Air cargo load and route planning in pickup and delivery operations

ARTICLE HISTORY
Compiled November 28, 2023

ABSTRACT

We model and solve the problem of planning the loading and routing of an aircraft
according to a utility score, weight and balance principles, fuel consumption, and cost
increases due to centre of gravity displacement in a tour of simultaneous pickup and
delivery. This is necessary because in the aerial pickup and delivery of goods, transport
aviation faces risks of cargo unbalancing and wrong delivery due to the urgency required
for loading for mission accomplishment. It is solved by integer programming and four
known meta-heuristics to select the method that most fits the operational requirements.
We also created a heuristic that quickly finds viable solutions for a wide range of problem
sizes in much less than the operationally acceptable time. The output is an essential part
of airlift because it guarantees flight safety, makes ground operations more efficient, and
makes sure that each item gets to its right destination.

KEYWORDS
Air Cargo Optimization; Air Palletization; Weight and Balancing; Integer Programming;
Meta-heuristics

1. Solution strategies

This problem’s work’s requirements are presented in the mathematical model, and it was
verified that ACLP+RPDP is NP-hard. Let’s dive into the strategies adopted to make
the exact solution run in polynomial time. One common strategy is to use approximation
algorithms that provide near-optimal solutions with a guaranteed performance ratio.
Another approach is to develop heuristics that may not guarantee an optimal solution
but can quickly find suitable solutions in practice. These strategies aim to strike a balance
between computational efficiency and solution quality.

Throughout our research, we have thoughtfully described the ACLP+RPDP model in
standard MIP format and found that no MIP solver can not handle its practical cases
in a feasible time. Thus, as ACLP+RPDP is highly complex, involving four intractable
sub-problems (APP, WBP, PDP, and TSP), our strategy will be to focus only on real cases
and to develop quick node-by-node solutions, close to optimal, that allow us to build a
complete tour.

ACLP+RPDP solutions define a tour and a corresponding loading and unloading plan at
each node. In this way, equipment’s use at each node will be the only factor limiting loading
and unloading times.

On the other hand, we know that transport aircraft generally have a few dozen pallets,
flight itineraries have fewer than six nodes, and each node has hundreds of items to be
shipped. We also know that missions with fewer nodes are more frequent than longer ones.
Under these circumstances, we can adopt two more strategies:

— We will consider that the number of destinations exceeds 1, to avoid the case of a
single and trivial tour, but less than the number of pallets, that is, 1 < K < m. So we
can preset pallets’ destinations at each node. In this way, we will reserve a number of
pallets proportional to volumes for each destination at the shipping node. We could
have used another criterion, but it was observed in the experiments that volume is
more constrictive in airlift.

— As the number of nodes is small, we have the chance to check the solution
corresponding to the tour with the shortest total distance and even test all possible
tours, selecting the one that provides the best value for the objective function.

Our complete strategy is summarised in Algorithm 1.

Algorithm 1 Solving the ACLP+RPDP

ACLP+RPDP in: scenario, surplus,tmax out: answerl, answer2
Let M be the set of pallets (¢fr. Table 77?)
Let K, L and C be according to scenario (cfr. Tables 7?7, 7?7 and 1)
Let mrsp1 and mrgpe be the shortest tours (¢fr. Table 1)
N « ItemsGeneration(scenario, surplus)
for each method do
f1 < SolveTour(wrsp1, L, M,C, N, method, tmax) > Algorithm 2
fa < SolveTour(wrgpa, L, M,C, N, method, tmax)
answerl[scenario, surplus, method] < max(f1, f2)
for each m € Sk do
fr < SolveTour(mw, L, M, C, N, method, tmaz/K!)
end for
answer2[scenario, surplus, method] < max fr
: end for

O 00 3 O Ut = W N =

e e e e
= W N = O

In this algorithm, we use five values for scenario, according to Tables ?? and 1, which
define the number K of destinations, the set L of nodes, costs C, and the shortest tours

mrsp1 and Trgpa.

