scientific theories can
be useful, despite having both internal contradictions in explanations and
external contradictions with observations.

1 Introduction

Theories of sets and numbers have had a profound influence on each other
during the historical development of mathematics. We continue this tradi-
tion by considering how set theory can respond to the recent introduction
of the transreal numbers.

After some years of development, the consistency of transreal arith-
metic was established by machine proof [7] but, despite this proof, the
transreals gave rise to some controversy [24]. Subsequently human proofs
established the consistency of transreal [11] and transcomplex [15] num-
bers by constructing them from the real and complex numbers. In the
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past, constructive proofs have ended mathematical controversies; perhaps
this will be the case with the transreals and their related number-systems?

Transreal arithmetic has been used to extend results in algebra [11],
analysis [17][16], physics [4], logic [20][8][21][19], and computer science
[5][6][3]. Transcomplex arithmetic has recently been used to extend the
complex elementary functions [9]. Some authors believe that the transnum-
bers are rehearsing the historical process by which new number systems
move from controversy to acceptance [18][12][14][13], even to the extent of
suggesting their use in secondary-school teaching [10]. In order to accel-
erate this process and to provide additional coherence to the multifarious
applications of the transreals, we seek to place the transnumbers in the
foundations of mathematics. We seek to do this in a way which preserves
all of the results of current mathematics but which also makes useful and
important new contributions.

To date the transreals have been developed in ZFC – Zermelo-Fraenkel
set theory with the axiom of choice. This set theory is adequate to the
task but, for this purpose, it has a number of infelicities. Firstly there
is no set large enough to be the cardinality of transreal or, identically,
transnatural infinity. Secondly all sets are used as cardinal numbers but
none of these provides an obvious model of the unordered, transreal and
transnatural number, nullity. Thirdly the operations of ZFC are partial,
not total; for example the set complement does not always exist because
there is no universal set. As transreal arithmetic provides a total system
of computation, expressing it in a partial system, such as ZFC, gives rise
to some inelegance. These problems have been surmounted but they can
all be avoided by using a set theory that has a universal set.

The set theory NFU – New Foundations with Urelements – provides
both a universal set and urelements [23][22]. The operations of this set
theory are still partial, because they do not all apply to urelements or
atoms, but this defect is easily remedied. NFU is entirely adequate for
developing the transreal and, specifically, the transnatural numbers, by
taking the unordered number, nullity, as the set of all atoms and infinity
as the set of all sets that have cardinality the universal set. However NFU
employs a stratified comprehension which complicates proofs. Ideally we
would like a set theory that is as easy to use as ZFC and as expressive as
NFU.

Naive set theory is sufficiently simple but overly expressive – it admits
the classical paradoxes in a destructive way. For example Russell’s Para-
dox seeks to construct the set of all sets that do not contain themselves
but this is paradoxical because if the Russell Set does not contain itself
then it does contain itself but if it does contain itself then it does contain
itself. It is customary to say that the Russell Set does not exist. But an-
other interpretation is available. Firstly suppose that the Russell Set does
not contain itself in the set, R−, then it does contain itself in the set R+

but, in this case, R− 6= R+. Secondly suppose the converse: the Russell
Set contains itself in the set R+, then it does not contain itself in the set
R− so, again, R− 6= R+. We have now exhausted all cases in which the
Russell Set does and does not contain itself: in every case R− 6= R+ so
we conclude R− 6= R+. That is we conclude that the, so called, Russell
Set, R, does exist but is not equal to itself. Of course the usual axiom
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of extensionality does not admit sets that are unequal to themselves so
we introduce a new class, antinomies, that are defined by the property
that they are unequal to themselves. Henceforth we may refer to R as the
Russell Antinomy, which we say exists as an antinomy with the property
R 6= R.

We call classes, transsets and, in a bold move, we assert that the
universe of all transsets, U , called the universal transset, is partitioned
by the universe of all sets, V , called the universal set, and the universe
of all antinomies, W , called the universal antinomy. We then obtain a
total transset-theory by applying the usual set operations to all transsets
and sorting them into sets and antinomies. This is to say that we adopt
naive set-theory with antinomies. The sorting may be syntactic, as in the
set theories ZFC and NFU or, more generally, it may be semantic, as in
our discussion of the Russell Antinomy, where a proof is given to perform
the sort. Our assertion of the partition is bold because it implies that
the sorting can always be done, despite, so called, undecidable classes and
logical gaps.

Having equipped ourselves with a transset-membership predicate, we
provide specialisations of this to set membership and antinomy member-
ship. This gives us three theories: transset theory exists in itself and
contains both a set theory and an antinomy theory.

There is a technical difficulty with antinomies that we cannot assign
them to a variable using equality. For example we cannot assign the Rus-
sell Antinomy, R, to the variable x, by writing x = R, because we would
then have x = R 6= R 6= x, but x 6= x is satisfied by all antinomies, not
just R. We handle this by introducing an interchangeability predicate,
x
.
= y, which we read as: x is interchangeable with y. Now we can as-

sign R to x by writing x
.
= R. The interchangeability predicate is an

equivalence relation over all transsets, whereas equality is an equivalence
relation only over sets. We arrange that two objects are interchangeable
if they have the same subsets and subantinomies, and are equal if they
have the same subsets and no subantinomies. Thus equality is a restricted
version of interchangeability. The distinction between interchangeability
and equality bears on philosophical discussions of identity and justifies
the view that unequal scientific theories can be interchangeable in so
far as they describe those predictions and observations that have actu-
ally been made – though further predictions or observations might rule
out some interchanges. Hence the business of practicing scientist is, at
least, to reduce the range of satisfactory interchanges. As antinomies are
self-contradictory this implies that practicing scientists have access to a
paraconsistent logic that allows effective reasoning over inconsistency.

Russell’s Paradox is just one of the classical paradoxes of set theory.
We set out to show that the usual paradoxes are dissolved by transset
theory. Paradoxes may be allowed, harmlessly, or they may be blocked
when comprehension is limited to the universal set and counting is consis-
tent with transordinal arithmetic. One of our manoeuvres is to construct
some otherwise paradoxical sets, in a top-down way, by subtracting mem-
bers from a universe, rather than constructing them, in a bottom-up way,
from the empty set. The experience of Computer Science is that there
is a synergy between bottom-up and top-down methods so that solutions
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can be obtained by mixed methods that, in practice, are not accessible to
either reasoning method alone. We wonder if this synergy runs deeper:
we already know that admitting a universal set produces a set theory
that is more expressive than ZFC but does admitting comprehension lim-
ited to the universal set admit some true theorems that are blocked by
stratification? In other words can a mixture of bottom-up and top-down
mathematics deliver more than is logically accessible to either form of
mathematics alone?

