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Introduction

In this supplementary material we provide the proofs of model identifiability and the the-
orems of the paper. We denote Pf = [ f(z)dP(z), Pp,f = %Z?:l f(X;) and G, f =
Vn(P, — P)f. We use the symbol < to denote that the left hand side is bounded above by
a constant times the right hand side, 2 to denote that the left hand side is bounded below
by a constant times the right hand side, and =< to denote that both < and 2 apply. We
use | X| to denote the absolute value of X if X is a scalar, or the square-root of the largest
eigenvalue of XX T if X is a vector or matrix.

Let K = {m,..., 7k} be a set of partition points of [0,1] with maxi«j<k |17 — Tj—1] =
O(K~1). Let S(K,p) denote the space of polynomial splines of order p > 1 with the knots
sequence K as defined in the Definition 4.1 of Schumaker (1981). Let Ky = {71, ..., 7, } be a
set, of partition points of [0, 1] with max; <j<f, |7 —7j-1] = O(K'); and Ky = {t1,...,tx, }
denote a set of partition points of [a,b] with maxi<j<k, [t; — tj-1] = O(Kll). Define
S(Ku,pu) and S(ICy, py) similarly as S(K,p). For notation consistency, let g = K and
ps = p. Define B? = S(Kgs,ps), and the sieve spaces Bi = S(K,,pu), Gy = S(Kys ),
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and ©, = Z x B? x GY x B x MK, The original parameter space is denoted as © =

= x B x G¥ x B x MK,
Working assumption for outcome-dependent follow-up

Following the idea of Lipsitz et al. (2002), we present a working assumption under which
we can ignore the possible outcome-dependent follow-up.

Let D = tix, — tix—1, k = 2,...,m;, be the time between follow-up times k — 1 and k,
and

Dz’ = (DZ'Q’ ceey Dz,ml)

We assume that the conditional distribution of D;j, given the observed history of longitudi-
nal outcomes y;, time-independent variable z;, and the survival data (r;,d;), depends only
on the previously observed longitudinal outcomes (y;1, ..., i k—1) and the time-independent

variable z;, i.e.,
f(Dik|Di2, .., Di -1, Yi, 73,03, 2i) = f(Dig|Diy ey Dik—1,Yits -, Yi—1, Zi)
= f(Dik|yi17"'7yi,k—lazi)7

for k = 2,...,m;. For example, under this assumption, women with a history of fast dilation
on previous measurements (Y1, ..., % k—1) may be expected to have smaller values of Djj.
Although m; is also a random variable, its value is completely determined by D; and 7;,
and thus can be neglected in the following discussion. The joint density function of the

observed data (D;,y;, i, 0;) for the ith invidual can be written as
m;
f(Disyi, 13, 04, 2i) = {H F(Diklyirs s Yig—1, zi)} f(yi,ris 0il i) f(23).
k=2

We further assume that {HZL:ZQ F(Diklyits s Yik—1, zz)} and f(z;) are free of the parameters
of interest. Therefore, the joint likelihood function reduces to be f(y;,r;, d;|z;) which is the

likelihood function considered in Section 3.2.

Identifiability

Proof of identifiability is similar to that of Gervini and Gasser (2004). We need to prove

that if there exists (u, g;) and (u*, g;) satisfying the above assumptions, such that

mg; (1)) = 1 (g7 " (tij)) with probability 1, (1)



then p = p* and g; = g
Suppose
Tij = g;l(tij), i.e., tij = gi(Tij)-
Then if the equation (1) holds, we have
w(1i5) = (g7 (gi(7i;))) with probability 1.
By the B-spline model assumption that ¢;(7) = g(7;u;) with u; ranging from —oo to oo

with positive density, we have 7;; = g, 1(t,~j) has a positive density function in (0, 1). Thus,

p(r) = 1 (g7 (9i(7))), v € (0,1).

By condition (C.7) in the main paper, the local extrema of y are isolated points because
1 is piecewise monotone without flat areas. Further, since the left hand side does not depend
on i and by condition (C.7), the right hand side should not neither, i.e., there exists a fixed

function h(7), such that

g7 gi(r)) = h(7), e, gi(r) = gi (h(7)).

Note that the mean registration function, denoted by Elg;(7)] = vo(7), is a strictly increas-

ing function as ensured by E(u;) = 0. We have

w(r) = Elgi(1)] = Elg; (h(7))] = vo(h(7)),

i.e., h(r) = 7. Therefore, we have proved that u(7) = p*(7) and g;(7) = ¢ (7). O
Proof of Theorem 1

Denote by O; := (r;, i, Z;, yi, t;) the ith observation. By the definition of 0,, and model

assumptions about 8y, we have

On = argmaxP, {((6;0:)},
6y = argmaxP {{(60;0;)}.
6co

The convergence rate of d(én, 0y) is obtained by applying Theorem 1 of Shen and Wong
(1994). We need to verify the following three conditions:



A1l. For some constants A7 > 0 and a1 > 0, and for all small € > 0,

inf P(((8p) — £(6)) > 24,6,
{d(eﬂo)nzle,ee@n} ( ( 0) ( )) = 1€

A2. For some constants As > 0 and ag > 0, and for all small € > 0,

sup var(€(6g) — £(8)) < 2452,
{d(6,00)<e,0€0,}

A3. Let F,, = {£(0) — {(7,00),0 € ©,}, where 7,0 is the projection of 8y in O,,. For

some constants ry < % and Az > 0,
H(e, Fo, || - loo) < Agn®e"

for all small € > 0, where H (e, F,,, || - ||oo) is the Loo-metric entropy of the space F,,
i.e., exp(H (€, Fn,| - ||co)) is the number of e-balls in the L.,-metric needed to cover

the space F,.