Table 1.: Testing scenarios

Scenario K L Trspl TS P2
1 2 {0,1,2} 0120 0210
2 3 {0,1,2,3} 01230 03210
3 4 {0,1,2,3,4} 041230 032140
4 5 {0,1,2,3,4,5} 0412530 0352140
5 6 {0,1,2,3,4,5,6} 04126530 03562140

The parameter surplus is a value in {1.2,1.5,2.0}, which corresponds, at 7, to the ratio
between items’ sum of volumes and pallets’ load capacity (surplus = > 7%, v;/> 70, Vi).
This parameter allows us to verify the different behaviours of each method, according to the
scenario and quantities of items available for shipment. It is passed to ItemsGeneration
(line 5), responsible for selecting items to be shipped, which will be presented in the next
section (Algorithm 7).

Parameter tmax is a run time limit that will be distributed among tours (lines 7, 8,
and 11). method corresponds to a MIP solver or a heuristic to the node-by-node solution
SolveT our, which will be presented in subsection 1.2.

The best results corresponding to the shortest tours are stored in answerl (line 9), and
those obtained by testing all K! tours are stored in answer2 (line 13).

Next, we will present two subsections: in the first, we explain how SolveT our is executed,
presetting pallets’ destinations. In the second, we will present the heuristics developed for
node-by-node solutions.

1.1. SolveTour algorithm

As we commented in the previous subsection, we will adopt the strategy of presetting the
destinations of each pallet throughout the tour. This is feasible in practical cases where
1 < K < m. For this, each pallet ¢ also has a field Ti’“, 0 < k < K, which stores its next
destination after being loaded at 7. For this reason, le elp,1<i<m,and 0< k< K.

SolveTour is described in Algorithm 2, where 7 is a node permutation (excluding the
base) that defines the order of visits in this tour, method corresponds to a MIP solver or a
heuristic for solving node-by-node sub-problems, and tmax is the run time limit that will
be distributed among the K + 1 legs of the tour.

Algorithm 2 Solving the tour m with method

1: SolveTour in: w, L, M,C, N, method, tmax out: score/cost

2: Mo <0 > all tours start and end at the base.
3: 41 <0

4: score <0

5: cost < 0

6: for k£ < 0 to K do

7 Ly, < L—{mp,m1,..., 7k} > set of remaining nodes is updated.
8: T« —-1,1<i<m > pallet destination is unset.
9: if kK =0 then

10: Let G1(M U Ny, @) > no packed contents at the base.
11: else

12: Eq.,, M < UpdatePacked(M, Qx,,) > Algorithm 3
13: Let Gl(]V[UNﬂ-k UQﬂk,EQﬂk)

14: end if

15: M <« SetPalletsDestinations(M,) > Algorithm 4
16: G4 < SolveNode(method, 7y, G1,tmaz /(K + 1)) > A chosen method for 7y
17: 8,7 + ScoreAndT orque(ry, Ga) > Algorithm 5
18: score <— score + s

19: cost <= cost 4 Cry iy X (14 ¢y X |T])
20: end for

As all tours start and end at the base 0 (lines 2-3), and after initialising the score and cost
values (lines 4-5), there is a loop for the K + 1 flights (lines 6-20). The set L., of remaining
nodes is updated (line 7), and pallet destinations are unset (line 8).

When the aircraft is at the base, the initial graph G is empty, and there are no packed
contents 10. Otherwise, Update Packed (line 12) returns the set of packed contents that
have not yet reached their destination and remain on board, rearranging them on pallets to
minimise CG deviation. This allocation is stored in graph G; (line 13).

Update Packed, described in Algorithm 3, finds the best packed-pallet allocation, in terms
of CG deviation, for packed contents that remain on board.

Algorithm 3 Updating packed contents that remain boarded at g
1: UpdatePacked in: M,Q,,,m out: EQ%,M

2: Eq, <+ MinCGDeviation(Eq,,) > equations 1, 2, and 3
3: for i +— 1 to m do

4 for ¢ < 1 to m,, do

5: T —1

6: if (i,q) S EQWk then

7 T < to, > reassign pallet destinations.
8: end if

9: end for

10: end for

SetPalletsDestinations (line 15 from Algorithm 2) presets the destination of each pallet
based on the current node’s volume demands, without changing the pallet’s destination with
packed contents, as described in Algorithm 4.

