
Online Supplement to
“Pseudo-Ranks: The Better Way of

Ranking?”

In this supplementary document, we provide detailed formal considerations regarding
the counterintuitive behavior of pseudo-rank-based relative effects, thereby extending the
brief discussion of the corresponding simulated data example that has been included in the
main body of the manuscript.

1 Preliminaries

In the sequel we assume i = 1, . . . , a random variables Yi with continuous distributions Fi
and will consider for a vector α = (α1, . . . , αa) of non-negative weights with

∑a
i=1 αi = 1

the reference distribution

Hψ :=
a∑
i=1

αiFi.

Think of Fi representing the distribution of a specific target variable in a population stratum
i. Based on the reference distribution Hψ we define the relative effects

ψi :=

∫
HψdFi = P (Z < Yi),

where Z ∼ Hψ is stochastically independent from all Yi. Note that we use the superscript
ψ in Hψ to indicate that in fact, we will consider the unweighted reference distribution in
the sequel.

For this discussion it is useful to express the relative effects in terms of the pair-wise
and centered relative effects

δij := P (Yi > Yj)− 0.5, i, j = 1, . . . , a.

Note that δii = 0 and δij = −δji for all i, j. The relative effect can then be written in terms
of the δij as

ψi := 0.5 +
a∑
`=1

δi`α` = 0.5 +
a∑

`=1, ` 6=i

δi`α`.
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2 Examples

We will focus here on changes in the relative effects when a specific population stratum
is split into groups (that are then identical with respect to the distribution of Y ). If we
would consider the expectations µi of Yi instead of relative effects, an artificial splitting of a
specific stratum would not change the parameter values of the remaining groups. It would
only reduce the efficiency of the group comparisons, since it would (unnecessarily) increase
the number of parameters (by duplicates) and decrease the group sizes. The question
we pose is whether we make a similar observation with pseudo-ranks and the underlying
relative effects. The question is not purely academic. In applications it is quite common
to join groups with similar distributions in order to gain power. Moreover, some multiple
contrasts tests (e.g., Williams’ test) rely on the conjunction of groups.

If in the reference distribution Hψ the distributions of the individual groups Fi are
weighted equally (as for pseudo-ranks) then a split or junction of groups will change the
reference distribution and thereby the relative effects also for those groups that remain
unchanged. This may lead to a counter-intuitive behaviour of pseudo-ranks.

2.1 Splitting one of two groups

As a first simple example we start considering three groups where F1 6= F2 = F3 which
implies δ23 = δ32 = 0. Obviously, the reference distribution with all three groups is

Hψ = (1/3)F1 + (2/3)F2 (i.e. α1 = 1/3, α2 = 2/3, α3 = 0)

whereas it becomes

Hψ = (1/2)F1 + (1/2)F2 (α1 = α2 = 1/2, α3 = 0)

when group 2 and 3 are rejoined. With the three groups, the relative effects are

ψ1 = 0.5 + δ12 2/3, ψ2 = ψ3 = 0.5− δ12/3,

Note that we are slightly abusing notation here, because strictly speaking, all considerations
are based on taking the unweighted average (i.e., all αi are equal). However, for sake of
notational simplicity, we consider the equivalent two-group setting (which results from
F2 = F3) and the corresponding unweighted averages.
When the first two groups are rejoined, the relative effects become

ψ1 = 0.5 + δ12/2, ψ2 = 0.5− δ12/2.

Hence, the conjunction of the last two groups changes the relative effect, also for the first
group. Both relative effects decrease when the last two groups are rejoined and δ12 > 0.

Interestingly, the contrast ψ1 − ψ2 = δ12 is invariant with respect to the way we deal
with the last two groups.

Similar considerations show that when joining k groups, i.e. starting with F1 6= F2 =
· · · = Fk+1, we get a reference distribution with weights α1 = 1/(k+ 1) and α2 = k/(k+ 1)
(and α3 = · · · = αk+1 = 0). Hence, the relative effects become

ψ1 = 0.5 + δ12 k/(k + 1), ψ2 = · · · = ψk+1 = 0.5− δ12/(k + 1) .
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Obviously, ψ1 monotonically increases in k (when δ12 > 0) with limit 0.5+δ12. However, the
contrast ψ1−ψ2 = δ12 is invariant with respect to k (which is a remarkable property). This
is due to the fact that actually, we have a two-group setting, with the different splittings
only changing the weights. For two-group comparisons, the difference between the relative
effects is invariant to the choice of those weights, which has been already mentioned in
Section 3 of the manuscript. Note that for the invariance it is crucial to take the difference
of the relative effects: One can show, for instance, that the ratio ψ1/ψ2 increases in k.