The above three conditions are checked via the Fréchet derivatives of £(8; O;), which
are calculated by the Gateaux derivatives. For any fixed § € B?, u € B* and ¢ € G¥, let
Ba, pa and P respectively be smooth curves in B2, B# and G¥ running through 8, 1 and
1 at A = 0. Define tangent spaces

0

Hp = {hﬁl hﬂZiaﬁAA o’ ﬁAGBﬁ},
0

M, = {hu: h=2| uAeB“},

Hy = {hw: hy = ?—AA‘AZO, Ya € g¢},

and Hg = {ho = (hg¢, hp, hy, by, hs) € © = [lhell, [|hgllso, 1hyllao, 1hull o, IRs]] < Mo <
oo}. The one-dimensional submodel along hg = (h¢, hg, hy, by, hs) can be expressed as
Oa = 0+Ahg = (§+ Ahg, B+ Ahg, Y+ Ahy, u+ Ah,, ¥+ Ahy). The Gateaux derivatives
are then calculated by differentiating ¢(04; O;) with respect to A and letting A = 0. Let «
and v represent any two parameters in (£, %, 3, u,%). Denote by éa(e; O,) and ZOCU(G; 0,)
the first and second order derivatives of ¢(0; O;), respectively.

By the definition of 8y and model assumptions, we have P {é(@o; OZ)} = 0. For Con-

dition A1, given that all the second derivatives of ¢(6y; O;) are continuous and uniformly



bounded, the Taylor’s expansion gives

2[P {£(60; 0i)} — P {£(6;0:)}]
= —P{(€ ~ &) lee(80;0.)(€ — €0) + I(80; O[T — T, T — %]
+2(& — &) "les(00; 04)[E — To] + 2(& — &0) " eu(00; 0i) () — po ()]
+2(& — &) "lep(00; 0:)[B — Bo] + 2(€ — &) " ley(80; i) [ — t]
+ 2055(00; 0;)[Z — S0, B — Bo] + 205,,(00; 0:)[S — So, pt — 4]
+ 2054(60; 05) [ — S0, ¢ — tho] + £p5(80; 0:)[B — Po, B — fo
+ 205,,(80; 01)[8 — Bo, 1 — o] + 205, (80; 03)[8 — Bo, ¥ — v
+ L (005 00) (1 — o, 1 — 120] + 26, (803 O5) [ — pao, ¥ — %Z)o]}

+ Gy (80; 03[ — o, ¥ — o] + o(d*(8, 60)).

By the fact of zero-mean for a score function, it is straightforward to verify that

P{ﬁgg(Bo;Oi)} = —P{és(eo;oi)ég(ao;Oi)T}y
P {ea(60:0)lhal} = =P {{e(60: 0:){a(80: 0)[hal }
P {#aul00:0)has bl } = =P {£a(80:0)[Ia)(0(80: 0[] }

where a and v represent any two parameters in (5,1, u, X). Then it follows from direct

calculations that

2[P {1(6; 0,)} ~ P {£(6; 0]
= P{ {(5 —£0) " le(60; O;) + £5(60; 03) [ — fo] + £y (80; Oi) [t — o]

+ 04060 00— ] + 65060 0)[E — %0l] b+ o @O0 (2

Define
v -0 = p{ (€ — €)1 (803 01) + £5(80; 0)[8 — o] + 4/(80: 0115 — o]
+ 04060 00)n ~ ] + (6010 [5 — %al] '}

which is a real-valued functional operator on the tangent space Hg endowed with the norm
1/2

Ihlle = {IIRell? + 1hsliZ, + Iulk, + IrulE, + I1hs]? )

5



for h = (hg, hg, by, hu, hy) € Hg.

We claim that there exist a constant A; > 0, such that
T[O — 0] > A1d*(0,60), VO € © and d(6,6,) > 0

i.e., the Conditon Al is satisfied with oy = 1 since ©,, C ©. Otherwise, we can find a

sequence 0Kl € ©, k =1,2, ..., where d(0¥],8y) > 0, such that
w[o* — o) /d*(0M,80) — 0, as k — cc.
Define
R = (0% — 80)/d(6"", 60) = (61 — 60)/]|6"" — 6ol
We have ||hl¥||g = 1 and ¥[8 — 6] /d?(01*, 8)) = W[AI]]. Tt is equivalent to say that we
can find a sequence hi* € Hg, k =1,2,..., such that ||h!*|e = 1 and
w[hlM] - 0
We can reach a contradiction if we can prove the following three statements:
[S1.1] {h : ||h|le =1} is a compact subset of Hg;
[S1.2] W[h] is a compact operator of h with respect to || - [[o norm;
[S1.3] ¥[h] = 0 implies ||h||e = 0.

