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1 General framework

Within scattering theory the free particle wavefunction can be expressed as a partial
wave expansion in radial and angular functions:

Ψ(r) =
∑
lm

Alχl(r)Ylm(θ, φ) =
∑
lm

ψlm(r) (1)

The exact form of χl(r) and Al will depend on the potential V (r). For a
Coulombic potential, V (r) ∝ Z1Z2/r, where Z1 and Z2 are the charges on the
scattering centre and scattered particle, solutions are given by (using incoming
wave normalization):

χl(r) = Fl(r)
r→∞−→ sin

[
kr − πl

2
− Z1Z2

k
ln(2kr) + σl

]
(2)

Al =
2l + 1
kr

ile−iσl (3)

σl = arg Γ
[
l + 1− iZ1Z2

k

]
(4)

Here the solution to the radial wavefunction, χl(r), is given by the (regular)
Coulomb function Fl(r). This has a complicated functional form near the scattering
centre, but asymptotically goes to a sinusoidal form. Both Fl and Al contain terms
involving σl, this is the Coulomb phase, and is given by equation 4. Γ is the gamma
function.

While the Coulomb potential is the exact form for a point charge, more generally
a scattering system may have an additional short-range contribution to the potential
(one which scales as 1/rn, where n > 1), and this contribution may be non-centrally
symmetric (i.e. anisotropic). However, the strength of these short-range interactions
and multi-polar contributions to the potential will fall to zero much faster than the
Coulombic term, and we can de�ne a boundary, rc, beyond which the potential is
purely Coulombic. We now have a potential de�ned by V ′(r < rc) and V (r ≥ rc).
We do not know the exact (analytic) form of the wavefunction in the region r < rc.

1



However, in the Coulombic region the radial wavefunction still has an analytic form,
and is now described by:

χl(r ≥ rc) = cos(δlm)Fl(r) + sin(δlm)Gl(r) (5)

Gl(r)
r→∞−→ cos

[
kr − πl

2
− Z1Z2

k
ln(2kr) + σl

]
(6)

Al =
2l + 1
kr

ile−i(σl+δlm) (7)

Here Fl(r) is the regular Coulomb function as before, while Gl(r) is the irregular
Coulomb function. δlm is an additional scattering phase shift, which arises from the
non-Coulombic part of the scattering potential. This phase shift de�nes the mixing
of the regular and irregular Coulomb functions, and this mixing also determines the
asymptotic phase shift:

χl
r→∞−→ sin

[
kr − πl

2
− Z1Z2

k
ln(2kr) + σl + δlm

]
(8)

Hence the scattering phase δlm describes the e�ect of the non-Coulombic part
of the potential, V ′(r), and is labelled with m to show that this may a�ect di�erent
components of each l-wave di�erently in an anisotropic scattering system. Note that
the short-range part of the potential may still be centrally-symmetric, in which case
only m = 0 components will be present. Although the form of the wavefunction is
not generally known for r < rc (but could be found numerically for a given V ′(r)),
the scattering phase carries all of the information on the stength of the short range
potential.

Most generally, the overall phase of each partial-wave channel is denoted ηlm =
σl+δlm. The total phase (including angle-dependence) can be most cleanly written
as, simply, ηt(r) = arg(Ψ(r)), which incorporates the scattering phases ηlm, as well
as any additional channel-dependent phase contributions (e.g. phase contributions
from Ylm terms etc.).

2 Photoionization

The asymptotic wavefunction de�nes the �nal state of the system, thus any experi-
mental observations. The solution above de�nes the continuum wavefunction in the
presence of the scattering potential. In the case of photoionization, the amplitudes
of the various partial-waves in the asymptotic limit must thus be found from some
overlap from the initial state. Typically we work within the dipole regime, and the
light-matter coupling at an energy E can be written:

d(E) = 〈Φf (r); Ψ(r)|µ̂.E|Φi(r)〉 (9)

Here Ψ(r) is the continuum (photoelectron) wavefunction of eqn. 1; Φi(r) is the
inital N -electron state and Φf (r) the N − 1 electron �nal state of the ionizing
molecule; µ̂ is the dipole operator and E the incident electric �eld.
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In terms of the observable asymptotic wavefunction (or photoelectron wavepacket),
which is de�ned as a function of energy and angle, these matrix elements will deter-
mine the overall amplitudes and phases of the continuum wavefunction prepared via
photoabsorption. Hence we can write the �nal asymptotic wavefunction/wavepacket
as:

Ψ(E, θ, φ) =
∑
lm

dl,m(E)Ylm(θ, φ) (10)

where dl,m(E) is the dipole matrix element expanded in partial-waves. Here, the
dipole matrix elements include radial integration over the continuum wavefunction
of eqn. 1, and incorporates the asymptotic phases ηlm. The �nal observable is the
square of this wavefunction, and (for an angle-sensitive measurement) will retain
phase sensitivity over the partial-wave channels:

I(E, θ, φ) = Ψ(E, θ, φ).Ψ∗(E, θ, φ) (11)

3 ePolyScat

The dipole matrix elements are de�ned in ePolyScat [1, 4, 2] by, e.g., the de�nition
of the MF-PADs as per eqns. 1-3 of ref. [5]:

Iµ0(θk̂, φk̂, θn̂, φn̂) =
4π2E

cgpi

∑
µi,µf

|T piµi,pfµf
µ0 (θk̂, φk̂, θn̂, φn̂)|2 (12)

T
piµi,pfµf
µ0 (θk̂, φk̂, θn̂, φn̂) =

∑
l,m,µ

I
piµi,pfµf

l,m,µ (E)Y ∗lm(θk̂, φk̂)D1
µ,−µ0

(Rn̂) (13)

I
piµi,pfµf

l,m,µ (E) = 〈Ψpi,µi

i |d̂µ|Ψ
pf ,µf

f ϕ
(−)
klm〉 (14)

In this formalism:

• Ipiµi,pfµf

l,m,µ (E) is the radial part of the dipole matrix element, determined from

the initial and �nal state electronic wavefunctions Ψpi,µi

i and Ψpf ,µf

f , photo-

electron wavefunction ϕ
(−)
klm and dipole operator d̂µ. Here the wavefunctions

are indexed by irreducible representation (i.e. symmetry) by the labels pi and
pf , with components µi and µf respectively; l,m are angular momentum
components, µ is the projection of the polarization into the MF (from a value
µ0 in the LF). Each energy and irreducible representation corresponds to a
calculation in ePolyScat.

• T piµi,pfµf
µ0 (θk̂, φk̂, θn̂, φn̂) is the full matrix element (expanded in polar co-

ordinates) in the MF, where k̂ denotes the direction of the photoelectron
k-vector, and n̂ the direction of the polarization vector n of the ionizing light.
Note that the summation over components {l,m, µ} is coherent, and hence
phase sensitive.
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• Y ∗lm(θk̂, φk̂) is a spherical harmonic.

• D1
µ,−µ0

(Rn̂) is a Wigner rotation matrix element, with a set of Euler angles
Rn̂ = (φn̂, θn̂, χn̂), which rotates/projects the polarization into the MF .

• Iµ0(θk̂, φk̂, θn̂, φn̂) is the �nal (observable) MFPAD, for a polarization µ0 and
summed over all symmetry components of the initial and �nal states, µi and
µf . Note that this sum can be expressed as an incoherent summation, since
these components are (by de�nition) orthogonal.

• gpi is the degeneracy of the state pi.

The dipole matrix element of eqn. 14 - the radial part of the dipole matrix element
- e�ectively de�nes the �nal state amplitude and phase. Hence, is equivalent to the
general form of eqn. 9, but here expanded in terms of symmetries of the light-matter
system.

In practice, the inital N -electron and �nal (N − 1)-electron wavefunctions are
de�ned by standard computational chemistry methods (as implemented in Gaussian,
Gamess, etc.). The scattering state is solved numerically by ePS via a Schwinger
variational procedure [3], and the radial dipole integrals solved based on this scat-
tering state. Numerically, an e�ective range for the interaction (rmax) is de�ned
by the spatial grid used in the calculation; other calculation parameters may also
a�ect the numerical results, see ref. [3]. Matrix elements I

piµi,pfµf

l,m,µ (E) are output
for further processing, e.g. for MF-PADs or calculation of Wigner delays.
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