Appendix: Consistency and normality of the MLE

For any 0 > 0, let Qus = {Qr € Py,| sup,,cy, |Qr(yr) — Qro(yr)| < 0}, k = 1,2. Before
showing the consistency of the maximum likelihood estimator, we state a few lemmas that are

used in the proof of consistency. Proofs of these lemmas are omitted.

Lemma 1. Suppose that F,(y) — F(y) weakly, and that ¢(y,h) is uniformly bounded and
equicontinuous with respect to y over h € H. That is, for any € > 0, there exists 6 > 0, and a

finite set of hy, € H, k =1,---, K, such that

sup _sup {min I (g1 h) — (o, )l < e

ly1—y2|<d heH

Then,

llmsup‘/goy, YdF,( /goy, YdF (y )’ 0.

Lemma 2. Suppose that sup,cp [F(y) — F(y)| — 0, subyeppen l9n(y, h) — w(y, h)| — 0, and
suPren ||y, h)||Bvy) < +oo where D is a measurable set and || - ||gy(,) denotes the variation

norm in y € Y. Then

lim SUp‘/Dsﬁn(y,h)an(y) —/DsO(y, h)dF(y)‘ = 0.

Lemma 3. Under conditions 1-4, for a single observation, {i(v, Q1,Q2)(h),y € B, Qi € Qus, k =
1,2,h € Hy x H; x Hy} is a Py-Donsker class and {l.(% Q1,Q2)(h)(h*),y € B,Q) € s, k =

1,2,h* h € Hy x Hy x Hy} is a Py-Glivenko-Cantelli class.

Lemma 4. Let b~ (y3) = [ [ n(y1; y2; ¥3|70)dQ10(y1)dQ20(y2),

o l ~ 1{Yz1§y1}
Quioly) n ; o 25 0(Yia) [ n(Yirs yo; Yialv0)dQao(yo)”
1 n 1{Y <ya2}
Qn Y = - .
20(42) n ; %Z b(Y;3) [ n(ys; Yaz; 33|70)dQ10(?/1)

Then Quro(yr) — Qro(yx), uniformally over y;, € Vi Pyp-almost sure for k = 1,2. Further,

sup |P(y17y2 ’ Y3, Yo, an,Qnm) - P(y17y2 | y37%7Q10,Q20)| — 0,
Yk EVi,k=1,2,3



Py-almost sure, where P(y1, 9o | y3,7, @1, Q2) is the distribution function of p(y1, y2 | ys, v, Q1, Q2)-

Proofs of the theorem are divided into three steps. They are proof of existence and consistency,

proof of normality, and proof of consistency of the variance estimate.

Proof of existence and consistency of the maximum likelihood estimator: The likelihood has the

form

ﬁ n(Yi; Yio; Yis|7)dQ1(Yir)dQo(Yia)
i=1 ffn(yl;Z/2;YE3|’Y)dQ1(y1)dQ2(y2).

Direct maximization of the likelihood over all distributions for @); and/or @3 does not exist. We
follow the convention of maximizing the likelihood over all discrete distributions for ()1 and Q). It
can be seen that, for any discrete )1 and (), there are (); and ()2 having probability masses only
at the observed Y; and Y5 values that make the likelihood no smaller. This means the maximizer,
if exists, is achieved with @); and @)» having probability masses only at the observed Y; and Y5
values. The likelihood is then a multivariate function of (vy; gk, k =1, -+, N1;qjo, 7 = 1,--+, Na)
with ngvzll g1 = 1 and Z?El ¢j2 = 1. From Assumptions 2 and 3, it follows that the likelihood,
as a function of (v, qi1, -+, g —1)1, Q12;* -+, q(No—1)2) With v € B and the others parameters are

respectively in

N1 Na
Q= {(fhl, C L g—11)| D G = 1} and Qy = {(Q12, L G(Ne—1)2)| D Gk = 1} ;
k=1 k=1

is continuous. It follows from that B x Q1 X Q5 is a compact set that the maximum of the likelihood
exists.