Statement S1.1 implies that we can find a convergent subsequence of hl¥!, denoted by k¥,
such that there exits hl% € {h : ||h|je = 1} and lim;_,« ||h/*) — BI%||g = 0. Statement S1.2
implies that

U[Rl] = lim WAk =0

I—o00
By statement S1.3, we have ||h[”|lg = 0 from which we reach the contradiction.
S1.1is proved by Bolzano-Weierstrass Theorem. S1.2 is proved by noting that W[h] maps
h into a finite-dimensional space, namely R, and that (-), ¢(-), 3(-) and p(-) are uniformly
bounded. Now we verify S1.3. The equation ¥[h] = 0 implies that, with probability 1,

h{ le(00; O;) + (5(80; O;)[hg] + £y (00; O;) [hy)

+ £,,(00; 0;)[h,,] + ¥5(09; O;)[hs] = 0. (3)



By definition, we have

£(60;0;) = log fS(Ti75i|Zi>Ui§0?])fy(yi|tiaui§03[10])fu(ui§ZO)dui
= lOg/ exp{fg( S}vrlyélazlvul)+€ (GLO}ayZ,t’Laul)+€u(207u2)}dula (4)
where
0] '
ls(0g"57i, 04, Ziyui) = 04 10g)\0( (ri — g(T03u3)) — / Q(T;Ui)ﬁ(T)dT—ETZ')
0
1
— 8o (A= g(miw)) ~ [ o(mupsriar — €' 2)
1
= 5i¢0<H(Ti—9(To;Ui))—/O Q(T;Ui)ﬂ(T)dT—ETZi)

— /abf(s < H(r; — g(r0;w;)) — /01 g(T;u)B(T)dT — éTZi> exp{¢o(s)}ds,

by(Oysyitiui) = —5(yi - podg " (i u)}) T (yi — pofg " (tiui)}),
1 1 _
Cu(Susus) = = log S| - 5ujzo L.
For simplicity of notations, define 7; = fi(Gg] sug) = H(ry — g(10;u;)) fo Ty u;)B(T)dT —

ETZi, 65(0}8];1%) = 63(0g)};ri,5i,Zi,ui) and £y (6y;u;) = £,(0y;yi,ti,u;). It follows from

direct calculations that

S, exD{Es(05) i) + £y (B3 wi) + Lu(Suswa)} x {s + by + £, }du,

((80;0;) = : 0] ;
Jop, xp{Cs (0 wi) + £,(By; i) + £u(Sus us) Yu;
where
b
lse(0F)w) = —Zi |0 (7i(68)wi)) - / 1(7(05);u;) > s) exp{to(s) Yo (s)ds
. 1 .
isp(OFsulil = = [ ha(atriude [5ain((0F) )
b
- / I(7; (0?]711,@) > s) exp{o(s) }ho(s)ds
. b
lsp(0Fui)lhy] = 0y (7(05)5us)) — / I(7:(85';wi) > s) exp{to(s) s (s)ds
CyuOyui)hy] = (yi — pofg " (tiwi)}) Th(g™" (i wi)),
EU,Z(EO; u;)[hs] = —%trace{(Zal — Ealuiug—zal)hg}.



For any function of u; denoted by f(u;), define £;{f} = |,

u

exp{ls (0 wi) + £,(8,5us) +
Cu(Xu;ui)} X f(uw;)du,;. Then equation (3) can be written as

Ll i+ Dsslhs) + Csylhy) + byl + uslhs)

b
= {50008 w) ~ [ 16 sw) = s) expluals)ots)as]}
1

{

+ .cz-{ hﬁ(f)g(f;ui)dT[aiwo(fi(eg”;um— /bI(ﬁ->s)exp{wo(s)}¢o(s)ds]}
{
{

0 a

b
by (785 wi) — / 1(7(08);wi) = ) exp{to(s) My (s)ds |

a

1
+ i{itrace{(Eal - Ealuiu;Eal)hg}} =0, (6)

where the denominator fui exp{€g(0g)]; wi) + Ly (0y; i) + £y(Ey; ui) pdu; is cancelled out.
In [S1.3] it is assumed that (6) is true with probability 1. We prove hg = 0 by two-steps.
In the first step, we prove ||hx|| = ||hu|lr, = 0. Let §; = 1. we can integrate over r; on both

sides of (6). By model assumption, we have

/ ﬁi{hg—és’g + ésyﬁ[h/fj] + é&w [hw]}dri
= / / exp{Ls (05 wi) + €,(8y;wi) + Lu(Sui wi)} x {hlse + Esslhs] + fs.[hy]}duidr;
T4 w;

- / [ / exp{es(e[g];ui)}xé&eg[heg]dri] exp{ly (0y; wi) + Lu(Su; wi) Ydu,

i
= | Enliguln
/Ui ri | 5,010 [Prgi0]

and

Zi, ul} exp{ly(0y; u;) + Ly (Xy; u;) fdu; = 0,

/‘ Ei{éyvu[hu] + éu,E[hZ] }dri
— / /‘exp{ﬁs(ek[g}; wi) + £y (0,5 1w) 4+ Lo (S wi) } X {Ly u[h,] + Ly s[hs] Ydudr;
- / [/ eXp{gS(aE‘)}; ui)}dri] exp{ly (By; wi) + Lu(Zu; i) } X {ly u[hy] + Lo s[hs]}du;

= /veXP{Ey(oy;ui) + by (Bu; wi) } X {éyw[hu] + Ly slhs] b du;.



Note that

0 = / exp{ly(8y;w;) + Lu(Su;ui)} x {0y u[h] + uslhs] du;
~ /u exp{Ly(60, + Dha, ) + (S0 + M)

: 1 1 1y o 1 1
= AILHO‘ZI/Q/ exp{—nyi—[uo—i—Ah“}{g (ti;u) Pl — QUi (30 + Ahy)™ uz}duZ

1
= hm/eXP —*Hyz (o + Ahyul{g™ L(ts; (S0 + Ahs) a2 — iuTul}dﬁi
_ . 1 _+.
= [ e { = Jllw - mole = PwNIE - Jal )

x (yi — polg ™" (t:: 55" )})T[hu(g_l(ti;iléﬂul))

(S0 + ggzﬂ”ﬂi\ ]dai,

+ Voo™ (4 50 " @)}

where

Vil (t:50 w)} = Vauolg (tsu}], gy .

