
Air cargo load and route planning in pickup and delivery operations

ARTICLE HISTORY

Compiled November 28, 2023

ABSTRACT

We model and solve the problem of planning the loading and routing of an aircraft
according to a utility score, weight and balance principles, fuel consumption, and cost
increases due to centre of gravity displacement in a tour of simultaneous pickup and
delivery. This is necessary because in the aerial pickup and delivery of goods, transport
aviation faces risks of cargo unbalancing and wrong delivery due to the urgency required
for loading for mission accomplishment. It is solved by integer programming and four
known meta-heuristics to select the method that most �ts the operational requirements.
We also created a heuristic that quickly �nds viable solutions for a wide range of problem
sizes in much less than the operationally acceptable time. The output is an essential part
of airlift because it guarantees �ight safety, makes ground operations more e�cient, and
makes sure that each item gets to its right destination.

KEYWORDS

Air Cargo Optimization; Air Palletization; Weight and Balancing; Integer Programming;
Meta-heuristics

1. Solution strategies

This problem's work's requirements are presented in the mathematical model, and it was
veri�ed that ACLP+RPDP is NP-hard. Let's dive into the strategies adopted to make
the exact solution run in polynomial time. One common strategy is to use approximation
algorithms that provide near-optimal solutions with a guaranteed performance ratio.
Another approach is to develop heuristics that may not guarantee an optimal solution
but can quickly �nd suitable solutions in practice. These strategies aim to strike a balance
between computational e�ciency and solution quality.
Throughout our research, we have thoughtfully described the ACLP+RPDP model in

standard MIP format and found that no MIP solver can not handle its practical cases
in a feasible time. Thus, as ACLP+RPDP is highly complex, involving four intractable
sub-problems (APP, WBP, PDP, and TSP), our strategy will be to focus only on real cases
and to develop quick node-by-node solutions, close to optimal, that allow us to build a
complete tour.
ACLP+RPDP solutions de�ne a tour and a corresponding loading and unloading plan at

each node. In this way, equipment's use at each node will be the only factor limiting loading
and unloading times.
On the other hand, we know that transport aircraft generally have a few dozen pallets,

�ight itineraries have fewer than six nodes, and each node has hundreds of items to be
shipped. We also know that missions with fewer nodes are more frequent than longer ones.
Under these circumstances, we can adopt two more strategies:

� We will consider that the number of destinations exceeds 1, to avoid the case of a
single and trivial tour, but less than the number of pallets, that is, 1 < K < m. So we
can preset pallets' destinations at each node. In this way, we will reserve a number of
pallets proportional to volumes for each destination at the shipping node. We could
have used another criterion, but it was observed in the experiments that volume is
more constrictive in airlift.

� As the number of nodes is small, we have the chance to check the solution
corresponding to the tour with the shortest total distance and even test all possible
tours, selecting the one that provides the best value for the objective function.

Our complete strategy is summarised in Algorithm 1.

Algorithm 1 Solving the ACLP+RPDP

1: ACLP+RPDP in: scenario, surplus, tmax out: answer1, answer2
2: Let M be the set of pallets (cfr. Table ??)
3: Let K, L and C be according to scenario (cfr. Tables ??, ?? and 1)
4: Let πTSP1 and πTSP2 be the shortest tours (cfr. Table 1)
5: N ← ItemsGeneration(scenario, surplus)
6: for each method do
7: f1 ← SolveTour(πTSP1, L,M,C,N,method, tmax) ▷ Algorithm 2
8: f2 ← SolveTour(πTSP2, L,M,C,N,method, tmax)
9: answer1[scenario, surplus,method]← max(f1, f2)

10: for each π ∈ SK do
11: fπ ← SolveTour(π, L,M,C,N,method, tmax/K!)
12: end for
13: answer2[scenario, surplus,method]← max fπ
14: end for

In this algorithm, we use �ve values for scenario, according to Tables ?? and 1, which
de�ne the number K of destinations, the set L of nodes, costs C, and the shortest tours
πTSP1 and πTSP2.