NFU and some other set theories have urelements or atoms. Atoms
are usually admitted as objects that have no members but this means that
atoms cannot be distinguished by extensionality. We define that atoms
are transsets that have themselves as their only member. Conversely we
define that molecules are transsets that do not have themselves as their
only member. Hence the empty transset is a molecule! (This is more
sensible than it appears at first blush. Atoms are defined by a singular
property – they contain only themselves – whereas the empty transset is
defined by a dual property: it has no subsets and it has no subantinomies.)

We arrange that we may have arbitrarily many of our atoms by cor-
relating them with arbitrarily many sentence letters. Our atoms have
different properties from the usual atoms but we can still use our atoms
to model the atoms in any set theory. We can also model the whole of cat-
egory theory by taking category objects as atoms and category relations as
molecules. Category theory is notoriously difficult to teach because of its
abstractness. We wonder if a more effective syllabus is to start with naive
set theory and then introducing antinomies, before introducing category
theory?

Our main business is to construct the transnatural numbers in a total
set-theory. We employ the usual construction of the natural numbers, as
von Neumann ordinals, so that they are ordered by membership. Strat-
ification blocks this construction in NFU, where ordinals are described
by other means. We construct transnatural infinity in a top-down fash-
ion. We set transnatural infinity equal to the universal set, excluding
the singleton set whose member is the universal set. Hence transnatural
infinity is not a member of itself so it is not less than itself; this blocks
the Burali-Forti paradox and ensures that transnatural infinity is equal
to itself, which agrees with transreal arithmetic. We show that transnat-
ural infinity has the same cardinality as the universal antinomy and the
universal transset. Hence we can count all classes by forming bijections
with sets. In other words, sets provide all of the numbers we need to
count all transsets. Hence, by construction, transnatural infinity is both
the greatest cardinal and the greatest ordinal – regardless of what sets are
admitted as transfinite numbers. Thus transnatural infinity is installed
as the greatest transnumber, as required by transreal arithmetic. This
top-down construction of infinity, from the universal set, is not available
in ZFC. Similarly we define that transnatural nullity is the universal anti-
nomy, excluding the singleton antinomy whose member is the universal
antinomy. Antinomies are not available as objects in any set theory. Hence
nullity is not a member of any set, giving it the required property of being
unordered with respect to all transreal numbers.
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Some of the classical paradoxes of set theory rely on counting, in-
cluding counting the members of transfinite sets whose cardinality is less
than the universal set. We extend transnatural arithmetic to transordinal
arithmetic so that we can dissolve these paradoxes.

In the Discussion we consider the validity of partitioning the class of
all classes, the universal transset, into the universal set and the universal
antinomy. We consider what the impact might be of reading all of the
usual non-existence and diagonalisation proofs as establishing the exis-
tence of antinomies. We use the fact that all antinomies have subsets to
provide a foundation for paraconsistent logics, that is logics that allow
reasoning over inconsistency, and to explain how scientific theories can be
useful, despite having both internal contradictions in explanations and ex-
ternal contradictions with observations. We also discuss the pedagogical
advantages of transset theory.

We conclude with a statement of the main, original contributions of
the paper and leave open the question of whether stratification is too
conservative.

2 Transset Theory

We seek to establish a total set-theory whose objects are sets and anti-
nomies. The defining characteristic of an antinomy is that it is unequal
to itself, which raises some delicate issues.

We express our theory in first-order logic with equality. As usual we
assume that this base language is abstracted from our theory, so that we
may use the language as is, but that this language can be encoded within
the theory so that nothing is lost to the theory. We assume that our base
language has arbitrarily many sentence letters so that we have the freedom
to use some of them as atoms. We will see, later, that the cardinality of
atoms and hence of sentence letters is very high so the letters cannot be
discrete glyphs collated in an alphabetical sequence, instead we think of
letters as being drawn from a continuous alphabet of glyphs. (It may
help to imagine a candy stick of rock with the glyph “1” at one end that
varies continuously into the glyph “2” at the other end. A cross-section
of the rock shows a glyph and taking cross-sections at an arbitrarily high
cardinality delivers a continuum of glyphs. Taking the cross-sections with
the cardinality of the universal set provides one glyph, or letter, for each
element of the universal set.)

We begin by introducing interchangeability as an equivalence relation
over all transsets.

Axiom 1 (Reflexivity of Interchangeability). The interchangeability pred-
icate, x

.
= y, is read as: x is interchangeable with y. Its base case is defined

by the reflexive relation: x
.
= x.

Axiom 2 (Commutativity of Interchangeability). x
.
= y ⇐⇒ y

.
= x.

Axiom 3 (Transitivity of Interchangeability). x
.
= y& y

.
= z ⇐⇒ x

.
= z.

The interchangeability operator gets its name from the fact that the
eponymous interchangeability of any transsets x and y, in our theory, can
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be effected by substitutions that actually interchange the sentences x′ and
y′, in our base language, where x′ defines x and y′ defines y.

We link equality to interchangeability with

Axiom 4 (Equality Implies Interchangeability). x = y =⇒ x
.
= y.

Just as equality generalises to interchangeability so every compound
operator, involving equality, generalises to an operator involving inter-
changeability. Where the compound equality-operator has a glyph, we de-
note the generalised interchangeability-operator by the same glyph, with
a dot set over it. For example, less than or equal, ≤, generalises to less
than or interchangeable,

.
<, and greater than or equal, ≥, generalises to

greater than or interchangeable,
.

≥.
We introduce transset membership, which we later specialise to set

membership and antinomy membership.

Axiom 5 (Transset Membership). The transset membership predicate,
x ∈ y, is read as: x is a transset member of y. It is defined as: x ∈ y .

=
φy(x). Here x and y are any transsets and φy(x) is a formula, quantified
over arbitrarily many terms, that defines the transset, y, by the unification
y = φy(x). The formula φy(x) may be Curried or may be applied to a
tuple, x, so that the formula may apply to zero, one, or many arguments.

As a convenient shorthand we say that x is a member of y whenever x is
a transset member of y. We then speak explicitly of set-membership and
antinomy-membership as specialisations of the more general (transset)
membership. We may treat other transset operations similarly.

The method of specifying a potentially infinite collection, y, by uni-
fication with a formula, φy(x), that has a parameter, x, is known, in
Computer Science, as lazy evaluation. Universal quantification is implied
by an uninstantiated parameter, the variable x, and existential quantifi-
cation is implied by an instantiated parameter, x = k, for any constant
k. We may revert to the usual universal, ∀, and existential quantifiers, ∃,
wherever the programmatic method might cause confusion.

We define that atoms are transsets whose only member is equally them-
selves. We define molecules conversely.

Definition 6 (Atoms). We say that αi is an atom if and only if its only
member is equal to αi. Thus: y ∈ αi ⇐⇒ y = αi.

Each atom, αi, in our theory, is an identical sentence letter, αi, in our
base language.

Definition 7 (Molecules). We say that µi is a molecule if and only if µi

is not an atom.

We now use transset membership to define an analogue of the usual
set-builder notation and to name the universal transset, U , the universal
set, V , and the universal antinomy, W . Henceforth the latin braces, { and
}, bracket transsets. We later partition transsets into sets and antinomies.