SolveNode includes edges corresponding to items shipped at the current node, returning
the graph G2 (line 15). Score and CG deviation of Gg are calculated (line 17) and
accumulated (lines 18-19), allowing the final result of this tour as output.

MinCG Deviation (line 2) relocates packed contents on pallets, minimising torque and
ensuring that they all remain on board, one packed content on each pallet. It is run through
a MIP solver with the objective function (1) and constraints (2) and (3). As there are few
variables, Eq, 1s obtained in less than 30 milliseconds. Finally, the destination of each
pallet with packed content is updated (lines 3-10).

m mﬂk
min ‘ Z Z Y;Z X wq X Dﬁong (1)
i—1 g=1
m
Zifi};:l;qe{lv"'vmﬂ’k} (2)
=1

m,,k

dYvk<nie{l,...,m} (3)
q=1

The parameter vol stores the demand volume of items destined for the non-visited nodes
(line 2). The destination of empty pallets is defined proportionally to the volume of items
to be embarked (lines 14-25). max is the destination with maximum volume demand (line
10), and needed is the number of necessary pallets to node x (line 16). The destination with
the maximum volume defines any remaining pallets (lines 26-30).

The procedure ScoreAndTorque, which is explained in Algorithm 5, looks at the
allocation graph G made by SolveNode at m; and gives back the cargo score and the
aircraft torque that go with it.

The evaluation algorithm (5) has a loop that goes through all pallets (lines 5718), adding
up the items’ scores (lines 8 and 14) and torques (lines 9 and 15) so that the aircraft torque
(line 19) can be found.

1.2. Node-by-node solutions

In this subsection, we present two implementations of the SolveNode algorithm: with a
MIP solver and with heuristics.

Algorithm 4 Setting pallets destination based on items to be embarked at 7y

1: SetPalletsDestinations in: M, 7w, out: M

2: voly <=0, € Ly,

3: maz <0 > destination with maximum volume demand.
4: total < 0

5: for j 1 to n,, do

6: if tOj S Lﬂk then

7 v0l1o; < VOlyo, + v

8: total < total + v,

9: if volyo; > v0lpa, then
10: mazx < to;
11: end if
12: end if
13: end for

14: for x € L,, do

15: if vol, # 0 then

16: needed < max{l, | (m — mz,) X voly/total |}
17: np + 0

18: for i + 1 to m do

19: if (np < needed) and (I = —1) then
20: T « x
21: np <+ np+1 > number of necessary pallets to node =x.
22: end if
23: end for
24: end if
25: end for

26: for i < 1 to m do
27: if T[" < —1 then

28: T < max > any remaining pallet is assigned to the maximum demand destination.
29: end if
30: end for

1.2.1. Node-by-node solutions with a MIP solver

Our strategy adopted in SolveT our defines the values of some variables: the set of nodes
to be visited is updated, packed contents that remain on board are reallocated to minimise
the CG deviation, and pallets’ destinations are determined according to the volume of items
available for shipment.

In this way, the mathematical model for SolveNode(MIP, 7, G,tmazx) becomes simpler,
which finds an allocation of available items at m using previously defined values of Ly, ,
T, and aj*. So, we use a MIP solver with a time limit ¢max at 7 to find the best solution
for the objective function (4) using the calculus equations (5) and (7), while keeping the
constraints (8) and (14). Binary variables X;; and Y;, define sets of edges En,_ and Eq,_,
respectively, included in graph G.

max f = §5/¢ (4)
m Ty,
i=1 j=1
m Ty, My,
Ty = Z {Dfang X (z Xij X wj + Z Yig % wq)} /Wmaz X limitggg (6)
i=1 Jj=1 q=1