8(20 + Ahg)l/Qﬂi ’
0A

1/2

(w; ® Ir) [2 ® Ik + Ik ® 23/2 vec(hy)

= (2)’hs + he2y?) @
Let m; = po{g ' (ts; E(l)/Qﬁi)}. Define g (n;;t;) = arg min{n:uo(n):m}{HTi_tiHQ}’ which
is a generalized inverse of the function pg. It is guaranteed to exist and be unique by

condition (C.7) that pg is piecewise monotonic without flat areas. We can write @; as a

function of ¢; and n; denoted by U(t;, ug (m;;t;)). Then we have

1 1 _
0 = / exp{—§||yi — il - §HU(tiaNg_(nz'§ti))”2}(yi —m) x [hu(ﬂo Ymy))
+ Viodg ™! (b U (6, 1§ (35 8)))} (56> s + S *) U ki, i (mis )
X [V, U (#i, g (i t) | ds.

Fixing t;, the above equation is a Fredholm Integral Equation of the first kind w. r. t. ;.
It follows that

1 _
exp{—5llU(tuuo+<m;tz-))llz}IVmU(ti, pg (mis )| [hu(ﬂo Y(m))
+ Vufg~ (s Eé/QU(tuMar(m;tz‘)))}(zéﬂhz + thé/Q)U(ti, g (i ti)

= 0, a.s.,



ie.

_hu(u(;l(’rli))

= Vil (i 25U (b, i (i 8))) Y (50 R + bS5 U (s, i (mis ),

almost surely for n; and t;. The LHS of the above equation is independent of £;. The matrix
Vio{g™t(t; 21/2U(ti, g (mi;ti)))} is non-degenerate due to the model identifiability. It is
straightforward to verify that the RHS of the above equation is a constant function of ¢; if
and only if by = 0, i.e., b = 0. Then we also have h, (15" (m:)) = 0 as., i.e., ||hu|m = 0.

In the second step, we prove |lhe|| = ||hgl|ls, = [|hylla, = 0. By a similar argument as
in the first step, we can prove that

b
hd Zi| o (7i(0)s w)) / 1(7(08) wi) > 5) exp{to(s) }o(s)ds]

a

b [ hatritrsuar [l 0% u) — [ 16 2 5)expole) io(e)as]

b
— Oy (7055 wi)) — / 17 (08" i) = 5) exp{to(s) Hhy(s)ds | = 0

a
almost surely for u;, r; and Z;. For any Z; # Zs, we can find w1, 71 and us, 72 such that

771(9?]; uy) = 7‘:2(0?}; up). Since F(Z;Z,") is non-singular by condition (C.1), we have

b
h{ |80 (705 us)) — / I(7(05); ui) > 5) exp{vo(s) }iho(s)ds| =0

a

almost surely. By model assumption, [ o (7:(0 S ,uZ f I(r [g],ul) > s) exp{wg(s)}zbo(s)ds}

is not constant zero. Thus hg = 0. Now we have

1 . 0 b .
|| hotnigtrsus)ar ot ) — [ 16> 9 explvo(s)in(s)ds]
0

a

b
— Sy (F (0T ) — / 17 (09 w;) > s) exp{@bo(s)}h¢(s)ds} =0,

a

ie.,

0ihy(7i(65); us) ui — [P I(7 (85 ) > 5) exp{uo(s) Hhus(s)ds
5:800(Fi(0 s ua)) = [ I(Fs 2 ) exp{o(s) Jo(s)ds
almost surely. The LHS of the the above equation does not depend on r; while the RHS is

a constant function of r; if and only if hw(fi(e[s(ﬂ; u;)) = 0 almost surely, i.e., ||hy|a, = 0.

1
/ ha()g(riu)dr =
0

It follows that fol hg(T)g(T;u;)dT = 0 almost surely, i.e., |hg||s, = 0. This completes the

proof for statement [S1.3].

10



Next, we verify the Condition A2. Let (0; u;) = l5(0g;u;) + Cy(Oy; us) + 0y (Eu;ug). It
follows from direct calculations that
-log ( S exp{ff(a;ui)}dui )] ?
I Ju, exp{€(80; u;) }du;
-log (1 N S, (exp{i(6; w)) — exp{£(80; ui)})dui)] ?
I fu,- exp{l(0o; u;) }du;
_fuz_ (exp{l(0;u;)} — exp{l(0y; u;)})du;
I fui exp{l(0o; u;) }du;
., exp{(80; i) H(8; wi) — (803 ui) ydu; |
I fui eXp{E(OO; u;) Hdu;
S, exp{0(B0; wi) HE(O; wi) — £(8o; wi) Y du, a

fui exp{{(0o; u;) }du;

Let OF = (r4,8;, Z;) and Of = (yi,t;). Then it follows that

[0(6;0;) — £(680; 0,)]® =

2
(1+0(1))

(1+0(1))

+ o(1)).