Definition 8 (Comprehension Limited to the Universal Transset).
{x | φy(x)} .= φy(x).

Limiting comprehension to the universal transset is no limitation at
all! This form of comprehension is usually called universal comprehension
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but we prefer our, more systematic, name. Later we will discuss com-
prehension limited to the universal set and comprehension limited to the
universal antinomy.

Naive set-theory employs universal comprehension. Transset theory
differs from naive set-theory only in that it provides the class of antinomies
– though this leads to the introduction of the transordinals, in place of
the ordinals of naive set-theory.

We define a narrative transset whose main purpose is to allow transsets
to be specified in natural language. It relies on the specification being
interpreted by a competent speaker of the language!

Definition 9 (Narrative Transset). {x | s} .
= {x | Φs(x)}. Here s is

a sentence in any language, such as our base language, our theory or a
natural language such as English or Portuguese. This sentence is unified
with a transset, Φs(x), in our base language.

We now define some more formal notations. Notice that the empty set
and the universal set are defined by equality, whereas the other transsets
are defined by interchangeability. This anticipates our partition of the
universal transset into the universal set and the universal antinomy. The
partition could be established, using more formal language, before these
shorthand notations are introduced but we prefer our simpler presenta-
tion.

Definition 10 (Empty Set). {} = {x | F}.
Definition 11 (Enumerated Transset). {x1, x2, ..., xi}

.
= {x | (x

.
= x1)∨

(x
.
= x2) ... ∨ (x

.
= xi)}.

Definition 12 (Universal Transset). The universal transset, U , is given
by U

.
= {x | T}.

Definition 13 (Universal Set). The universal set, V , is given by V =
{x | x = x}.
Definition 14 (Universal Antinomy). The universal antinomy, W , is
given by W

.
= {x | x 6= x}.

We define set extensionality as usual, though totallity means we can
drop the usual guarding clause that the arguments to extensionality are
sets. For us if two objects are equal then they are sets so we adopt

Axiom 15 (Set Extensionality). x = y =⇒ (z ∈ x =⇒ z ∈ y).

We define analogues of the usual operations of set theory. Our defini-
tions are lexically identical to the usual definitions, except that we allow
arguments to be any transsets and do not require them to be sets. We
may generalise any set theory similarly.

Definition 16 (Transset Complement). The transset complement, xc, of
any transset, x, is given by: xc

.
= {y | y /∈ x}.

Definition 17 (Transset Union). The transset union, x∪y, of any trans-
sets x and y, is given by x ∪ y .

= {z | z ∈ x ∨ z ∈ y}.
All of the unary and binary connectives of the usual set-theories can

be constructed from transset complement and transset union so these two
operations give a second method for generalising set theories.
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We now assert the partitioning of the universal transset into the uni-
versal set and the universal antinomy. This axiom asserts that either an
object is equal to itself or else it is not equal to itself. It is a transset
version, in our theory, of the Axiom of the Excluded Middle, in our base
language.

Axiom 18 (Universal Transset Partitioned by the Universal Set and the
Universal Antinomy). U

.
= V ∪W , with V ∩W = {}.

We accept the usual definition of set cardinality but allow it to apply
to any transsets.

Definition 19 (Transset Cardinality). Given any transset, x, a transset
cardinal, y, of x, is given by |x|, such that |x| .= y if and only if there is
a bijection from the members of x to the members of y.

We give a top-down definition of the powertransset.

Definition 20 (Powertransset). The powertransset, P(x), of any trans-
set, x, is the transset of all subtranssets of x, given by P(x)

.
= {z | z .

=
x \ y}. Here y ranges over all members of the universal transset.

Theorem 21 (Powertransset of Some Universes). P(U) = U, P(V ) =
V, P(W )

.
= W .

Proof. Let the yc be arbitrary members of U , then P(U)
.
= {z | z .

=
U \ y} .

= {z | z .
= yc} so yc ∈ P(U). Now yc ∈ U ⇐⇒ yc ∈ P(U),

therefore P (U)
.
= U . Similarly P(V ) = V, P(W )

.
= W .

We wish to dissolve the classical paradoxes of set theory but some of
these involve counting so we first arm ourselves with the transnatural and
transordinal numbers. We take this opportunity to prove some theorems
concerning the cardinality of certain transsets.

3 Construction of the Transnaturals

We define transnatural nullity, Φ, and infinity, ∞, as follows. Notice that
nullity is defined by interchangeability and infinity is defined, more tightly,
by equality.

Definition 22 (Nullity). Φ
.
= W \ {W}.

Definition 23 (Infinity). ∞ = V \ {V }.
We accept the usual definition of the von Neumann ordinals as sets

but with two changes. Firstly where von Neumann would write “if and
only if” we write “if” so that we have the freedom, if needed, to add ∞
as an ordinal. We need this freedom if V is not strictly well ordered but
if it can be proved, as a theorem, that V is strictly well ordered then we
can revert to von Neumann’s use of “if and only if.” Secondly we take
well ordering with respect to transset membership, not the stricter set
membership. This gives us the necessary freedom to obtain the ordering
of Φ. As usual we say that a finite ordinal is a natural number.

Definition 24 (Von Neumann Ordinal). A set, S, is an ordinal if S
is strictly well ordered, with respect to transset membership, and every
member of S is also a subset of S.
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Axiom 25 (Infinity is the Ordinal Type of the Von Neumann Ordinals).
Transnatural infinity,∞, is the ordinal type of the von Neumann Ordinals,
which is to say that it is the least ordinal that is greater than all von
Neumann Ordinals.

Theorem 26 (Transnatural Ordering Holds). The usual ordering of the
transnatural numbers holds for the finite, von Neumann ordinals. Fur-
thermore transnatural infinity is equal to itself and is greater than every
von Neumann ordinal. Finally nullity is equal to itself and is unordered
with respect to every other transnatural number.

Proof. The finite, von Neumann ordinals, or natural numbers, are ordered
as usual. Every von Neumann ordinal, including every natural number,
is less than ∞ because the von Neumann ordinals are sets and ∞ is the
universal set, excluding one set which is not a von Neumann ordinal.
Nullity, Φ, is unordered with respect to every von Neumann ordinal and
infinity, ∞, because these numbers are sets and Φ is an antinomy. Φ

.
= Φ

because Φ
.
= W \ {W} .

= Φ and interchangeability,
.
=, is an equivalence

relation. Similarly ∞ =∞ or, more loosely, ∞ .
=∞.

Henceforth we shall write all ‘equations’ of transnatural arithmetic as
interchanges. That is we shall use interchange,

.
=, wherever transnatural

arithmetic would ordinarily write equality, =. In other circumstances it
might be convenient to write equality for interchangeability in an abuse
of notation but we refrain from this abuse here.

We now establish that the universal transset, U , the universal set,
V , and the universal antinomy, W , all have the same cardinality. This
justifies taking only sets as ordinals because we can obtain a bijection
between any transsets and sets.