Algorithm 5 Cargo score and aircraft torque

1: ScoreAndTorque in: 7, G out: s, T
2: Let G(Vﬂk,EQw @] EN"'k)

3: 50

4: 71+ 0,1<1<m

5: for i < 1 to m do

6 for j < 1ton,, do

e if XZ;" =1 then

8: S s+s; > accumulates cargo score
9: T T + wj X Dﬁong > accumulates aircraft torque
10: end if

11: end for

12: for ¢ < 1 to m,, do

13: if V7" =1 then

14: § 4 5+ 54 > accumulates cargo score
15: Ti 4 T; + Wwq X Dzl»ong > accumulates aircraft torque
16: end if

17: end for

18: end for

19: 7 3" T/ (Winaz ¥ lz’mz’t,%gg) > final calculation of aircraft torque

¢ = Crympns X (14 ¢ X |Tr,|)

|T7Tk-|§1

n""k 'I”fL,rk
D Xigxwj+ Y Yigxwg < Wi i€ {1,...,m}
j=1 g=1
TLﬂ-k m,\-k
D Xy xvj 4> Yigxvg< Vigie{l,...,m}
j=1 q=1

m

ZXZJ <]-7 je {L"‘?nﬂ'k}

i=1

Xij=0;toj ¢ Lr;ie{l,...,m}; je{l,...,ng}
Xij < Xij x (T —toj +1); i e {1,...,m}; je{l,...,ng}

Xij < Xij % (toj =T 4+1); i €{1,....,m}; je{l,....,ng}

(10)

(11)
(12)
(13)

(14)

Constraints (13) and (14) are equivalent to X;; = 1 if to; = T*, and X;; = 0 otherwise .

1.2.2. Node-by-node solutions with heuristics

One of the objectives of this work was to find a quick heuristic that offers a good-quality
solution for the node-by-node problem. We use well-known meta-heuristics to create
algorithms, such as Ant Colony Optimisation (ACO) (Dorigo, 1992; Dorigo, Maniezzo and
Colorni, 1996), Noising Method Optimisation (NMO) (Charon and Hudry, 1993, 2001; Zhan,
Wang, Zhang and Zhong, 2020), Tabu Search (TS) (Glover, 1986), and Greedy Randomised
Adaptive Search Procedure (GRASP) (Feo and Resende, 1989). We considered several

ideas from literature (Alonso, Alvarez-Valdes and Parreno, 2019; Fidanova, 2006; Niar and
Freville, 1997; Zhan et al., 2020), and we were careful to use the same data structures and
procedures in all implementations to enforce fair results comparison.

However, the heuristic that presented better solutions was none of the previous ones. In
this subsection, we will present a new heuristic for the node-by-node problem, called Shims.
Like in mechanics, shims are collections of spacers to fill gaps, which may be composed of
parts with different thicknesses. This strategy is based on a practical observation: usually,
subsets of smaller and lighter items are saved for later adjustments to the remaining available
space.

The selection of edges for Ex_ uses the edge attractiveness 6;; (15), which can be
understood as the tendency to allocate item j to the pallet ¢ at 7. It is directly proportional
to the score and inversely proportional to the volume and torque of each item.

55 wj % | D™

0” = X (1 o long
Uj max(w;) x max(|D;""|

));iE{l,...,m},jE{1,~~an7rk} (15)

m 2 €ij
Figure 1.: n,, possible edges e;; sorted by 6;; in non-ascending order

Considering only items that can be shipped at 7, Figure 1 represents n,, possible edges
ei; of pallet i sorted by 0;; in non-ascending order. Initially, Shims builds a greedy solution
for the pallet i selecting edges up to index 7 (first phase). Then, with edges between 7,
and 7, it elaborates different possible complements (second phase), including later the best
ones in the same pallet (third phase). Shims is depicted in Algorithm 6.

Initially, Qr, (line 3) corresponds to packed contents that remain on board.