P[(0;0;) — £(6p; O;))?
/ / exp{f eo,ul)}{z(a u;) — (OO,UZ)} du;dO;

N

AN

/O‘/vexp{E(OO;ui)} {45(0s;u;) —fs(Qg?];ui)P

+ {0y(0s3wi) — £, (053 i)} + {£u(55 w5) — £u(So; wi) Y| duidO;
= /;S/ exp{ﬁg( S 7uz)+‘€ (Eo,ul)}{gs(es,ul) Es( S ,uz)}zduldOS
+ /03 /uz exp{fy(ey i) + Ly (B0; wi) Hy (0y; wi) —[y(gy ;’ui)}ZduidOf

+ / exp{u(So: 1) Ml (5 wa) — Cu(So; i)} 2y

i

= L+ 1,+ 1.

11



For I, by definition, we have

{l5(0s;u;) — 55(9?];%‘)}2
b
0 (fi(Hg)];ui)> —/ I (:ri(eg)];ui) > s) exp{y(s)}ds

a

2

- divn (i(6lsu)) + [ (0 w) > ) explinls))ds

a

< G (Ti(Os ) — o (fi(é'g)];ui)) '2 + 5i‘¢ (74(0s5u;)) — 1o (fi(t‘)g)];ui)) '2

2

m(e?] ;)
+ / exp{to(s)}ds

i(0s5u;)
< [ (a0l w) | + exptovori(6l; wiy]
+ \w (7i(0s;u;)) — 1o (ﬂ(t‘)?];ui)) ‘2

= I+ 1

. = olo] [
7i(0s;u;) — 75(0g ; u;)

where 6/ = k05 + (1 — K; o) for j = 1,2 and 0 < k; < 1. Note thatzb- and 9p(-) are
S J J)Ys J

both uniformly bounded. It is straight forward to verify that
I, = /S / exp{ﬁg(Ogﬁ; w;) + Ly (Xo; ui) (I + L«g)duidOf
01- (773
S €= &l* + 118 = Boll3, + 14 — oll%,-

Similarly, we can show that I, < ||pu — ,U,()Hi—b and I, < ||X — Solf?, ie.,

~

P(6;0:) — £(60; 00> < 1€ =&l + 115 = Bolls, + 11 — wollR, + [l — mollF, + 115 — ol
= [0 -6l
Thus, Condition A2 is satisfied with as = 1.

Finally, we verify the Condition A3. Define 6,, 0 = (&0, 50, ¥n,0, tin,0, 20) € Oy. Similar

to Condition A2, it can be proved that
1(0;0:) — U600 0:)] < (1€ —&oll + |8 = Brollse + 10 — Yol
+ [l = pnollmy + 12 — ol

< € =&l + 118 = Brollse + 1Y — ¥nol

+ HM - MmOHFo + HZ - E0”7

Ao

oo

where € € B, B € BP, ¢ ¢ g}i’, p € B and ¥ € X. By the calculations similar to
Shen and Wong (1994), page 597, the e-bracketing number of GY and B, with respect

12



to the Loo-norm, are bounded respectively by (1/€)(KutPutl) and (1/e)c2(Kutputl) = It
is easy to see that the e-bracketing number of = x ¥ C RITE is bounded by (1/€)dtK.
Therefore, the e-bracketing number of F,, = {{(0) — {(7,0y),0 € O,} with respect to the
Loo-norm, denoted by N(e, Fn, | - [lco), is bounded by (1/e)eFEn-Kw) where c(K,, Ky) =
q+ K +c(Kg+pu+1) +ca(Ky +py +1). Note that K, = O(n**) and Ky = O(n"). We
have c(K,, Ky) < n™@{vsvud Tt follows that

H(Eafna H : ||oo) = logN(GMFTM ” ’ HOO>
< oKy, Ky)log(1/e) < nmadvevid 1og(1 /e).
Then the Condition A3 holds with constants 2ry = max{vy,v,} and r = 07, where e 0" =

log(1/e).
By Theorem 1 of Shen and Wong (1994), we have

d(61,60) = Op(max{n~7,d(6n,0,60), Di1.(6:,0.60)"*}),
where Dic1(6,,0,00) = P({(6y,0;0) — £(6p; O)) and

1—-2r9 loglogn
T = —

2 2logn

loglogn
2logn

Since — 0 as n — oo, we can choose a 7y such that 1_22”’ < 1=2r0 _ loglogn g,

2 2logn

1—2rg

sufficiently large. We still write 79 as 9 and 7 = =—5"¢. By Corollary 6.21 in Schumaker

(1981), we have
d(0,0,600) = O(n~ min{Pwvwmuvu}).

Given d(6y,0,80), the Kullback-Leibler distance Dgr,(0,,0,00) can be handled similarly as
the proofs for Condition A2, which is bounded by O(d?(8,.0,6y)), i.e.,

KY2(6,,0,00) < d(0n,0,00) = O(n~ mn{Pove puvity,

Thus, we obtain the convergence rate for 6, as follows

d(6,,,00) = Op(n~ ™m{pvvwppvp,(l-max{oyvu})/2hy - 0
Proof of Theorem 2:

Theorem 2 is proved by referring to Theorem 2.1 in Ding and Nan (2011). Define
Hy = {hy:|hullo <1,k € BHY,
Hy = {hyhyllag < 1,0y €G¥Y.
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Since Bl, C B, g}f C gw’ and by the consistency theorem, ”Hﬁ“ and ”Hi"’ are wide enough

to cover the tangent sets induced by the sieve M-estimator. For simplicity of notations, we

ignore the parameter Y in the following discussions. Since B® = S(Kz, pg) is isomorphic

to B C RX which is the set of B-spline coefficients for B, they are used interchangeably

when the context is clear. Let ¢ = (&,b). We need to verify the following six conditions:

B1.