Table 1.: Testing scenarios

Scenario K L πTSP1 πTSP2

1 2 {0, 1, 2} 0 1 2 0 0 2 1 0
2 3 {0, 1, 2, 3} 0 1 2 3 0 0 3 2 1 0
3 4 {0, 1, 2, 3, 4} 0 4 1 2 3 0 0 3 2 1 4 0
4 5 {0, 1, 2, 3, 4, 5} 0 4 1 2 5 3 0 0 3 5 2 1 4 0
5 6 {0, 1, 2, 3, 4, 5, 6} 0 4 1 2 6 5 3 0 0 3 5 6 2 1 4 0

The parameter surplus is a value in {1.2, 1.5, 2.0}, which corresponds, at πk, to the ratio
between items' sum of volumes and pallets' load capacity (surplus =

∑nk

j=1 vj/
∑m

i=1 Vi).
This parameter allows us to verify the di�erent behaviours of each method, according to the
scenario and quantities of items available for shipment. It is passed to ItemsGeneration
(line 5), responsible for selecting items to be shipped, which will be presented in the next
section (Algorithm 7).
Parameter tmax is a run time limit that will be distributed among tours (lines 7, 8,

and 11). method corresponds to a MIP solver or a heuristic to the node-by-node solution
SolveTour, which will be presented in subsection 1.2.
The best results corresponding to the shortest tours are stored in answer1 (line 9), and

those obtained by testing all K! tours are stored in answer2 (line 13).

2

Next, we will present two subsections: in the �rst, we explain how SolveTour is executed,
presetting pallets' destinations. In the second, we will present the heuristics developed for
node-by-node solutions.

1.1. SolveTour algorithm

As we commented in the previous subsection, we will adopt the strategy of presetting the
destinations of each pallet throughout the tour. This is feasible in practical cases where
1 < K < m. For this, each pallet i also has a �eld T k

i , 0 ≤ k ≤ K, which stores its next
destination after being loaded at πk. For this reason, T

k
i ∈ Lk, 1 ≤ i ≤ m, and 0 ≤ k ≤ K.

SolveTour is described in Algorithm 2, where π is a node permutation (excluding the
base) that de�nes the order of visits in this tour, method corresponds to a MIP solver or a
heuristic for solving node-by-node sub-problems, and tmax is the run time limit that will
be distributed among the K + 1 legs of the tour.

Algorithm 2 Solving the tour π with method

1: SolveTour in: π, L,M,C,N,method, tmax out: score/cost
2: π0 ← 0 ▷ all tours start and end at the base.
3: πK+1 ← 0
4: score← 0
5: cost← 0
6: for k ← 0 to K do
7: Lπk

← L− {π0, π1, . . . , πk} ▷ set of remaining nodes is updated.
8: Tπk

i ← −1, 1 ≤ i ≤ m ▷ pallet destination is unset.
9: if k = 0 then

10: Let G1(M ∪N0,∅) ▷ no packed contents at the base.
11: else
12: EQπk

,M ← UpdatePacked(M,Qπk
, πk) ▷ Algorithm 3

13: Let G1(M ∪Nπk
∪Qπk

, EQπk
)

14: end if
15: M ← SetPalletsDestinations(M,πk) ▷ Algorithm 4
16: G2 ← SolveNode(method, πk, G1, tmax/(K + 1)) ▷ A chosen method for πk

17: s, τ ← ScoreAndTorque(πk, G2) ▷ Algorithm 5
18: score← score+ s
19: cost← cost+ cπk,πk+1

× (1 + cg × |τ |)
20: end for

As all tours start and end at the base 0 (lines 2-3), and after initialising the score and cost
values (lines 4-5), there is a loop for the K +1 �ights (lines 6-20). The set Lπk

of remaining
nodes is updated (line 7), and pallet destinations are unset (line 8).
When the aircraft is at the base, the initial graph G1 is empty, and there are no packed

contents 10. Otherwise, UpdatePacked (line 12) returns the set of packed contents that
have not yet reached their destination and remain on board, rearranging them on pallets to
minimise CG deviation. This allocation is stored in graph G1 (line 13).

UpdatePacked, described in Algorithm 3, �nds the best packed-pallet allocation, in terms
of CG deviation, for packed contents that remain on board.

3

Algorithm 3 Updating packed contents that remain boarded at πk
1: UpdatePacked in: M,Qπk

, πk out: EQπk
,M

2: EQπk
←MinCGDeviation(EQπk

) ▷ equations 1, 2, and 3
3: for i← 1 to m do
4: for q ← 1 to mπk

do
5: Tπk

i ← −1
6: if (i, q) ∈ EQπk

then

7: Tπk
i ← toq ▷ reassign pallet destinations.