Definition 27 (Kuratowski Pair). The Kuratowski Pair, 〈x, y〉, is ordered
so that x is the first member of the pair and y is the second member of
the pair. It is given by 〈x, y〉 .= {{x}, {x, y}}.
Axiom 28 (Atomic Transset Names). Every distinct transset, Ti, is
named by a distinct atom, αj, with Ti bijective to 〈αj , Ti〉.

We note, in passing, that this Axiom 28 forces the universal transset
to have an extremely high cardinality.

Definition 29 (Universal Set of Atoms). The universal set of atoms, A,
is given by A = {α | α is an atom}.
Theorem 30 (Cardinality of Some Universes). |U | .= |V | .= |W | .= |A|.

Proof. By the Axiom of Atomic Transset Names, |U | .= |A|. V,W are

transsets so |V |, |W |
.

≤ |U |. For every atom, αi, it is the case that {αi} ∈
V and 〈αi, x 6= x〉 ∈W so |V |, |W |

.

≥ |U |. Therefore |V |, |W | .= |U |.

It follows, from Theorem 30, that there are pairwise bijections be-
tween U, V,W,A. Hence it is sufficient to take the ordinals and canonical
cardinals as sets.

Theorem 31 (Transnatural Infinity is the Greatest Cardinal and Ordi-
nal).
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Proof. U is bijective with V so no cardinal or ordinal, however defined, is
greater than V . In Definition 23, transnatural infinity,∞, is V , excluding
one set so, by the Hotel Paradox, |V | = ∞. Therefore ∞ is the greatest
cardinal. By Axiom 25, ∞ is an ordinal type and is therefore ordinal.
Hence ∞ is the greatest ordinal.

We have now established the ordering of all of the transordinal num-
bers, which includes the ordering of the transnatural numbers. Transnat-
ural arithmetic may be developed by extending, in transset theory, any
of the usual, set-theoretical developments of the natural numbers. For
example we may generalise the existing developments of the transreal [11]
and transcomplex numbers [15] given in ZFC. Similarly a large part of the
usual mathematics generalises to a total form in transset theory.

Various ordinal arithmetics can be defined with exponentiation and
non-associative addition and multiplication. These can be extended to
total, transordinal arithmetics as follows. Firstly assert that, as usual,
Φ is absorptive over addition, subtraction, multiplication, division, and
exponentiation. Secondly assert that 0 × ∞ .

= Φ. Thirdly assert that
for a given ordinal, Ω, it is the case that the left and right subtractions
have Ω − Ω

.
= Φ and, similarly, left and right divisions have Ω/Ω

.
= Φ.

Fourthly assert that, in all cases not already treated, left subtraction is
the inverse of left addition, left division is the inverse of left multiplication,
right subtraction is the inverse of right addition, and right division is the
inverse of right multiplication. Fifthly assert Ω∞ = ∞. Sixthly, in an
extension to the usual ordinal arithmetics, assert that the logarithm is
the inverse of the exponential.

4 Dissolving Paradoxes

We set out to show that transset theory is immune to the paradoxes of
naive set-theory and to show how this immunity arrises. This latter is an
exercise in exploiting the additional structure of transset theory to reason
coherently over antinomies: it is an example of paraconsistent reasoning.

4.1 Russell

In the Introduction we showed that the Russell Antinomy is not equal
to itself. Here we want more. We seek a total characterisation of all of
the members of the universal transset with respect to membership of the
Russell Antinomy. That is we seek to characterise all of the members,
non-members and gaps of the Russell Antinomy.

We begin by defining the Russell Transset, RU , using interchangeabil-
ity, not equality. Later on we shall obtain the Russell Antinomy, RW , and
the Russell Set, RV .

Definition 32 (Russell Transset). The Russell Transset, RU , is given by
RU

.
= {x | x /∈ x}.
Now the Russell Transset, RU , exists as a sentence in our base lan-

guage. The transset has the non-paradoxical property RU
.
= RU . Thus

the existence of the Russell Transset is non-paradoxical but we may still
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construct paradoxical membership of the Russell Transset. In order to
facilitate discussion we add subscripts to the definition: RU

.
= {x1 | x2 /∈

x3}, where x1
.
= x2

.
= x3. Suppose x1

.
= RU , then we are supposing

RU ∈ RU , whence RU /∈ RU , by x2 /∈ x3, with x2
.
= x3

.
= RU . That is:

RU ∈ RU =⇒ RU /∈ RU . Conversely suppose that x2
.
= x3

.
= RU , then

we are supposing RU /∈ RU , whence RU ∈ RU , by x1
.
= RU . That is:

RU /∈ RU =⇒ RU ∈ RU . Combining these two implications we have the
usual bi-implication: RU ∈ RU ⇐⇒ RU /∈ RU .

What are we to make of the membership paradox: RU ∈ RU ⇐⇒
RU /∈ RU? We cannot assert that RU does not exist because it does
exist, in our terms, as a transset. We cannot dissolve the paradox by
asserting one of RU ∈ RU or else RU /∈ RU because, in either case,
the paradox would then be a contradiction. The Axiom of the Excluded
Middle, in our base language, prevents us from asserting the dialethia:
RU ∈ RU &RU /∈ RU . What remains? A gap remains: RU ∈ RU has no
degree of truth or falsehood. It would usually be said that RU ∈ RU is
undecidable or incomputable but we prefer to recognise this situation as
a gap.

Theorem 33 (The Russell Transset is an Antinomy).

Proof. The Axiom of Extensionality gives: x = y =⇒ (z ∈ x =⇒ z ∈
y). Taking x = y = z = RU gives RU = RU =⇒ (RU ∈ RU =⇒
RU ∈ RU ) but we have RU ∈ RU ⇐⇒ RU /∈ RU . Therefore RU 6= RU ,
which is to say that RU is an antinomy: RU ∈ W . Therefore the Russell
Transset is interchangeable with the Russell Antinomy: RU

.
= RW .

Antinomies may have subsets and subantinomies. We now show that
the Russell Antinomy and its complement have infinitely many subsets
and infinitely many subantinomies – putting their existence beyond doubt!

Theorem 34 (The Russell Antinomy has Infinitely Many Subsets and
Infinitely Many Subantinomies).

Proof. For every atom, αi: firstly 〈αi, {}〉 = 〈αi, {}〉 and 〈αi, {}〉 /∈
〈αi, {}〉 so |RW |

.
= |RW ∩ V |

.
=∞; secondly 〈αi, x 6= x〉 6= 〈αi, x 6= x〉, be-

cause, by hypothesis, x 6= x, and it is the case that 〈αi, x 6= x〉 /∈ 〈αi, x 6=
x〉, so |RW ∩W |

.
=∞.

Theorem 35 (The Complement of the Russell Antinomy has Infinitely
Many Subsets and Infinitely Many Subantinomies).