B2.

B3.

B4.

Bb5.

(Rate of convergence) For an estimator 0, = (én, fin, Y/AJn) € 0,, and the true parameter

0o = (o, 1o, o) € O, d(én,t%) = Op(n™") for some k > 0.

Plg(80; 0)hg] = 0 for all hg € Hp = E x B x H,, x Hy.

(Positive information) There exists h;, = (h}, ,, ...,h;d)—r and hy, = (h;kp,p'“’hfp,d)—r?
where hy, ; € Hi¥ and hy.j € Hiw, for j =1,...,q, such that
P {{c(80: 0] = 11 (00; O) by ]} = 0,
P {¢(80; 0) lhy] = {u(80: O [ bl } = 0,
and for all h, € Hj and hy € Hiw. Furthermore, the matrix
O = —P{icc(90:0) = (£uc(80: O)[h;) + Lc(80: O Ry ) |
is nonsingular.
The estimator 8, satisfies }P’n{éc(én; 0)} = op(n~/?) and
Pol{lu(6n; O)[R;)} = op(n™'7?),
Po{ly(8,; O)hy1} = op(n~'7?).
(Stochastic equi-continuity) For some C' > 0,
s |Gulle(650)} - Gu{lc(60: 0)} = 0p(1)
d(6,80)<Cn—",0€0,
and
wp [ llu(0:0)m]) — €00 0)mL]}| = 0p().
d(6,80)<Cn—*,0€0,
sup Gal£4(8: O)R;]} = Guly (60 O) M} | = op(1).

d(6,80)<Cn—*,0€0,,
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B6. (Smoothness of the model) For some a > 1 satisfying ax > 1/2, and for 0 in a
neighborhood of 6y: {0 : d(0,0p) < Cn~",0 € 0,},

‘P{éc(a;o) ~ (¢(60;0) — 1¢¢(8030)(¢ — Co)

— e (80: 01 = o] = by (00: O)Y =l f| 5 *(6,60).

[P{E,(6:0)[h;]) = £,,(80: O)h3] = {,c(60; O) ;)€ = o)

= Bun(60;0) s 1~ pio] ~ B (803 O) By, 6 — v} | S d*(8,60),

and

|P{24(8;0) () — £,:(00; O)[R] — Fic(60; O) BL)(C — o)

— B85 O) Iy po = o] = (805 O) iy, ¥ — ol }| S (8, 00).

By Theorem 1, Bl holds with £ = min{pyvy,puvy, (1 — max{vy,v,})/2}. Based on
model assumptions, B2 holds automatically.

For B3, since £(0;O) is the log-likelihood function, it follows that h;’; and hj, are the
least favorable directions. It is easy to see the directions h;‘p and hj, are respectively the

minimizers of the following functional operators

Qulhy] = P{[[{c(80;0) — £4(60; O)[hy]|*},

Qulh] = P{l|{c(80;0) — £.(60; O) ]I},

which respectively map H, and H, to R*. Then the existence of hfb and hj, in B3 is
equivalent to the existence of minimizers of {0y[hy] and Q,[h,] on H, and H,. Note that
Qy[hy] and Q,[h,] are uniformly bounded below by 0, which implies that infp e, Qyp[hy]
and infp, ey, Qulhy,] exist and are bounded below by 0. Therefore, the existence of h’&}
and hj, can be proved by showing that H, and H, are compact sets, and that €2 [hy] and
Q,[h,] are compact operators of hy, and h,,, which can be proved similarly as the Condition

A1 proved in Theorem 1. It follows from direct calculations that

Q¢ = —P{lcc(80:0) — (1yc(60; O[] + 1,c(80; 0) ] |
= _p{é'cc(oo; O) + lyy(00; O) R}, hi] + £,,(60; O)[h,, )]
+ Luc(80: O)hy] + F,c(60: O)[ ;) }

= P{(1c(00:0) ~ (,(00:0)[13) ~ 1,(00:0) 1))}
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By a similar argument that we used to prove the Condition A1l in Theorem 1, we can prove
that €¢ is non-singular, which is the information matrix for o.
For B4, the first equation Pn{éc(én; 0;} = op(n~'/2) holds automatically by the defini-

tion of @,, which maximizes Pn{ﬁ(én; O,)}. Namely, the score equation for én is
P, {l:(8,;0;)} = 0.

The remaining three equations are less obvious as h;‘; and hj, are only known to be in Hy
and H, which may not be the actual tangent sets of our sieve estimation with B-spline
approximations. Fortunately, we can always approximate functions in H, and H, by B-
splines with a decent accuracy. Since the proofs for the two equations are essentially the

same, we only give the proof for
Pn{éw(én? OZ)[hfp]} = OP(n71/2)~

The rest two equations can be proved similarly. According to Corollary 6.21 of Schumaker
(1981), there exists an A}, € G, such that ||k}, — h7 [cc = O(n7P¥*¥). Note that in our
sieve estimation the log-hazard rate function v (t) = log A(t) is approximated by ), (t) =
®,,(t) "y where ®,,(t) is the B-spline basis function for G§. Then by the score equation for

~, we have

)

Pnén,"/(ém’?nu’ﬁmoi)} = Pn{E%én I:(qu)n(fz<énauz))_

/ab I(7(Cny s ui) > ) exp{qﬁn(s)}@n(s)ds] }
= 0,

where

fui exp{ls(0s;u;) + ly(0y; u;) + Ly (Sy; ui) } X h(u;, O;)du;