2.2 Splitting one of three groups

The following example shows that the invariance property of contrasts between pseudo-
rank-based relative effects is not a general property and can fail in examples with more
than two (statistically different) strata. Assume now four strata with F1 6= F2 = F3 6= F4.
With all four strata (α1 = α4 = 1/4, α2 = 1/2, α3 = 0) we obtain the relative effects

ψ1 = 0.5 + δ12/2 + δ14/4, ψ2 = 0.5− (δ12 + δ42)/4, ψ4 = 0.5− δ14/4− δ24/2,

and consequently the contrast

ψ1 − ψ2 = δ12 3/4 + (δ14 + δ42)/4 .

When joining the groups 2 and 3 (α1 = α2 = α4 = 1/3), we obtain the relative effects

ψ1 = 0.5 + (δ12 + δ14)/3, ψ2 = 0.5− (δ12 + δ42)/3, ψ4 = 0.5− (δ14 + δ24)/3

and the contrast
ψ1 − ψ2 = δ12 2/3 + (δ14 + δ42)/3

This shows, that the contrast ψ1 − ψ2 is no longer invariant with respect to the way we
handle the groups 2 and 3 (which would not be the case when comparing expectations).
Moreover, we can construct examples (e.g., from normally distributed Yi with means µi
satisfying µ1 − µ4 = µ4 − µ2 = δ > 0 and variances σ2

i satisfying σ2
1 = σ2

2 < σ2
4) where

δ14 + δ42 > 0 is (much) smaller than δ12 > 0. In this (and only this) case, the contrast
ψ1 − ψ2 becomes smaller when rejoining the statistically identical second and third strata.

Similar calculations show that even ψ1 − ψ4 changes and may decrease when rejoining
the F2 and F3 strata. With and without the split we get respectively:

ψ1 − ψ4 = δ14 /2 + (δ12 + δ24)/2 and ψ1 − ψ4 = δ14 2/3 + (δ12 + δ24)/3.

The former is larger than the latter if δ12 + δ24 > δ14 > 0 which is the case, for example,
for normal Yi with means µ1 = 4, µ2 = µ3 = 2, µ4 = 0 and variance σ2

i = 0.25 for
i ∈ {1, 2, 3, 4}. A numerical illustration has been included in Section 3 of the manuscript.

Assuming a split of the F2/F3-strata into k groups leads to a reference distribution with
α1 = α4 = 1/(k + 2) and α2 = k/(k + 2) and the relative effects

ψ1 = 0.5 + δ12 k/(k + 2) + δ14/(k + 2),

ψ2 = 0.5− (δ12 + δ42)/(k + 2),
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ψ4 = 0.5− δ14/(k + 2)− δ24k/(k + 2)

The resulting contrasts are

ψ1 − ψ2 = δ12 (k + 1)/(k + 2) + (δ14 + δ42)/(k + 2)

and
ψ1 − ψ4 = δ14 2/(k + 2) + (δ12 + δ24) k/(k + 2)

The first increases in k when δ12 > δ14 + δ42 > 0, the second one if δ12 + δ24 > δ14 > 0.

In summary, the contrasts ψ1 − ψ2 and ψ1 − ψ4 can become larger with an artificial
split of the F2/F3-strata (not changing the data distribution) and even increase with the
number of such splits. This is rather counter-intuitive from a statistical point of view as it
favours artificial splits and the resulting over-parametrization. Moreover, asymptotically
(i.e., for k → ∞), the pairwise relative effect δ14 vanishes in the contrast ψ1 − ψ4, which
might be regarded as another unexpected result. In order to demonstrate the actual empir-
ical consequences of our formal considerations, we provide some examples using simulated
normally distributed data in the R code file CExamples psranks.R.
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