Proof. Firstly, by the Axiom of Atomic Transset Names, every atom is a
member of itself so every atom is a member of the complement, Rc

W , of
the Russell Antinomy. Therefore |Rc

W |
.
= |Rc

W ∩ V |
.
= ∞. Secondly for

each antinomy, w, it is the case that W \w ∈W \w so |Rc
W ∩W |

.
=∞.

Thus we see that the Russell Transset is not a set but is an antinomy.
This justifies calling the Russell Transset the Russell Antinomy. There
is nothing paradoxical about the existence of the Russell Antinomy but
the Russell Antinomy’s membership of itself is paradoxical in the sense
that it is a logical gap. One could follow the usual practice of regard-
ing gaps as undecidable or incomputable values or one might prefer to
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represent gaps explicitly. Whatever one’s preferences are, one might con-
sider encoding undecidable/incomputable/gap values in a three-valued,
trans-Boolean logic [11] with the values False (−∞), True (∞), and Gap
(Φ).

At this stage we have dissolved the Russell Paradox and have shown
how transset theory is immune to this paradox – but totallity demands
more. We disposed of the paradox by introducing the transset, RU , and
identifying RU as an antinomy, RW . This leaves open the question of
whether, in our terms, a Russell Set, RV , exists and what its properties
are.

Definition 36 (Russell Set). The Russell Set, RV , is given by RV
.
=

RW ∩ V .

Theorem 37 (The Russell Antinomy is not a Member of the Russell Set).

Proof. By definition RV is a set so, by extensionality, all of its members
are sets and none of its members are antinomies, but RW is an antinomy,
therefore RW /∈ RV .

Thus the Russell Set is the set of all sets that do not contain them-
selves. This statement is non-paradoxical by virtue of excluding all anti-
nomies and the Russell Antinomy in particular. In our terms the sentence,
“The set of all sets that do not contain themselves.” has comprehension
limited to our universal set and is therefore non-paradoxical; whereas, in
Russell’s terms, the sentence has unlimited comprehension and is therefore
paradoxical.

Taking all of this together, we may summarise the salient issues by
saying: the Russell Antinomy is a member of the Universal Antinomy,
the Russell Antinomy’s membership of itself is a gap, the Russell Set is a
member of the Russell Antinomy, and neither the Russell Antinomy nor
the Russell Set is a member of the Russell Set.

We may now define a non-paradoxical set-theory by defining set mem-
bership as a specialisation of transset membership, whence totality de-
mands that we also define antinomy membership.

Definition 38 (Set Membership). The set membership predicate, x∈
V
y,

is read as: x is a set member of y. It is defined as: x∈
V
y = x ∈ V &x ∈

y = (x = x) &x ∈ y.

Definition 39 (Antinomy Membership). The antinomy membership pred-
icate, x ∈

W
y, is read as: x is an antinomy member of y. It is defined as:

x ∈
W
y = x ∈W &x ∈ y = (x 6= x) &x ∈ y.

Now we have three theories: a transset theory, a set theory and an
antinomy theory. The transset theory contains both the set theory and
the antinomy theory. We conjecture that each of these theories dissolve all
of the usual paradoxes of set theory, some examples of which are illustrated
next.
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4.2 Cantor – Diagonalisation

In classical logic a contradiction explodes, making all theorems true. Para-
consistent logics, by contrast, control the effects of a contradiction so that
only a limited number of theorems are true; such logics support coher-
ent reasoning over contradictions, which is what we set out to achieve in
transset theory.

In the usual mathematics, contradictions are closely associated with
existence and non-existence. When an hypothesis leads to a contradic-
tion, the contradiction is taken to indicate the non-existence of whatever
was hypothesised. For example the hypothesis of the Russell Set usu-
ally leads to a contradiction so the Russell Set is said not to exist. We
have just used transset theory to overturn this conclusion but we do not
want to overturn all of the conclusions of the usual mathematics! In the
usual mathematics an hypothesis can be negated, a contradiction then
proves the existence of whatever was hypothesised. We can retain any
of the usual results by using contradictions to demonstrate the existence
and non-existence of sets, while creating harmless antinomies. As a use-
ful example of this we now show, firstly, that the transnatural numbers,
NT = N ∪ {−∞,∞,Φ}, have the same cardinality as the natural num-
bers, N, secondly the transreals, RT = R ∪ {−∞,∞,Φ}, have the same
cardinality as the reals, R, and, thirdly, the cardinality of the transreals
is greater than the cardinality of the transnaturals. This involves a crit-
ical use of Cantor’s diagonalisation argument, with careful handling of
contradiction and antinomy. When we have worked through this example
we will be in a position to state what distinguishes contradictions from
antinomies.

We begin by establishing the cardinality of the transreals and the
transnaturals.

Theorem 40 (The Transnatural Numbers Have the Same Cardinality as
the Natural Numbers).

Proof. We enumerate the transnatural numbers: 0 → Φ, 1 → −∞, 2 →
∞, then n→ n− 3.

Theorem 41 (The Transreal Numbers Have the Same Cardinality as the
Real Numbers).

Proof. We establish a bijection between the transreals and the reals as fol-
lows. Firstly the transnatural numbers are taken bijectively with the nat-
ural numbers as in the above Theorem 40. Secondly the non-transnatural
transreals are taken bijectively with the non-natural reals by identity.

In order to show that |RT | > |NT |, it is sufficient to show that |R| > |N|
but we give a slightly wider consideration of the decimal form of the
transreals. Our treatment of Cantor’s diagonalisation argument is based
on the presentation in [26].

As usual the transintegers are ZT = Z ∪ {−∞,∞,Φ}. Now let a0

be a transinteger, a0 ∈ ZT , and let a1, a2, ..., an be an indefinitely long
sequence of digits, indexed over the natural numbers, n > 0, such that
an ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. We may take the digits as von Neumann
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ordinals and the sequence of digits as a nested Kuratowski Pair. Then
the series

x
.
= a0 +

∑
n∈N\{0}

an
10n

converges. As usual we require that a proper, decimal expansion does
not have an indefinitely large number of terms an = 9. Even so, when
a0 is a strict transinteger, a0 ∈ {−∞,∞,Φ}, then x

.
= a0, regardless

of the sum indexed over the natural numbers n > 0, so the expansion
is not unique. Hence we define that the proper, decimal expansion of
the strictly transreal numbers is given by the transinteger, a0, without
the sum. If the sum were taken exactly to transnatural infinity then the
term a∞/(10∞) = a∞/∞ = 0, regardless of the digit a∞, so the expansion
would not be unique. Finally if the sum were taken to transnatural nullity,
then the term aΦ/(10Φ) = aΦ/Φ = Φ, regardless of a0, aΦ and any an,
with n > 0. Hence we take the sum over the naturals n > 0. Taking all
of this together, the proper, decimal expansion of a transreal number is
either a strict transinteger or else it is the usual, proper, decimal expansion
of a real number.