E} iy Ui)| =
2 [h(u o )] fui exp{ls(0s;u;) + £y(0y;u;) + £y (Xy; u;) tdu;

Since A}, € GY, we can write it as h; (1) = @n(t)T'y;’n, ie.,
0 = BBy [ i)~ [ 1) 2 9yl o)0s]
= Puly(0,;0)[1],)]
for j =1,...,q. Thus it suffices to show that for each j =1, ...,¢q,
Iy = Pl y(0y; 0)) (R}, ; — B ] = op(n™/?).
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Since Péw(é’o; Oi)[h:},,j — h;n] = 0, we decompose I,, into I,, = I, 1 + I 2, where
Ly = (Py—P)ly(0n;0)[h); — RS,],

In,2 = P{€¢(én, Ol)[hfp,] - h;,n] - éw(eﬂ; O’L)I:h;z,j - h;,n]}

B4 is proved if both I, 1 and I, > are oP(n_1/2).

For I,, 1, the key is to study the following class of functions:
Fhm) = {€s(6;00)[h} — hy]: 6 € ©,,d(8,60) <1, hj € Hy, |[B] = hjlloo <}

By a similar argument that we used to prove the Condition A2 in Theorem 1, we can prove

that
|£4(0; 0:)[1; — hj] — £4(60; O) [l — hj]|
SO (1€ =Coll + 1Y = Ynollag + 1 = pnollmy) X 1A — jlloo-

It implies that the e-bracketing number of .7-"%(77) in terms of the Lo, norm, denoted by
N }(6,f£(77), | ]loo), is bounded by (n/E)C(Kﬂ’Kw), where ¢(K,, Ky) =d+ci (K, +pu+1)+
ca(Ky + py +1). Then it follows that

log N | (€, 3 (n), L2(P)) < log Ny j(e, Fi(0), || - loo) S e(Kp, Ky) log(n/e),

which leads to the bracketing integral

; n -
ﬁ]uﬁfzonnyfw>=3£ \/1+1og Ny (e, Fi(n), L(P))de S e(K,., Ky)'/n.
Note that c(K,, Ky) < nmax{vy.vu} We can pick 7 to be

Ny = O(n— miH{Pwvvauqu(l_maX{”wvvu})/z}).

Then ||}, ;—h%,, oo = O(n"P2%) < 1, and d(6,,, 0) = Op(n~ ™ Peve puvs(I-max{vy0u})/2h)
n, which implies that £ (6,,; O;)[h%, ; — h%,,] € Fi (). For any £,(6; O)[h — h;] € Fi.(nn),
we have
. 2
P {iy(0;0)[n; - h]}

_ P{ o [&'Vl; — hy] (F(Ci i) — /ab I(7i(Cwi) = s) exp{t (s)} [hj — hy] (s) ds] }2

AN

b
PEfy [[h;f — hy)? (7i(G i) + / exp {2 (s)} [k} — hj)? (s) ds}
175 — hjll5-

AN
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Note that [|h] — hjllc < 7. It is easy to see that [IACE O)[h; — hjl|| can be taken to be
bounded by some constant 0 < M < oco. By the maximal inequality in Lemma 3.4.2 of van

der Vaart and Wellner (1996), it follows that

. Ji (0, Fa(n), La(P))
BpliCall gy, S J10nF0), La(P)) <1+ T

N

(K, K¢)1/277n + (K, Kw)n_l/Q
- 0 (nmax{vd,,QUH}/Q—min{p,’bvw,puvu,(l—max{fuw,QUH})/Q}) +0 (nmax{vw,QUH}—l/Q)
= 0(1)7
where the last equality follows from 1/(24 2py) < vy < 1/(2py), 1/(242pu) < v, <
1/(2pu), py > 3 and p, > 2. By Markov’s inequality, 11, = n_l/QGnéd,(H;O)[h;f — hj] =
op(n=1/2).
For I, 2, given any 0,, € ©,, by Taylor’s expansion, we have,
0y (63 O[5 — hyj] — £4(80; O) 1} — hj]
= (Cn = C0) uc(805 00N} = hy] + Ly (80 ) [ — Dy, on — o

+ Lypu(005 03) [ — Ry, i — pac),

where én is between 6,, and 6, and

l0n(6;0;) = —EY [Za(O;ui)} El [Zv(e;u,-)}
+ Bl [Za(O;ui)ZU(O;ui) +Zw(e;ui)]

= —1a(6:0,)(,(8; 0i) + El'g [La(8; i) (8 w:) + Lou(8w)|

where

E(B; uz) = ﬁg(@g; uz) + Ky(ay; u,) + gu(Eu; ui),

and «, v represent any two of the parameters in ({, 1, ). It is worth noting that in general
lan(0) # Elg [lau(0:u:)|

since the operator ' 1] itself also depends on 6. It follows from direct calculations that,
bcOsu)lhy] = — [Z? Jui /0 1 B<T>B<T>df] { G (7G5 2)
-/ TGw) > 5)exp{(s)} [f(s) + D) (o) ds} ,
ostOsulhts] = = | TG ) > 5)exp(s) o () (5)ds,
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and EW(H; u;)[hy, hy] = 0. Following a similar argument used in proving the Condition A2

in Theorem 1, it can be proved that

) A * * ) * * 2
P {14005 O) iy s = 5] = €080 O) Iy, = 3}
S (B0, 00)% X (115 = Wlloe + iy 5 = 5 c)?