8: end if
9: end for

10: end for

SetPalletsDestinations (line 15 from Algorithm 2) presets the destination of each pallet
based on the current node's volume demands, without changing the pallet's destination with
packed contents, as described in Algorithm 4.

SolveNode includes edges corresponding to items shipped at the current node, returning
the graph G2 (line 15). Score and CG deviation of G2 are calculated (line 17) and
accumulated (lines 18-19), allowing the �nal result of this tour as output.

MinCGDeviation (line 2) relocates packed contents on pallets, minimising torque and
ensuring that they all remain on board, one packed content on each pallet. It is run through
a MIP solver with the objective function (1) and constraints (2) and (3). As there are few
variables, EQπk

is obtained in less than 30 milliseconds. Finally, the destination of each
pallet with packed content is updated (lines 3-10).

min
∣∣∣ m∑
i=1

mπk∑
q=1

Y k
iq × wq ×Dlong

i

∣∣∣ (1)

m∑
i=1

Y k
iq = 1; q ∈ {1, . . . ,mπk

} (2)

mπk∑
q=1

Y k
iq ≤ 1; i ∈ {1, . . . ,m} (3)

The parameter vol stores the demand volume of items destined for the non-visited nodes
(line 2). The destination of empty pallets is de�ned proportionally to the volume of items
to be embarked (lines 14-25). max is the destination with maximum volume demand (line
10), and needed is the number of necessary pallets to node x (line 16). The destination with
the maximum volume de�nes any remaining pallets (lines 26-30).
The procedure ScoreAndTorque, which is explained in Algorithm 5, looks at the

allocation graph G made by SolveNode at πk and gives back the cargo score and the
aircraft torque that go with it.
The evaluation algorithm (5) has a loop that goes through all pallets (lines 5?18), adding

up the items' scores (lines 8 and 14) and torques (lines 9 and 15) so that the aircraft torque
(line 19) can be found.

1.2. Node-by-node solutions

In this subsection, we present two implementations of the SolveNode algorithm: with a
MIP solver and with heuristics.

4

Algorithm 4 Setting pallets destination based on items to be embarked at πk
1: SetPalletsDestinations in: M,πk out: M
2: volx ← 0, x ∈ Lπk

3: max← 0 ▷ destination with maximum volume demand.
4: total← 0
5: for j ← 1 to nπk

do
6: if toj ∈ Lπk

then
7: voltoj ← voltoj + vj
8: total← total + vj
9: if voltoj > volmax then

10: max← toj
11: end if
12: end if
13: end for
14: for x ∈ Lπk

do
15: if volx ̸= 0 then
16: needed← max{1, ⌊(m−mπk

)× volx/total⌋}
17: np← 0
18: for i← 1 to m do
19: if (np < needed) and (Tπk

i = −1) then
20: Tπk

i ← x
21: np← np+ 1 ▷ number of necessary pallets to node x.
22: end if
23: end for
24: end if
25: end for
26: for i← 1 to m do
27: if Tπk

i ← −1 then
28: Tπk

i ← max ▷ any remaining pallet is assigned to the maximum demand destination.
29: end if
30: end for

1.2.1. Node-by-node solutions with a MIP solver

Our strategy adopted in SolveTour de�nes the values of some variables: the set of nodes
to be visited is updated, packed contents that remain on board are reallocated to minimise
the CG deviation, and pallets' destinations are determined according to the volume of items
available for shipment.
In this way, the mathematical model for SolveNode(MIP, πk, G, tmax) becomes simpler,

which �nds an allocation of available items at πk using previously de�ned values of Lπk
,

T πk

i , and aπk
q . So, we use a MIP solver with a time limit tmax at πk to �nd the best solution

for the objective function (4) using the calculus equations (5) and (7), while keeping the
constraints (8) and (14). Binary variables Xij and Yiq de�ne sets of edges ENπk

and EQπk
,

respectively, included in graph G.

max f = s̃/c̃ (4)

s̃ =

m∑
i=1

nπk∑
j=1

Xij × sj (5)

τπk
=

m∑
i=1

[
Dlong

i × (

nπk∑
j=1

Xij × wj +

mπk∑
q=1

Yiq × wq)
]/

Wmax × limitCG
long (6)