It’s important to keep in mind that the procedures UpdatePacked(M, Qr.,) and
SetPalletsDestinations(M, m) modified Eq_— and M. Then, pallets i are considered in

non-descending order of | D!,

For each pallet 4, its n,, possible edges e;; are considered in non-increasing order of 0;;.

In the greedy phase (lines 4-21), a partial solution for each pallet i is constructed by
adding edges following ¢;; non-ascending order. The 7; index corresponds to the accumulated
volume equal to V; x limit. In 1y index, this same accumulated volume reaches (142 x (1 —
limit)) x V;. The size of this range [n1, 72] was defined empirically, and the value limit = 0.92
(line 7) was determined by the iRace tool (Lopez-Ibanez, Dubois-Lacoste, Caceres, Birattari
and Stiitzle, 2016).

In the composition phase (lines 22-28), a set of shims named Set is created for each pallet
i, where each shim is formed by a set of edges in the range [n1,72], whose total volume is
limited by slack;. In this phase, the heuristic that provided the best results, both in terms
of time and quality, is based on First-Fit Decreasing, which is an approximation algorithm
for the Bin Packing Problem (Johnson and Garey, 1985). Basically, shims are created by
accumulating the following edges, taking slack; as a limit.

In the selection phase (lines 29-52), the best shim in Set is chosen. Initially, two shims

are found: sh,, with larger weight and sh, with larger volume. Between the two, the one
with the highest score will be chosen, and its edges will be inserted into Ex, .

Algorithm 6 Shims heuristic at

e o e
=W N = O

—
ot

16:
17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:

50:
51:
52:
53:

W 0 N O Gtk W =

SolveNode in: Shims,my,, G,tmazx out: G(M U Nx, U Qx,, Eq,, UEN,)
Thegin + current system time
Let G(M U N, U Q,Tk,EQWk)

Sort M by |D'™| in non-descending order

En. <+ O

" i +CG
Tmaz < Wmaz X llmZtlong
limit < 0.92

for : < 1 tom do .
Tre < E(i,q)eEQﬂ_k Wq X Diong
vol; < Z(i,q)eEka Vg
Let E be an array of n,, possibles edges of pallet i sorted by 6;; in non-ascending order
m <1
repeat

€ij E771
if (En,, U{ei;} is feasible) and (vol; <V; x limit) and (|7x, +w; x Déong\ < Winaz X
limitggg) then
EN’% «— EN’% U {eij}
vol; < vol; + v;
Try & Ty + W5 X Dﬁong
m<<m+1
end if
until (vol; > V; x limit) or (1 > ng,)
slack; < V; — vol;
N2 <
while (72 < ng,) and (vol; < (142 x (1 —limit)) x V;) do
€ij < E772
vol; < vol; + v;
n e+l
end while
vol « 0; b < 1; shimsy, < &; Set + {shimsy}
for x < 1 to 12 do
if Tewrrent — Thegin > tmax then
break
end if
NewShims < True
€ij < Ew
for shims € Set do
if (e;; (En,, Ushims)) and (e;; is feasible) and ((v; + vol) < slack;) then
shims < shims U {e;;}
vol < vol 4 v;
NewShims < False
break
end if
end for
if NewShims then
vol <— 05 b <= b+ 1; shims, < {e;;}
Set < Set U {shimsp}
end if
end for
shyy < shims, where shims € Set and)

sh, < shims, where shims € Set and Zcijeshims v; is maximum
Shpest < shims, where shims € {shy,, sh,} and >
En,, < En, U sheest

end for

eijEshims wy 1s maximuin

ei;Eshims Sj 18 INaximuln

2. Implementation and results

This section is composed of two parts: the generation of test instances and the results
obtained in our implementation.

2.1. Instances generation

As we are dealing with a new problem that, until now, had not been modelled in the
literature, we have to create our own benchmarks. For this, we based it on the characteristics
of real airlifts carried out by the Brazilian Air Force with its own aircraft or air cargo
charters, as described below.