which implies that I, 2 = oP(n_1/2). Thus I,, = In1 + 12 = 0p(n_1/2) and Condition B4
holds.
For B5, the three equations are proved by studying the following three classes of func-

tions:

K,.]
oY

S
I

{£,,(0;0) — i(,(80;0) : 0 € ©,,,d(8,800) <1, [t — vola, <},
Frin) = {€s(8;0)[;,] — (4(80;0)[h],;] : 6 € ©,,d(0,8,) < n},

Frim) = {6u(8;0)[h}, ;] — £u(60; O)[hy, ;] : 6 € ©,,,d(8,60) < n},

for j =1,...,q, where é"]j (0;0) is the jth component of &,(9; O). The rest of the proof for

B5 is essentially very similar to B4. The n is picked to be

N = O(TZ_ min{(pw—l)vw,p#v#,(l—max{vw,2v“})/2}).

More detailed discussion can be found in Ding and Nan (2011), page 3055-3057.

Finally, we verify B6. We just provide the details for the third equation regarding

Kw(B;O)[h;Z], as the proofs for the three equations are essentially the same. To avoid
confusion in later discussions, we use O; = (r,0;, Zi, yi, t;) in place of O. By Taylor’s

expansion, we have,

P{4(6;0)[Ry] — 660 O) ] — ¢ (805 O)[R31(C — Co)
— 000 O) [ 1 — o] = T (003 O) [y — o) |
= P{luc(0: 0[] — 1 (80: ORI} (€ — Go)
+ P{i4,(8;00) [ 1 — o] — Ly (603 Oi) [y 1 — o)}

- P{l4(8: 0) w0 — ] — iy (B; 01) 10— o]}
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where 6 is between 0 and 6. It follows from direct calculations that

|P{i4c(6: 00 )~ e (00: 001} (€~ Go)]
= ‘P{EZé [Zs,wc(é; Oi, w;)[hy, ¢ — CO]} — Ejlg, [gs,wc(%; Oi,u) R}, ¢ — o]
+ Bl [fsi0(0: 01w [G)s.(8: 01, ui) [ = Gol|
= Bl [{5.0(00: O, i) (1] 15(80; 01w — ol
- B [ésmé; o, ui)[h;;]} B [és,w(é; Oy, wi)[C — Co]}
+ By |15.(80; O wi)[W3]] Bl [f5.0(00; 01 w)[¢ — Gol]
< ]P{E;fé [Zs,zpc(é; O, wi)[hi), ¢ — co]} — B, [é’wc(eo; O wi)[h, ¢ — 4;0]] H
* ‘P{E;,Lé [ésﬂﬁ(é? Oi, u)[h))ls.(0; Oi, u)[C — Co]]
= B, [£5.0(00: 00 w0) 1,0 00 O [¢ — Gl }]
+ ‘P{Ezé {fs,w(é; Oi,uz‘)[hz]} B, [ésw(é;(’)i,ui)[c - Co]}
= B, [{s(00: 05, w) k]| B, [fs,(00: 00 u)lc — ol ||
.= B+ By + Bs.

By a similar argument that we used to verify the Condition B4 above and the Condition

A2 in Theorem 1, we can prove that

Br S (d(8.60) + [[¥ —ollag + 1Y = tolla,) x ¢ — Col

O (n~ ™ Pe=2)vpppvp,(A—max{vy 20,1 /24y s O (n =)

N

O(n~ min{(py—2)vy ,puvm(l—max{vw»%u})ﬂ}) x O(n~ min{pw%apuvw(l—max{%v?vu})/Q})

= o(n '),
where the last equality requires the condition (py, — 2)vy, > v,. And

By+B; S (d(6,80) + ¥ —tollag) x € — Coll

5 O(n_ min{(pw—l)vw,p,‘vu,(l—max{vw,21)“})/2}) « O(TL_ min{p¢vw,pﬂv,‘,(1—max{vw,2vu})/2})

= o(n?).
Let a = min{(py — 2)vy, Puvy, (1 — max{vy,v,})/2}. We have
P{E’M(é; Oi)[hy) — Ly (Bo; Oi)[hl}}(c —¢) S O =o(n?),
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where a = (@ + k)/k > 1 and ax > 1/2. Similarly, we can prove that

P{6,(8: 00) [y 1= ol = L (80: O i = ol | S O(m™) = o(n1/2),

P{Ey(6;00) 10 — o] = Ly (00 0N [B, 6 — o]} S O(n™") = o(n™1/2),

N

and thus
P{i(6;0)[h}) — i,(60; O)lhy] — 1¢(80; O)[A1)(C - Co)

— Ly (60; O) [y, 1 — o] — L85 O) W — o] b S O(n™ %) = o(n™11?).

Therefore, we have verified all six conditions B1-B6. Following Theorem 2.1 in Ding and Nan

(2011), we have
Vi, — o) = N(0,970¢(25"),

where )¢ is as defined in B3 and
. . . B . : L\ ©2
Gc = P{(£c(60;0) — i5(80; O) 3] — (80 O)[R] — £u(80; O)[Bs]) |-
By the proofs for B3, we have Q¢ = QCv ie., \/ﬁ(én —¢o) — N(0, le) Since
(4c(00:0) — i(60; O) (3] — £,(80: O) ] — £,(80; O) 1))

is the efficient score function for ¢y, it follows that le achieves the semiparametric efficiency

bound. O
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