5

Algorithm 5 Cargo score and aircraft torque

1: ScoreAndTorque in: πk, G out: s, τ
2: Let G(Vπk

, EQπk
∪ ENπk

)
3: s← 0
4: τi ← 0, 1 ≤ i ≤ m
5: for i← 1 to m do
6: for j ← 1 to nπk

do
7: if Xπk

ij = 1 then
8: s← s+ sj ▷ accumulates cargo score

9: τi ← τi + wj ×Dlong
i ▷ accumulates aircraft torque

10: end if
11: end for
12: for q ← 1 to mπk

do
13: if Y πk

iq = 1 then
14: s← s+ sq ▷ accumulates cargo score

15: τi ← τi + wq ×Dlong
i ▷ accumulates aircraft torque

16: end if
17: end for
18: end for
19: τ ←

∑m
i=1 τi/(Wmax × limitCG

long) ▷ �nal calculation of aircraft torque

c̃ = cπk,πk+1
× (1 + cg × |τπk

|) (7)

|τπk
| ≤ 1 (8)

nπk∑
j=1

Xij × wj +

mπk∑
q=1

Yiq × wq ≤Wi; i ∈ {1, . . . ,m} (9)

nπk∑
j=1

Xij × vj +

mπk∑
q=1

Yiq × vq ≤ Vi; i ∈ {1, . . . ,m} (10)

m∑
i=1

Xij ≤ 1; j ∈ {1, . . . , nπk
} (11)

Xij = 0; toj /∈ Lπk
; i ∈ {1, . . . ,m}; j ∈ {1, . . . , nπk

} (12)

Xij ≤ Xij × (T πk

i − toj + 1); i ∈ {1, . . . ,m}; j ∈ {1, . . . , nπk
} (13)

Xij ≤ Xij × (toj − T πk

i + 1); i ∈ {1, . . . ,m}; j ∈ {1, . . . , nπk
} (14)

Constraints (13) and (14) are equivalent to Xij = 1 if toj = T πk

i , and Xij = 0 otherwise .

1.2.2. Node-by-node solutions with heuristics

One of the objectives of this work was to �nd a quick heuristic that o�ers a good-quality
solution for the node-by-node problem. We use well-known meta-heuristics to create
algorithms, such as Ant Colony Optimisation (ACO) (Dorigo, 1992; Dorigo, Maniezzo and
Colorni, 1996), Noising Method Optimisation (NMO) (Charon and Hudry, 1993, 2001; Zhan,
Wang, Zhang and Zhong, 2020), Tabu Search (TS) (Glover, 1986), and Greedy Randomised
Adaptive Search Procedure (GRASP) (Feo and Resende, 1989). We considered several

6

ideas from literature (Alonso, Alvarez-Valdes and Parreno, 2019; Fidanova, 2006; Niar and
Freville, 1997; Zhan et al., 2020), and we were careful to use the same data structures and
procedures in all implementations to enforce fair results comparison.
However, the heuristic that presented better solutions was none of the previous ones. In

this subsection, we will present a new heuristic for the node-by-node problem, called Shims.
Like in mechanics, shims are collections of spacers to �ll gaps, which may be composed of
parts with di�erent thicknesses. This strategy is based on a practical observation: usually,
subsets of smaller and lighter items are saved for later adjustments to the remaining available
space.
The selection of edges for ENπk

uses the edge attractiveness θij (15), which can be
understood as the tendency to allocate item j to the pallet i at πk. It is directly proportional
to the score and inversely proportional to the volume and torque of each item.

θij =
sj
vj
×
(
1−

wj × |Dlong
i |

max(wj)× max(|Dlong
i |)

)
; i ∈ {1, . . . ,m}, j ∈ {1, . . . , nπk

} (15)

η1

| shims |

η2

θij

eij
Figure 1.: nπk

possible edges eij sorted by θij in non-ascending order

Considering only items that can be shipped at πk, Figure 1 represents nπk
possible edges

eij of pallet i sorted by θij in non-ascending order. Initially, Shims builds a greedy solution
for the pallet i selecting edges up to index η1 (�rst phase). Then, with edges between η1
and η2, it elaborates di�erent possible complements (second phase), including later the best
ones in the same pallet (third phase). Shims is depicted in Algorithm 6.
Initially, Qπk

(line 3) corresponds to packed contents that remain on board.
It's important to keep in mind that the procedures UpdatePacked(M , Qπk

, πk) and
SetPalletsDestinations(M , πk) modi�ed EQπk

and M . Then, pallets i are considered in

non-descending order of |Dlong
i |.

