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1 General framework

Within scattering theory the free particle wavefunction can be expressed as a partial
wave expansion in radial and angular functions:
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The exact form of x;(r) and A; will depend on the potential V' (r). For a
Coulombic potential, V(r) « Z1Z5/r, where Z; and Z, are the charges on the
scattering centre and scattered particle, solutions are given by (using incoming
wave normalization):
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Here the solution to the radial wavefunction, x;(r), is given by the (regular)
Coulomb function Fy(r). This has a complicated functional form near the scattering
centre, but asymptotically goes to a sinusoidal form. Both F; and A; contain terms
involving oy, this is the Coulomb phase, and is given by equation 4. I' is the gamma
function.

While the Coulomb potential is the exact form for a point charge, more generally
a scattering system may have an additional short-range contribution to the potential
(one which scales as 1/r™, where n > 1), and this contribution may be non-centrally
symmetric (i.e. anisotropic). However, the strength of these short-range interactions
and multi-polar contributions to the potential will fall to zero much faster than the
Coulombic term, and we can define a boundary, r., beyond which the potential is
purely Coulombic. We now have a potential defined by V'(r < r.) and V(r > r.).
We do not know the exact (analytic) form of the wavefunction in the region r < r..



However, in the Coulombic region the radial wavefunction still has an analytic form,
and is now described by:
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Here Fj(r) is the regular Coulomb function as before, while G;(r) is the irregular
Coulomb function. 0y, is an additional scattering phase shift, which arises from the
non-Coulombic part of the scattering potential. This phase shift defines the mixing
of the regular and irregular Coulomb functions, and this mixing also determines the
asymptotic phase shift:
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Hence the scattering phase d;,,, describes the effect of the non-Coulombic part
of the potential, V’(r), and is labelled with m to show that this may affect different
components of each [-wave differently in an anisotropic scattering system. Note that
the short-range part of the potential may still be centrally-symmetric, in which case
only m = 0 components will be present. Although the form of the wavefunction is
not generally known for r < r. (but could be found numerically for a given V'(r)),
the scattering phase carries all of the information on the stength of the short range
potential.

Most generally, the overall phase of each partial-wave channel is denoted 7, =
01+ 0im. The total phase (including angle-dependence) can be most cleanly written
as, simply, 7:(r) = arg(¥(r)), which incorporates the scattering phases 7;,,, as well
as any additional channel-dependent phase contributions (e.g. phase contributions
from Y}, terms etc.).
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2 Photoionization

The asymptotic wavefunction defines the final state of the system, thus any experi-
mental observations. The solution above defines the continuum wavefunction in the
presence of the scattering potential. In the case of photoionization, the amplitudes
of the various partial-waves in the asymptotic limit must thus be found from some
overlap from the initial state. Typically we work within the dipole regime, and the
light-matter coupling at an energy E can be written:

d(E) = (®4(r); ¥(r)|1E[®i(r)) (9)
Here ¥(r) is the continuum (photoelectron) wavefunction of eqn. 1; ®;(r) is the
inital N-electron state and ®/(r) the N — 1 electron final state of the ionizing
molecule; [ is the dipole operator and E the incident electric field.



In terms of the observable asymptotic wavefunction (or photoelectron wavepacket),
which is defined as a function of energy and angle, these matrix elements will deter-
mine the overall amplitudes and phases of the continuum wavefunction prepared via
photoabsorption. Hence we can write the final asymptotic wavefunction/wavepacket
as:
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where d; ,,(E) is the dipole matrix element expanded in partial-waves. Here, the
dipole matrix elements include radial integration over the continuum wavefunction
of eqn. 1, and incorporates the asymptotic phases 7;,,,. The final observable is the
square of this wavefunction, and (for an angle-sensitive measurement) will retain
phase sensitivity over the partial-wave channels:
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3 ePolyScat

The dipole matrix elements are defined in ePolyScat [1, 4, 2] by, e.g., the definition
of the MF-PADs as per eqns. 1-3 of ref. [5]:
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In this formalism:

o I}, ""PT"7(E) is the radial part of the dipole matrix element, determined from

the initial and final state electronic wavefunctions ¥}***and ¥}""/, photo-

electron wavefunction gagcl_% and dipole operator d;t. Here the wavefunctions

are indexed by irreducible representation (i.e. symmetry) by the labels p; and
py, with components p; and i respectively; [,m are angular momentum
components, p is the projection of the polarization into the MF (from a value
1o in the LF). Each energy and irreducible representation corresponds to a
calculation in ePolyScat.

o TP (0:, ¢4, 04, ¢5) is the full matrix element (expanded in polar co-
ordinates) in the MF, where k denotes the direction of the photoelectron
k-vector, and 71 the direction of the polarization vector n of the ionizing light.
Note that the summation over components {I,m, u} is coherent, and hence
phase sensitive.
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(01, ¢4) is a spherical harmonic.

e D}, (Ry)is a Wigner rotation matrix element, with a set of Euler angles

Ri = (¢a, 04, xa), which rotates/projects the polarization into the MF .

o 1,,,(0;, 0,04, ¢n) is the final (observable) MFPAD, for a polarization yio and
summed over all symmetry components of the initial and final states, u; and
ty. Note that this sum can be expressed as an incoherent summation, since
these components are (by definition) orthogonal.

® gp, is the degeneracy of the state p;.

The dipole matrix element of eqn. 14 - the radial part of the dipole matrix element
- effectively defines the final state amplitude and phase. Hence, is equivalent to the
general form of eqn. 9, but here expanded in terms of symmetries of the light-matter
system.

In practice, the inital N-electron and final (N — 1)-electron wavefunctions are
defined by standard computational chemistry methods (as implemented in Gaussian,
Gamess, etc.). The scattering state is solved numerically by ePS via a Schwinger
variational procedure [3], and the radial dipole integrals solved based on this scat-
tering state. Numerically, an effective range for the interaction (7,,4:) is defined
by the spatial grid used in the calculation; other calculation parameters may also
affect the numerical results, see ref. [3]. Matrix elements I7:"*'P/"/(E) are output

Lm,p
for further processing, e.g. for MF-PADs or calculation of Wigner delays.
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