From assumption 2, we see that when dQ(Y;;) = 0 or dQy(Y;2) = 0 for any i = 1,--- n,
the likelihood becomes zero. This implies that, for any fixed v, the maximum of the restricted
likelihood over Q, k = 1,2, exists and is attained respectively at inner points of Q; x Q,. The

restricted maximum likelihood estimators of Q, k = 1, 2, satisfy the score equations derived from

N1 N2
Pnl(77Q17Q2)+)\ (Zle_l) + @ (ZQkQ_]-) )
k=1 k=1
where P,l(7, Q1, Q2) is the log-likelihood. Denote the maximum restricted likelihood estimator by
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(Fn,s Q1. QQ) The score equations for Q) are

i1 L=y} l 2”: 2%1 N(Yr1; Yj2; 13|%)sz(%2)
nqk1 i 12 Zj 2 (Y vje, 13|%)dQ1(yl1)dQ2(y32)

for k = 1,---,N;. It follows from ™ gu = 1 that A = 0. From this, we see that Ql Y1) =
k=1

A =0,

ZkN:ll qk11qy,, <y}, Where

2”: L (v =yea}

1
n =1 Dl(yklvpyna Qb CA22>7

and

12 S5 (Y1 yia; YislAn) dQa (yj2)
niS S SR (i Yo, Yisl A ) dQ1 (i) dQ2 (y2)

Note that the existence of Ql in the inner part of the set guarentees the maximizer g, > 0 for all

Dl(ylaﬁ/’erlaQQ) =

k=1,---,N; and satisfies Ql(yl) = >k Qk11{yp <y}~ From the expression, we see that
dO, () 1 { 1 }1
A \Yk1) = o .
dQmo " D, (Y1, Ans Q1, Q) i1 0(Yg3) [ (Y1 va; Yis|v0)dQ20(y2)

Similar derivation can be carried out for Qs to obtain

dQ, 1 { 1 }‘1
dQn20 D2(yk2,’>’mQ1,Q2) ? 1 (Yjs)fn(yl;ykz%glw)d@lo(yl) 7

where Dy is defined similarly as D;. Since 7 belongs to a compact set, 4, has a convergent

subsequence. Denote the limit by . From Helly selection Theorem (Fuchino and Plewik, 1999),
there also exists a subsequence of Qk that converges to a subdistribution ) on the continuous
points of @y, for k = 1,2. Since )}, is compact, which ensure @)y is a distribution function. Hence,
Qk converges weakly to Qg, for k=1, 2.

By repeatedly applying Lemma 1, it follows that D1 (y1, 4n, Ql, Qg) converges uniformly to

(y1,7, Q1,Q2) J (Y15 y2; y3ly)dQa(ya2)
o I (s Y2, y3|7)dQ1 (y1)dQa (ye

Similarly, Dg(yg,‘yn,()l,@g) converges uniformly to Ds(ys, v, @1, Q2), defined similarly as D;.

)pgo(yg)dug(yg)-

These imply that @ (y;) satisfies

ity /w { S0y y23 y3|7)dQ2 (y2)

-1
J Iy y2 yg]’y)dQl(yl)dQQ(y2)p30(y3)d“3(y3)} P1o(y1)dps (1)
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and Q1 () converges uniformly over Y, to Q1 (y1). Similar definition and convergence result hold

for Qs (y2).

Further, it follows that

- Z log D1 (Yi1, An, Qh QQ / {log D1 (y1,7, @1, Q2)} pro(y1)dpes (y1).-

and

_*Zlog D? 12;7n7Q17Q2 /{1OgD2(y2,7, QlaQQ)}pQO(yQ)d/”LQ(yQ)

It now follows that

Pn {l(;y?%Ql?QAQ) _l(’yOannO?Q%LO)} = Pn {lOg dcégQL)(le)} —|—Pn {1 ngQZO(}/Q)}

n(Yi; Ya; Y3 | ) _ J Iy ya, Vs | %)dQl(yl)dQQ(yz)
Ik {1 & 77(Y1;Y2;Y3 | 70)} b {log ffﬂ(y1;y27Y3 | Vo)dino(%)deo(yQ)}

— Py {l(7,Q1,Q2) — (70, @10, Q20) } > 0.