For each pallet i, its nπk
possible edges eij are considered in non-increasing order of θij .

In the greedy phase (lines 4-21), a partial solution for each pallet i is constructed by
adding edges following θij non-ascending order. The η1 index corresponds to the accumulated
volume equal to Vi× limit. In η2 index, this same accumulated volume reaches (1+2× (1−
limit))×Vi. The size of this range [η1, η2] was de�ned empirically, and the value limit = 0.92
(line 7) was determined by the iRace tool (Lopez-Ibanez, Dubois-Lacoste, Cáceres, Birattari
and Stützle, 2016).
In the composition phase (lines 22-28), a set of shims named Set is created for each pallet

i, where each shim is formed by a set of edges in the range [η1, η2], whose total volume is
limited by slacki. In this phase, the heuristic that provided the best results, both in terms
of time and quality, is based on First-Fit Decreasing, which is an approximation algorithm
for the Bin Packing Problem (Johnson and Garey, 1985). Basically, shims are created by
accumulating the following edges, taking slacki as a limit.
In the selection phase (lines 29-52), the best shim in Set is chosen. Initially, two shims

7

are found: shw with larger weight and shv with larger volume. Between the two, the one
with the highest score will be chosen, and its edges will be inserted into ENπk

.

8

Algorithm 6 Shims heuristic at πk

1: SolveNode in: Shims,πk, G, tmax out: G(M ∪Nπk
∪Qπk

, EQπk
∪ ENπk

)
2: Tbegin ← current system time
3: Let G(M ∪Nπk

∪Qπk
, EQπk

)

4: Sort M by |Dlong
i | in non-descending order

5: ENπk
← ∅

6: τmax ←Wmax × limitCG
long

7: limit← 0.92
8: for i← 1 to m do
9: τπk

←
∑

(i,q)∈EQπk

wq ×Dlong
i

10: voli ←
∑

(i,q)∈EQπk

vq

11: Let E be an array of nπk
possibles edges of pallet i sorted by θij in non-ascending order

12: η1 ← 1
13: repeat
14: eij ← Eη1

15: if (ENπk
∪ {eij} is feasible) and (voli ≤ Vi × limit) and (|τπk

+wj ×Dlong
i | ≤Wmax ×

limitCG
long) then

16: ENπk
← ENπk

∪ {eij}
17: voli ← voli + vj
18: τπk

← τπk
+ wj ×Dlong

i
19: η1 ← η1 + 1
20: end if
21: until (voli > Vi × limit) or (η1 > nπk

)
22: slacki ← Vi − voli
23: η2 ← η1
24: while (η2 ≤ nπk

) and (voli < (1 + 2× (1− limit))× Vi) do
25: eij ← Eη2

26: voli ← voli + vj
27: η2 ← η2 + 1
28: end while
29: vol← 0; b← 1; shimsb ← ∅; Set← {shimsb}
30: for x← η1 to η2 do
31: if Tcurrent − Tbegin > tmax then
32: break
33: end if
34: NewShims← True
35: eij ← Ex

36: for shims ∈ Set do
37: if (eij ̸∈ (ENπk

∪ shims)) and (eij is feasible) and ((vj + vol) ≤ slacki) then

38: shims← shims ∪ {eij}
39: vol← vol + vj
40: NewShims← False
41: break
42: end if
43: end for
44: if NewShims then
45: vol← 0; b← b+ 1; shimsb ← {eij}
46: Set← Set ∪ {shimsb}
47: end if
48: end for
49: shw ← shims, where shims ∈ Set and

∑
eij∈shims wj is maximum

50: shv ← shims, where shims ∈ Set and
∑

eij∈shims vj is maximum

51: shbest ← shims, where shims ∈ {shw, shv} and
∑

eij∈shims sj is maximum

52: ENπk
← ENπk

∪ shbest

53: end for

9

2. Implementation and results

This section is composed of two parts: the generation of test instances and the results
obtained in our implementation.

