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Introduction

o Forecasting of hydrometeorological and
hydroclimatic variables (hereafter referred to as
“hydrological forecasting”) is performed at
various temporal scales and horizons according
to the requirements of technical frameworks.

o These frameworks support a variety of
engineering and environmental services;
therefore, achieving improvements (e.g., in terms
of accuracy) in hydrological forecasting leads to
various societal and environmental benefits.
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Introduction

o Hydrological forecasting experiments help us understand how forecastable
the various hydrometeorological and hydroclimatic variables are and why.
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Introduction

o The various hydrological forecasting frameworks can take very different forms
depending on (a) some general requirements for the output, (b) the targeted
variable, (c) the temporal scale and (d) the horizon, among others.

o Much high-quality work has been conducted so far fowards:
v' Proposing such frameworks and their more general blueprints;
v' Improving such frameworks (e.g., in terms of reliability or applicability);

v' Adapting such frameworks (e.g., by adding new components to them) for
meeting new requirements.

o Characteristic examples of adapted hydrological forecasting frameworks are
those relying on (i) process-based catchment models, (i) meteorological or
climatological forecasts, and (i) hydrological post-processing for issuing
probabilistic instead of mean-value streamflow forecasts.

Examples of probabilistic forecasts obtained through hydrological post-processing
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Introduction

o What about machine learning? Machine learning methods (see, e.g., the
comprehensive lists and descriptions provided by Hastie et al. 2009; James et
al. 2013) are increasingly investigated for hydrological forecasting (see, e.g.,
the review by Tyralis et al. 2019b; see also the daily streamflow forecasting
methods in Papacharalampous et al. 2019b; Tyralis et al. 2021).

o Still, several useful and realistic machine learning concepts are currently
underexploited in hydrological forecasting and forecastability investigations.

o Here, we extensively discuss some of these concepts, together with related
key findings and implementation examples.

o Inthese examples, the proposed
concepts and machine learning
methods have been merged with I
large hydrological datasets and

largely interpretable methods (i.e.,
stochastic and process-based MACHINE

catchment models). LEARN'NG') -r
o The benefits from such mergings are !

also extensively discussed.
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The “no free lunch” theorem and large-scale benchmarking

o Among a pool of reasonable algorithmic choices for solving a specific
problem type (e.g., annual river flow forecasting), there is no way to
know in advance which one will perform the best for one particular
problem case (e.g., any annual river flow forecasting case study).

o There is a theorem behind the above statement, which is known as the
“no free lunch” theorem (Wolpert 1996).

o This theorem implies that single-case studies cannot stand as empirical
proofs that a prediction method performs better than others.

o An optimal selection of prediction methods can be supported by large-
scale benchmarking, which requires:

v large datasets comprising many
and diverse problem cases to be
studied;

v multiple automatic, computationally O

convenient and fast prediction
models;

v benchmarks (e.g., simple or more
interpretable models).
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The “no free lunch” theorem and large-scale benchmarking

Total monthly streamflow

Original data source:
Schaake et al. (2006)
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Adapted from Papacharalampous et al. (2020)
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Large-scale comparisons for selecting forecasting methods

stochastic methods

stochastic machine learning machine learing methods

methods methods
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Further reading: Papacharalampous et al. (2019a)

Average-case rankings summarizing

forecasting performance over 405
Mean annual streamflow Original data source: GRDC (2017) geographical locations
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Large-scale comparisons for selecting forecasting methods

Further reading: Papacharalampous et al. (2018b . Seasonality
2 ( ) Wh.ICh features Autocorrelation
are important for Exogenous
getting good relationships
forecasts? Long-range
dependence

Shifts and trends

Latitude (°)

o Seasonal ARFIMA performs only slightly
better than seasonal SES.

o Seasonal SES performs notably better than
Prophet, and comparably to seasonal
exponential smoothing with a trend term.

Analogous conclusions can be drawn for:

Mean annual temperature

Latitude (°)

Mean annual precipitation

Mean annual streamflow

Daily streamflow

T
-100

Lengitude (*) Further reading: Papacharalampous et al.

o (2018a), Papacharalampous et al. (2019a),
Original data sources: Peterson and Vose Tyralis et al. (2021)

(1997), Lawrimore et al. (2011)
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Total monthly precipitation

Forecasting method
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Medians of the Nash Sutcliffe
efficiency values
Minimum: 0.49
Maximum: 0.71

Median of the absolute errors (mm)
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Further reading: Papacharalampous et al. (2018b) Sutcliffe efficiency values

Minimum: -0.20
Maximum: 0.30

Original data source: Peterson and Vose (1997)
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Large-scale comparisons for characterizing forecastability

Further reading: Papacharalampous et al. (2022)
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forecastability

Time series forecasting method

Original data sources: Peterson and Vose (1997), Menne et al. (2018), Do et al. (2018)
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Ensemble learning for benefitting from multiple methods
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Further reading: Papacharalampous and Tyralis (2020)