It follows from Assumption 1, i.e., (70, Q10,@20) is the unique maximizer of the Kullback-Leibler
information, that (v, Q1, Q2) = (70, @10, @20). Since every sequence has a convergent subsequence

and every convergent subsequence has the same limit, the sequence (9, Ql, Qg) converges to the

common limit (g, Q10, @20)-

Proof of asymptotic normality: Note that the maximum likelihood estimator satisfies the score
equation,

Pnl'(ﬁ/n,Qth)(le’ }/2’ YE)’)(h’l)? h1n> hQn) = 0,

where

. 0 0
Uy,.01.00) (Y1, Y2, Y3) (ho, hi, ha) = Ry mlogn(ﬁ;%;%\7)—E{%logn(ﬁsﬁ;%lv)

+hi (Y1) = E{l(V1)[Y3} + ha(Y2) — E{h2(Y2)[Ys},

]

with E being the expectation taken under the odds ratio model with parameter (v, Q1, @Q2), ho is

bounded, hy,, € Hy, is a collection of bounded variation functions with jumps only at the observed



y; values and [ hln(yl)dQl(yl) =0, and hs,, € H,, is a collection of bounded variation functions

with jumps only on observed y, values and [ hgn(yQ)dQ2<y2> = 0. Define an inner product on

HoXH1><HQaS

< (ho, hy, ho), (h§, by, hy) >= h{ b +/h1(y1)h*{(y1)dQ10(y1) +/h2(yz)h§(y2)dQ2o(yz)-
Note that
\/ﬁpnli(fyn’(:?h@ﬂ(}/la Yé, YE%)(hm hnh hn?) = Pnl.(,AmeAhQAZ)(Yl; Y27 }/3){07 \/E(hln - hl)a \/ﬁ(hQn - h2)}
+\/5Pnl(»§/n’QA1’QA2) (}/17 }/27 }/3)(h07 h17 h2)7

For any hy; € Hy and hy € Hs, there are hy,, € Hy and hs,, € H, such that

Vi(hin — b)) = Op, (1) and v/n(ha, — ha) = Op,(1).

Since {I(y.0,.0) (Y1, Y2, Y3)(ho, h1, ha)} is a Glivenko-Cantelli class for |y — 70| < 6, sup,, |Q1(y1) —

Qio(y1)| < 8, sup,, [Q2(y2) — Q20(y2)| < &, and bounded (hg, by, ), it follows that

VPl 6,00 (Y1, Y2,Y3) (ho, Bt b)) = VnPal s, 6. 6, (Y1, Y2, Y3) (o, b, ha) + op, (1),

because Fol(+,,010,0:0) (Y1, Y2, Y3)(hi, kT, hs) = 0 for any (hg, by, h) € Hy x Hy x Hy. Note that

or,(1) = VnPulis, 6,00 (Y1, Y2, Ya)(ho, b, hy)
= —VnPo{iis, 6100 (Y15 Y2, Y3) = l30.010.020) (Y1, Y2, Y3) } (o, o)

+\/E(Pn - Po)l(’Yleszo)(}/l’ }/2’ Yi’))(h07 hh h2)

+\/E(PTL - PO){Z.('AyanAl,QAz)(Yvh }67 1/’3> - Z(’yo,Qlo,on)(}/b }/27 Kﬁ)}(h(b h17 h?)

From Lemma 2 and

PO{Z‘(”mQLCAb) (Yl’ Y, Y}’) - Z(’YO7Q107Q20)(Y17 Yo, YS)}Q(hO; hq, h2) — 0

A

uniformly, it follows that

\/H(Pn - PO){Z.(ﬁn,Ql,QQ)(Ylv Ya, YE’*) - Z(’Y07Q107Q20)(Y’17 Ys, YE’))}(h‘Ov ha, h2) = 0P0<1)'
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Further, since l'(%QhQQ)(Yl, Y5, Y3)(ho, by, he) is Frechet differentiable with respect to (v, Q1, Q2) at

(70, @10, @20), it follows that

~VnPo{lis, 01,00 (Y1 Y2, Y3) = l30.010.020) (Y1, Y2, Y3) } (o, o, ha)

= V¥, — VO)TU()(ho, hi, he) + /Ul(h07 ha, hz)d\/ﬁ(Ql — Q1)
+ [ oalho, b, ha)dv/n(Qz = Qan) + on (IVA(B = o) + IVA(Q1 = Quo)ll + V(@2 = Qo))

where os are

JO(h07 h17 h2)

Ul(h07 hl? h?)

02(h07 h/17 h?)