We may now follow through, very briefly, with Cantor’s proof that
|N| 6= |R|. Cantor enumerates the decimal expansions so that the n’th

expansion is given as: a(n) = a
(n)
0 .a

(n)
1 a

(n)
2 ...a

(n)
n ...a

(n+i)
n+i . Cantor then

constructs a proper, decimal expansion, b = b0.b1b2...bn...bn+i, so that
diagonal digits bj 6= a

(j)
j . If |N| = |R| then it must be possible to insert

b into the enumeration, at some position n, so that b = a(n) but then
the digit bn 6= a

(n)
n . For Cantor and for us, this is a contradiction: by

construction b ∈ R but the expansion of b cannot have a set, which is
the digit bn, such that bn = a

(n)
n . Therefore b /∈ N. For us, alone, (bn =

a
(n)
n ) &(bn 6= a

(n)
n ) is an antinomy. We can satisfy the diagonalisation with

an antinomy but no antinomy is in N so Cantor’s result holds, despite the
antinomy.

Now we can see what the difference between an antinomy and a con-
tradiction is. A contradiction, which is a sentence in our base language,
exists as an antinomy, in out theory, and does not exist as a set, in our
theory. Put another way: in our theory an antinomy, which exists, is the
specification of a contradictory set, which does not exist.

4.3 Cantor – Powerset

Cantor proves that for any set, A, its powerset, P(A), has greater cardi-
nality: |P(A)| > |A|. But we have V = P(V ) so |V | = |P(V )|. This is a
dilemma. In order to resolve this dilemma we need to find how Cantor’s
powerset proof fails in our set theory.

Our treatment of Cantor’s powerset proof is based on the presentation
in [26]. Cantor starts by showing that |A| ≤ |P(A)| because, for every
x ∈ A, there is a singleton set {x} ∈ P(A). We agree with this.

Cantor then shows that |A| 6= |P(A)|. His method is to assume, to
the contrary, that |A| = |P(A)|, and then show a contradiction. We
will resolve the dilemma by showing that Cantor makes, in our terms, a
category error, which undercuts his contradiction.
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Cantor assumes there is a bijection, f : A → P(A), such that f(x) =
Bx. Then Bx is a subset of A because every member of P(A) is a subset of
A. Consider any element, x ∈ A, and its image, Bx. Then either x ∈ Bx

or x /∈ Bx. The set of all x with the latter property is denoted by C, so
that C = {x | (x ∈ A) &(x /∈ Bx)}. This is false, in our terms, because C
is an antinomy, not a set, so the proof by contradiction fails at this point.
The fact that C is an antinomy is established in the last line of Cantor’s
proof so we follow it through.

Cantor states that C is a subset of A and, since f is surjective, C
must be an image – that is, there exists an a ∈ A such that C = Ba.
Now a ∈ C ⇐⇒ a /∈ Ba, since C is the set of all x satisfying x /∈ Bx.
And, as just noted, Ba = C, whence a /∈ Ba ⇐⇒ a /∈ C. Therefore
a ∈ C ⇐⇒ a /∈ Ba and a /∈ Ba ⇐⇒ a /∈ C, whence a ∈ C ⇐⇒ a /∈ C.
This is a contradiction. Cantor takes it as given that C is a set so, for him,
this contradiction shows that |A| 6= |P(A)| but we take it to show that
C is an antinomy, whence C /∈ A,P(A) and the proof that |A| 6= |P(A)|
fails. In our terms, Cantor mistakes an antinomy for a set, which destroys
his proof that |A| < |P(A)|.

At this point we have established that Cantor’s powerset proof does
not hold in our set theory. Totality demands more. Cantor considered the
antinomy, C, of all x ∈ A, such that x /∈ Bx, but we must also consider
the set, D, of all x ∈ A such that x ∈ Bx. That is, we must consider the
set D = {x | (x ∈ A) &(x ∈ Bx)}. Now D obtains when f(x) = {x}. Note
that f maps V to V , so A = P(A), at least when A = V . Hence Cantor’s
powerset proof establishes |V | = |P(V )|, as required by transset theory.

Of course many transsets, including many sets, have |P(A)| = 2|A| >
|A| but the universal set, V , has |P(V )| = 2|V | = 2∞ =∞ = |V |, in agree-
ment with transreal arithmetic. Similarly |P(U)| = |P(V )| = |P(W )| =
|U | = |V | = |W | =∞.

Thus we have resolved the dilemma in transset theory but we have
identified a potentially serious issue for the usual set theories. If a set
theory has no objects which are antinomies then it may be reasonable to
assume that C is a set, in which case Cantor’s powerset argument proves,
as usual, that |S| < |P(S)|, for some small sets S. But this ignores the
D set which established the existence of some large sets T , such that
|T | = |P(T )|. We find it astonishing that this has been missed!

The consequences of this apparent omission might be harmless, set
theories might be consistent and unnecessarily limited to small sets, S,
but admitting large sets, T , as a fuller treatment of Cantor’s powerset
argument appears to do, may establish that the usual set theories are
inconsistent.

Large sets are further allowed by our dissolution of the next two para-
doxes.

4.4 Burali-Forti

The Burali-Forti paradox, reported in [22], establishes that there is no
greatest ordinal. We have a greatest transordinal, ∞. This is a dilemma
which must be resolved.
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The Burali-Forti paradox establishes that the set of all ordinals is not
the greatest ordinal. We agree with this. Our greatest transordinal, ∞, is
not the set of all transordinals because it does not contain itself. Thus we
avoid the Burali-Forti paradox by constructing infinity as ∞ = V \ {V }
in Definition 23. Nullity is given, similarly, in Definition 22, so it avoids
analogous paradoxes.

4.5 Specker

Specker’s Theorem, reported in [22], proves that |P(V )| < |V |. We have
|P(V )| = |V |. This is a dilemma which must be resolved.

Specker’s theorem involves a proof by contradiction where it is shown,
in effect, that the type of the universal set is one greater than the car-
dinality of the universal set: T {|V |} = |V | + 1 > |V |. This is taken to
be a contradiction but we have |V | = ∞ and ∞ + 1 = ∞ so there is
no contradiction and the proof of Specker’s theorem fails in our transset
theory.

5 Discussion

The ambition of transmathematics is to arrange that every system is a
total system, for example that all functions are total functions and all
operators are closed. It might be thought that this ambition is bound to
fail on the simplest questions of arithmetic. For example: which number is
less-than and greater-than zero? There is no such number so the question
cannot be answered; it is a partial question. We can totalise it by asking a
more general question: what is the set of numbers that are less-than and
greater-than zero? This set is the empty set so we have an answer. But
we cannot use set theory to answer every question. We cannot answer the
question: what is the set of all sets that are not members of themselves?
For that we need a more general theory, such as category theory or our
transset theory.