Mean annual streamflow Original data source: Do ef al. (2018)
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Ensemble learning for benefitting from multiple methods
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Original data sources: Newman et al. (2015), Addor et al. (2017)
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Ensemble learning for benefitting from multiple methods

: s, oo q Combining key concepts from a hydrological
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Ensemble learning for benefitting from multiple methods

Algorithm
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Relative improvements in
tferms of quantile score

Relative improvements in
terms of interval score
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+ Extensive discussions
and opinions on the
integration of process-
based catchment
models and machine
learning quantile
regression algorithms




Ensemble learning for benefitting from multiple methods

Relative improvements Ensemble means of the absolute Daily streamflow
in terms of interval score differences characterizing reliability
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Machine learning inspired adaptations of interpretable models

Process-based catchment Further reading: Tyralis and Papacharalampous (2021)
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Original data sources: Newman et al. (2015), Addor et al. (2017)
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Towards analysis-informed integrations of forecasting methods

Relative forecast improvements with
‘ respect to the persistent method |
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Towards analysis-informed integrations of forecasting methods

Benefitting from approximately 60 diverse features

Further reading: Papacharalampous et al. (2021)

Features should be
studied massively
and collectively

80

40
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-40

Mean monthly temperature Total monthly precipitation Mean monthly streamflow
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Original data sources: Peterson and Vose (1997), Menne et al. (2018), Do et al. (2018)
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Towards analysis-informed integrations of forecasting methods

Further reading: Papacharalampous et al. (2021)
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Original data sources: Peterson and Vose (1997), Menne et al. (2018), Do et al. (2018)
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Towards analysis-informed integrations of forecasting methods

Nash-Sutcliffe efficiency
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Original data source: Menne et al. (2018) Further reading: Papacharalampous et al. (2022)
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Towards analysis-informed integrations of forecasting methods

Nash—Sutcliffe efficiency

-1.0 -0.5 0.0 0.5 1.0
Precipitation time series } 4 } . ;
forecastability in terms of _—E- .
Nash-Sutcliffe efficiency R S
in the different clusters

Cluster
Percentage of the

C-P1  total of the 5,071
stations assigned
to each cluster

C-P3

C-P4

> “  G-P1:1,007 | G-P3: 497
G-P4: 305 stations | G-P5: 899 stations | G-P6: 1,372 stations

s o

| G-P2: 224
C-P5

Original data source: Peterson and Vose (1997) Further reading: Papacharalampous et al. (2022)
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Towards analysis-informed integrations of forecasting methods

+ Benefitting from explainable machine learning

Further reading: Papacharalampous et al. (2022)

Forecasting at scale Massive Comparisons of the features
and forecastability feature with respect to their usefulness
assessment extraction in explaining forecastability

Global hydroclimatic datasets

Mean monthly temperature Total monthly precipitation Mean monthly river flow

Rankings of the features from the most to the least informative ones

Features #1-57

Precipitation
River flow

+ Temperature
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Towards analysis-informed integrations of forecasting methods

+ Benefitting from explainable machine learning

Further reading: Papacharalampous et al. (2022)
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Take-home messages

o

Hydrological post-processing and forecasting can be improved by exploiting
machine learning concepts and methods.

The same holds for hydro-forecastability assessments and interpretations.

As long as their outputs are useful, hydrological forecasting methods do not
have to be (but they can be) interpretable.

There is no certainty and “no free lunch” in predictive modelling.

Large-scale benchmarking and ensemble learning are ways to cope with
this fact in a meaningful sense.

By conducting large-scale benchmark tests, we can find:

v" which forecasting methods perform well (practically, better than others) in
the long run; and

v" which features are important (practically, more important than others) for
getting good forecasts in the long run.

An interesting example is methods with trends.

Such methods are getting much attention in the hydrological literature;
however, they do not offer improvements (as individual methods) in terms of
forecasting performance.
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Take-home messages

@)

Selecting individual forecasting methods is meaningful; however, preferably
multiple methods should be integrated and combined for maximizing the
benefits and reducing the risks from their use.

Methods that would probably be discarded as individual ones based on
their performance in the long run (e.g., methods with trends or naive
methods) might be proven important as parts of ensemble methods.

The forecasts of diverse methods seem to complement themselves well in
ensemble learning contexfs.

Further improvements could be achieved through analysis-informed
combinations and analysis-informed integrations of many and diverse
forecasting models.

For achieving meaningful combinations and integrations in this regard,
many and diverse descriptive features should be studied.

A massive and collective examination of hydroclimatic features is also
necessary for understanding hydroclimatic forecastability.

Overall, by merging machine learning concepts and methods with large
hydrological datasets and largely interpretable (e.g., stochastic or process-
based catchment) models, new fruitful avenues open up for our field.
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