In the delivery of supplies carried out in Brazil from 2008 to 2010, 23% of items weighed
between 10 kg and 20 kg, 22% from 21 kg to 40 kg, 24% from 41 kg to 80 kg, 23% from 81
kg to 200 kg, and 8% between 201 kg and 340 kg. These five groups of items are described in
Table 2, where P represents the group probability. On the other hand, the average density
of these items is approximately 246 kg/m?>.

Table 2.: Items weight distribution
x P low (kg) high (kg)

1 023 10 20
2 0.22 21 40
3 024 41 80
4 0.23 81 200
5 0.08 201 340

In the generation of test instances, we use two types of random selections:
RandomlInt(iy,is), that randomly selects an integer number in [i1, i2], where i1 and iy
are integer numbers; and Roulette(), that is biassed through P to select x in Table 2.

ItemsGeneration, which generates N (all items to be moved among nodes), is described
in Algorithm 7.

Variable scenario defines L and M (line 2), and argument surplus sets a limit on the
total volume of items at each node (line 3). To avoid simply loading all items, we use
surplus € {1.2, 1.5, 2.0}. This also represents more instances for tests in each scenario.

For each generated itemﬁf‘, its destination is randomly selected (line 12), its weight has a
distribution according to Table 2 (lines 14-15), its score varies 100 (highest) and 5 (lowest)
according to a logarithmic scale (line 16), and its volume is randomly defined from the
density, where we allow a variation of 40% around the average density of 246 kg/m3 (line
17).

References

Alonso, M.T., Alvarez-Valdes, R., Parreno, F., 2019. A grasp algorithm for multi-container
loading problems with practical constraints. A Quarterly Journal of Operations Research
18, 49-72.

Charon, [., Hudry, O., 1993. The noising method: a new method for combinatorial
optimization. Operations Research Letters 14, 133-137.

Charon, 1., Hudry, O., 2001. The noising methods: A generalization of some metaheuristics.
European Journal of Operational Research 135, 86-101.

10

Algorithm 7 Generating items

1: ItemsGeneration in: scenario, surplus out: N
2: Let L be the set of nodes and M the set of pallets
3: limit surplus x > " 'V;

4: for k < 0 to K do

5 Ny <— O
6: 7+0
7: vol 0
8: while vol < limit do
9: je g+l
10: Let item’* be the item j at m
11: repeat
12: to; < RandomInt(0, K)
13: until to; #
14: x = Roulette() > biased through P (Table 2)
15: w; < RandomInt(low(x), high(z))
16: sj < 100 x (1 — log;o(RandomInt(1,9)))]
17: vj + w;/RandomInt(148,344)
18: vol < vol + v;
19: Ny ¢ Ng, U{item7"}
20: end while ‘
21: end for

22: N Uogkgx Nr,

Dorigo, M., 1992. Optimization, Learning and Natural Algorithms. Ph.D. thesis. Politecnico
di Milano.

Dorigo, M., Maniezzo, V., Colorni, A., 1996. The ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics 26, 29-41.
Feo, T.A., Resende, M.G.C., 1989. A probabilistic heuristic for a computationally difficult

set covering problem. Operations Research Letters 8, 67-71.

Fidanova, S., 2006. Ant Colony Optimization and Multiple Knapsack Problem. volume
Chapter 33. J-Ph. Renard editor.

Glover, F.; 1986. Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research 13, 533-549.

Johnson, D.S., Garey, M.R., 1985. A 7160 theorem for bin packing. Journal of Complexity
1, 65-106.

Lopez-lbanez, M., Dubois-Lacoste, J., Caceres, L., Birattari, M., Stiitzle, T., 2016. The
irace package: iterated racing for automatic algorithm configuration. Operations Research
Perspectives 3, 43-58.

Niar, S., Freville, A., 1997. A parallel tabu search algorithm for the 0-1 multidimensional
knapsack problem, in: Proceedings 11th International Parallel Processing Symposium, pp.
512-516.

Zhan, S., Wang, L., Zhang, Z., Zhong, Y., 2020. Noising methods with hybrid greedy repair
operator for 0-1 knapsack problem. Memetic Computing 12, 37-50.

11