Our motivation to find total, mathematical theories is a practical one.
We want to use such theories in the design and programming of digital
computers that have no logical error states, so that any program which
compiles cannot suffer an abnormal end (crash) for any but physcial rea-
sons. We want to apply total, mathematical theories and programs in
physics so that we can analyse all physical systems, including singular
ones. And we want mathematics to be expressed in computer-proof sys-
tems so that: consistency can be checked, in detail; revised systems can
be checked quickly; and mathematics can be applied by computer users,
not just by mathematicians.

We also have pedagogic ambitions. We want both traditional and com-
puterised mathematics to be easy to teach. At present naive set-theory
is taught in primary and secondary schools. This theory is overturned in
tertiary education where the paradoxes of set theory are presented and
more restricted set theories such as ZFC and NFU are taught. Overturn-
ing theories is a waste of earlier learning but we can avoid it with transset

16



theory. Transset theory is naive set-theory with antinomies so if we add
antinomies and classes as objects, nothing need be withdrawn.

This brings us to a terminological issue. It is the practice in trans-
mathematics to add the prefix, trans to the ordinary descriptions of math-
ematics. This is meant as a service to the reader, to warn that the usual
objects of mathematics are being extended. But such terminological va-
riety might prove an obstacle to the learner. Why, for example, are there
transsets but no tramsantinomies? A transset is nothing other than a class
so, if transmathematics is to be taught in primary and secondary schools,
more widely than has already been done, then perhaps one should pre-
fer to say that one is dealing with class theory, set theory and antinomy
theory.

In tertiary education it is notoriously difficult to teach category theory
– the subject is so abstract that students find it difficult to obtain a foot
hold. We wonder if transset theory can be used to ease the passage to
category theory by introducing categories as classes that have transset
atoms as category objects and transset molecules as category relations?

We are neutral on points of vocabulary and leave it to professional
educators, among whom we number, to decide if and when it is appropriate
to teach transmathematics.

Our decision to assert that sets and antinomies partition all classes or
transsets is bold. The partition requires that every transset can be sorted
into exactly one of a set or an antinomy. This sorting is total, which is
what we want, but it excludes the possibility of there being absolutely
undecidable cases. We can still have undecidability in limited systems,
such as the undecidability of first order logic, Turing undecidability, and
so on; but we cannot have undecidability in the universal transset because
every function appears there. Hence everything is decidable in top-down
mathematics that starts from the universal transset, even though some
things may be inaccessible to bottom-up mathematics that starts from
the empty set. We wonder if it can be proved that top-down mathemat-
ics has some content? In other words, can it be proved that there are
top-down theorems that are inaccessible to bottom-up methods? This
would amount to showing that stratification is too tight. This question
is of both mathematical and philosophical interest. If stratification is too
tight then a truly creative system, such as a human, computer or robot,
must have access to untyped reasoning. In the nomenclature of debate in
Artificial Intelligence, it would require that the most general intelligences
are scruffy, not neat.

We introduced interchangeability as an equivalence class over all trans-
sets, extending the notion of equality which is defined only for sets. This
gives us the technical ability to identify antinomies and prove facts about
them. We may now read our earlier results in Computer Science in this
new, mathematical, light: the Not-a-Number objects of floating-point
arithmetic [1][2] are not members of the universal set because NaNi 6=
NaNj for all i, j – including i = j! This complicates the writing of nu-
merical programs, as discussed in [6], with corrections in [17]. We suggest
that interchangeability is a coherent operator that could be used with
NaNs as a replacement for the IEEE, floating-point operator, unordered,
which we proved is incoherent [6]. Alternatively, as shown in [6], if NaNs
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are replaced by transreal nullity then the usual relational operators – less-
than, equal-to and greater-than – are sufficient. Hence there is no need for
an unordered or interchangeability operator in trans-floating-point arith-
metic.

Having an interchangeability predicate, that is distinct from equality,
bears on philosophical issues of identity. It is usual to take identity over
equality but many of the philosophical paradoxes of identity can be read
as attempts to assert identity over physical interchanges that alter some
parts of an object, thereby calling into question its identity. We wonder
if the separate notions of interchangeability and equality can be used to
clarify these philosophical questions?

We introduced atoms so that they can be distinguished by extension-
ality. This is not original but it is significant. It obliges us to have a con-
tinuum of sentence letters in our base language so that we have enough
atoms to establish the cardinality results we want. We may still have all
of the usual results of mathematics that are built up from a finite vocabu-
lary but we can have more. It might be thought that practical computing
systems are necessarily finite but this is not, quite, certain. If the many
universes hypothesis is true then quantal computers might operate in an
infinitude of universes, before returning a result to our universe. Regard-
less of whether or not such computers can be constructed, we want to
adopt a mathematics that does not block the possibility of constructing
such powerful machines – so we have a practical reason for adopting con-
tinuous sentence letters, as well as exercising our mathematical freedom
to have them.

There are mathematical consequences to adopting our atoms. We have
the freedom to encode anything whatsoever – any mathematics and any
physical atoms or particles – as our atoms. Hence we may trivially model
any given mathematics in transset theory, including the whole of cate-
gory theory. In particular we may choose our atoms to be the atoms of
other set theories, we may choose our atoms to be category theory ob-
jects and we may choose our molecules to be category theory relations.
There is no limit to what could be encoded in transset theory but, of
course, our choices have mathematical consequences. Specker’s theorem
proves that in set theories like NFU, the powerset of the universal set has
lower cardinality than the universal set! This arises because the powerset
contains only sets and no atoms of the sort that are not distinguishable
by extensionality, let us call them urelements to avoid confusion with our
atoms. Thus Specker proves that there are more urelements than there
are sets. We adopt the Axiom of Atomic Transset Names so that, in par-
ticular, there are as many atoms as there are sets. We do this so that
the cardinalities of transset theory support transnatural and transordinal
arithmetic. Having adopted a transarithmetic, Specker’s Theorem and the
Burali-Forti Paradox no longer hold so we are free to have different cardi-
nalities than the usual set theories. As one would expect, the properties
of urelements and atoms depend on the other axioms of the theories they
are embedded in. In particular the choice of arithmetic has a profound
influence on cardinality.

We chose to build transset theory using the base language of first-
order logic. This is an eminently practical choice and is sufficient to our
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needs. It does not preclude us from porting transset theory to different
languages, such as a multivalued logic, category theory, or whatever. We
might have mathematical or practical reasons to change the base language
but first-order logic is a sufficient bootstrap.

The Russell Paradox has had a profound influence on the historical
development of set theories. This influence continues in transset theory.
We show that the Russell Antinomy is distinct from the Russell Set. Both
objects exist. The Russell Antinomy’s membership of itself is paradoxical
in that it is a logical gap. Various other memberships are non-paradoxical:
the Russell Antinomy is a member of the Universal Antinomy, the Russell
Set is a member of the Universal Set, the Russell Set is a member of the
Russell Antinomy, the Russell Set is not a member of itself, the Russell
Antinomy is not a member of the Russell Set, and so on. Thus we arrive
at a wider understanding of the Russell Paradox.