2.1. Instances generation

As we are dealing with a new problem that, until now, had not been modelled in the
literature, we have to create our own benchmarks. For this, we based it on the characteristics
of real airlifts carried out by the Brazilian Air Force with its own aircraft or air cargo
charters, as described below.
In the delivery of supplies carried out in Brazil from 2008 to 2010, 23% of items weighed

between 10 kg and 20 kg, 22% from 21 kg to 40 kg, 24% from 41 kg to 80 kg, 23% from 81
kg to 200 kg, and 8% between 201 kg and 340 kg. These �ve groups of items are described in
Table 2, where P represents the group probability. On the other hand, the average density
of these items is approximately 246 kg/m3.

Table 2.: Items weight distribution

x P low (kg) high (kg)

1 0.23 10 20
2 0.22 21 40
3 0.24 41 80
4 0.23 81 200
5 0.08 201 340

In the generation of test instances, we use two types of random selections:
RandomInt(i1, i2), that randomly selects an integer number in [i1, i2], where i1 and i2
are integer numbers; and Roulette(), that is biassed through P to select x in Table 2.

ItemsGeneration, which generates N (all items to be moved among nodes), is described
in Algorithm 7.
Variable scenario de�nes L and M (line 2), and argument surplus sets a limit on the

total volume of items at each node (line 3). To avoid simply loading all items, we use
surplus ∈ {1.2, 1.5, 2.0}. This also represents more instances for tests in each scenario.
For each generated itemk

j , its destination is randomly selected (line 12), its weight has a
distribution according to Table 2 (lines 14-15), its score varies 100 (highest) and 5 (lowest)
according to a logarithmic scale (line 16), and its volume is randomly de�ned from the
density, where we allow a variation of 40% around the average density of 246 kg/m3 (line
17).

References

Alonso, M.T., Alvarez-Valdes, R., Parreno, F., 2019. A grasp algorithm for multi-container
loading problems with practical constraints. A Quarterly Journal of Operations Research
18, 49�72.

Charon, I., Hudry, O., 1993. The noising method: a new method for combinatorial
optimization. Operations Research Letters 14, 133�137.

Charon, I., Hudry, O., 2001. The noising methods: A generalization of some metaheuristics.
European Journal of Operational Research 135, 86�101.

10

Algorithm 7 Generating items

1: ItemsGeneration in: scenario, surplus out: N
2: Let L be the set of nodes and M the set of pallets
3: limit← surplus×

∑m
i=1 Vi

4: for k ← 0 to K do
5: Nπk

← ∅
6: j ← 0
7: vol← 0
8: while vol < limit do
9: j ← j + 1

10: Let itemπk
j be the item j at πk

11: repeat
12: toj ← RandomInt(0,K)
13: until toj ̸= πk

14: x = Roulette() ▷ biased through P (Table 2)
15: wj ← RandomInt(low(x), high(x))
16: sj ← ⌊100× (1− log10(RandomInt(1, 9)))⌉
17: vj ← wj/RandomInt(148, 344)
18: vol← vol + vj
19: Nπk

← Nπk
∪ {itemπk

j }
20: end while
21: end for
22: N ←

⋃
0≤k≤K Nπk

Dorigo, M., 1992. Optimization, Learning and Natural Algorithms. Ph.D. thesis. Politecnico
di Milano.

Dorigo, M., Maniezzo, V., Colorni, A., 1996. The ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics 26, 29�41.

Feo, T.A., Resende, M.G.C., 1989. A probabilistic heuristic for a computationally di�cult
set covering problem. Operations Research Letters 8, 67�71.

Fidanova, S., 2006. Ant Colony Optimization and Multiple Knapsack Problem. volume
Chapter 33. J�Ph. Renard editor.

Glover, F., 1986. Future paths for integer programming and links to arti�cial intelligence.
Computers and Operations Research 13, 533�549.

Johnson, D.S., Garey, M.R., 1985. A 7160 theorem for bin packing. Journal of Complexity
1, 65�106.

Lopez-Ibanez, M., Dubois-Lacoste, J., Cáceres, L., Birattari, M., Stützle, T., 2016. The
irace package: iterated racing for automatic algorithm con�guration. Operations Research
Perspectives 3, 43�58.

Niar, S., Freville, A., 1997. A parallel tabu search algorithm for the 0-1 multidimensional
knapsack problem, in: Proceedings 11th International Parallel Processing Symposium, pp.
512�516.

Zhan, S., Wang, L., Zhang, Z., Zhong, Y., 2020. Noising methods with hybrid greedy repair
operator for 0-1 knapsack problem. Memetic Computing 12, 37�50.

11