Cantor’s Diagonalisation Proof is upheld in transset theory. Cantor
goes to considerable trouble to show that the diagonalised expansion ex-
ists so that its absence from the enumerated expansions proves that there
are more real than natural numbers. The case of Cantor’s Powerset The-
orem is more delicate. Cantor has no doubt that he may identify an
object, C = {x | x /∈ f(x)}, with a set, whence he proves that every set
has a smaller cardinality than its powerset. For us C′

.
= {x | x /∈ f(x)}

is an antinomy. We cannot simply assume it is a set unless we explic-
itly require this. We may easily re-write Cantor’s Powerset Theorem to
make this assumption explicit. Hence Cantor’s Powerset Theorem holds
for some sets. But our concern with totality drives us to notice the set
D = {x | x ∈ f(x)}, whence certain sets, such as our universal set, do
have the same cardinality as their powersets. We find it astonishing that
this appears to have been missed in the usual treatments of Cantor’s
Powerset Theorem. The consequences of missing it might be harmless.
NFU is immune to Cantor’s Powerset Theorem: the universal set is larger
than its powerset but all other sets are smaller than their powersets. ZFC
adopts small sets so the existence of large sets whose cardinality is equal to
their powerset does not arise. This might be an unnecessary but harmless
restriction or it might be a case of monster barring that blocks inconsis-
tency in ZFC. We would like to know if ZFC can support our Universal
Set and Universal Antinomy? If so, all of the usual results of ZFC may be
totalised. Other totalisations are available. For example our set member-
ship predicate could totalise set theories over all sets that exists, taking
our antinomies as non-existent sets. In the computer age we are desper-
ately concerned to establish totality in all mathematics so these questions
are worth exploring.

Most generally the usual non-existence proofs establish, in our terms,
the existence of an antinomy. An antinomy may have many, even infinitely
many, members so discarding, so called, non-existent objects may discard
a very great deal of mathematical structure. We recommend examining
all non-existence proofs to see if anything of value has been discarded.

Having both sets and antinomies gives us access to every method of
paraconsistent reasoning. This might be of use in the formal development
of paraconsistent logics and, more generally, in the conduct of science.

19



In many cases scientific theories embrace inconsistent explanations and
are inconsistent with empirical observations, yet they provide a useful ba-
sis for scientific reasoning and experiment. This cannot be explained in
classical logic where any inconsistency blows up to make all statements
logically true. This is not the case in paraconsistent logics or in transset
theory – both preserve only a limited number of statements as true the-
orems or as sets. But does our set theory provide any insights into how
science should be conducted?

Karl Popper [25] advanced the one-sided method of setting up scientific
theories so that they can be refuted. He noted, with some disparagement,
that practicing scientists often set out to confirm their theories, not to
refute them but, for us, it is rational to do both things. The complement
of everything that is true is everything that is false and everything that
is an antinomy. Similarly the complement of everything that is false is
everything that is true and everything that is an antinomy. Antinomies
occur in both complements. Between truth and falsehood there is a no-
man’s land of antinomy. The boundaries of knowledge can be advanced,
on both sides, by establishing what is true and by establishing what is
false. Both confirmation and refutation have a role to play in minimising
antinomy. Perhaps this should be the goal of science: to maximise truth
and to minimise both falsehood and antinomy.

How far might we go in criticising Popper? Are his views on science a
mistake, founded in the old paradigm of classical logic? Can we do better?

6 Conclusion

We extend naive set theory by introducing antinomies as objects. At a
stroke this dissolves many of the usual paradoxes of set theory and gives us
access to transnatural and transordinal arithmetics in place of the usual,
but more limited, natural and ordinal arithmetics. We are astonished to
find that the usual treatments of Cantor’s Powerset Theorem appear to
miss the case where a large set has the same cardinality as its powerset.
For us this raises questions about the consistency of Zermelo-Fraenkel set
theory and whether it would benefit from introducing a universal set and
a universal antinomy?

We have dealt, very briefly, with some philosophical issues, including
questioning Popper’s views on science. We show that both confirmation
and refutation have distinct, but synergistic, roles to play in establishing
scientific truth, dismissing falsehood, and minimising logical gaps.

Acknowledgement

Thanks are due to: Walter Gomide for reporting that philosophers would
find the transreals more accessible if there were an account of the transre-
als in an elementary set theory, and for asking how nullity differs from the
empty set; to Stephen Leach for pointing-out that our set theory embod-
ies top-down reasoning; to Tiago dos Reis for careful criticism of several

20



drafts of this paper. Thanks are due, more generally, to the members of
Transmathematica.

References

[1] Ieee standard for binary floating-point arithmetic. 1985.

[2] Ieee standard for floating-point arithmetic. 2008.

[3] J. A. D. W. Anderson. Transmathematical basis of infinitely scal-
able pipeline machines. International Conference On Computational
Science, pages 1828–1837, 2015.

[4] J. A. D. W. Anderson and T. S. dos Reis. Transreal newtonian
physics operates at singularities. Synesis, 7(2):57–81, 2015.

[5] James A. D. W. Anderson. Trans-floating-point arithmetic removes
nine quadrillion redundancies from 64-bit ieee 754 floating-point
arithmetic. In Lecture Notes in Engineering and Computer Science:
Proceedings of The World Congress on Engineering and Computer
Science 2014, WCECS 2014, 22-24 October, 2014, San Francisco,
USA., volume 1, pages 80–85, 2014.

[6] James A. D. W. Anderson and Tiago S. dos Reis. Transreal limits
expose category errors in ieee 754 floating-point arithmetic and in
mathematics. In Lecture Notes in Engineering and Computer Sci-
ence: Proceedings of The World Congress on Engineering and Com-
puter Science 2014, WCECS 2014, 22-24 October, 2014, San Fran-
cisco, USA., volume 1, pages 86–91, 2014.

[7] James A. D. W. Anderson, Norbert Völker, and Andrew A. Adams.
Perspex machine viii: Axioms of transreal arithmetic. In Longin Jan
Lateki, David M. Mount, and Angela Y. Wu, editors, Vision Geom-
etry XV, volume 6499 of Proceedings of SPIE, pages 2.1–2.12, 2007.

[8] James A.D.W. Anderson and Walter Gomide. Transreal arithmetic as
a consistent basis for paraconsistent logics. In Lecture Notes in Engi-
neering and Computer Science: Proceedings of The World Congress
on Engineering and Computer Science 2014, WCECS 2014, 22-24
October, 2014, San Francisco, USA., volume 1, pages 103–108, 2014.

[9] T. S. dos Reis and J. A. D. W. Anderson. Transcomplex topology and
elementary functions. In S. I. Ao, Len Gelman, David W. L. Hukins,
Andrew Hunter, and A. M. Korsunsky, editors, World Congress on
Engineering, volume 1, pages 164–169, 2016.

[10] T. S. dos Reis and Renata A. Barros. Números transreais: uma
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