9?logn 09?logn
—Eyo {Who B E(’Yo,Qw,on) T,}/zho

)}
Ologn 0dlogn

50 [Covtguoam | T, ZpE h + 1y (11) + (1)
dlogn

dlogn
Ey [{E(707Q107Q20) (87}10 Yi = yly%) = E(30,010,020) ( Iy ho

+h1(y1) Eo{p1(11Y3)} — Eo[E0,Q10,@20) 1111 (Y1) Y3 } g1 (11]Y3)]

]

) )

+E0[E(’YO7Q107Q20){hQ(YV?)D/l = Y1, YE’)}pl(ylu/ii) - E(’Yleo,QQo){hQ(Yv?)D/E’)}pl(yl|Y23)]7

dlogn dlogn
Eo [{E(VO,Qlo,on) (mho Y, = y2:Y3> = E0,010,.Q20) (87% Y3 | ¢ pa(y2|Y3)

+E0[E(707Q107Q20){hl(yl)ly2 = Y2, Yi%}p2(y2|y3> - E(707Q107Q20){hl(yl)lyiﬁ}p2(y2|Y3>]

+ha(y2) Eo{p2(y2|Y3)} — Eo[Er0,Q10,020) {12 (Y2) [Y3 }p2(y2]Y3)]-

where
p1(yilys) J (Y15 Y25 y3170)dQ20 (y2)
T Iy y23 ys170)d@1o (1) dQ20 (y2)”
o(ualys) = J (Y15 y2; ys|70)dQ1o(y1)
I Ty y2; y3)dQ10(y1)dQ20(y2)
We show in the following that o(hg, hi,he) = (09, 01,02)(ho, h1, he) is a continuous invertible

operator on Hy x Hy X Hy. Note from assumption 5 that

< h,o(h) >= —Ey{l(h,h)} >0,

and the equality holds only when h = 0. This means that o is a one-to-one map on Hy X Hy X Hs.

Next, let

J(h07 h‘17 h?) == A(h07 h17 h2) + B(h07 h’17 h2)7
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where A(hg, hy, he) = (af ho, Eo{p1(11]Y3) }ha (11), Eo{p2(y2|Y3) }ha(y2)) and

)

Hence, A is continous invertible on Hy x H; X H,. Further, it can be routinely verified that B

dlogn

ay = Eo [Var(707Q107Q20) { 87 (3/17 }/27 YE%|,}/U) > 0.

is compact by applying Theorem 2 of Kantorovich and Akilov (1982, pages 326-328) which states
that the integral operator on L?*(Fy) is compact if its kernel is summable in L?(Fp). It then follows
from that o is one-to-one on Hy x H; x Hs that o is continuous invertible on Hy x Hy X Hs.

From that

\/E<Pn - PO)Z(Y’M }/27 }/37 70)(}”07 h17 h2)
converges weakly to a tight Gaussian process, it follows that

V(3 = 70) ho + /hl(yl)d\/ﬁ<él — Qo) + /hz(yz)d\/ﬁ(éb — Q20)

= \/E(Pn - Po)i(VO,Qlo,Q20)<}/1; Yo; Yé)ail(hoﬁ hy, hZ) + 0P0(1)>

which converges to a tight Gaussian process with the covariance function

PO {j(VO,Q10,Q20)(YI; }/2; Y:Q»)Ofl(hm h17 h2>j(70,Q10,Q20)<Y1; }/2; Yé)o-il(hgv hﬂ{’ h;)} :

It follows from setting (hy, hs) = 0 that

\/ﬁ(% - WO)Tho — N(0,v(ho))

for any bounded hg € Hy, where v(hg) = Py {l‘(»YO,Qlo,Qm))(}/]_;E;}%)U_l(ho,o,0)}2. This implies
that v/n(9, — 7o) is asymptotically multivariate normal with mean 0 and variance V' = (v;;) whose
element can be obtained by v;; = {v(e; + €;) — v(e;) — v(e;)}/2, where e; is the unit vector with
the 7th component 1 and all other components 0.

Proof of consistent variance estimate: Let ¢ be defined as o with Py and (v, @10, @20) in the
expression respectively replaced by P, and (9, Ql, Qz) To show the consistency of the variance

estimate, note first from Lemma 3 that,

6<h07 hl: h2)<h37 hTu hZ) — U<h07 h17 hQ)(hS7 hiv hZ)
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uniformly FPy-almost sure over bounded h, h* € Hyx Hy x Hs. it follows from that o is continuously

invertible that ¢ is asymptotically continuously invertible almost sure and
&_1(h0> hla h2)<h(>§> hf, h;) — 0_1(h07 h17 hQ)(hsv hi? h;)
uniformly Fy-almost sure over bounded h, h* € Hy x H; X Hy. Note that
. 2 . 2 . 2
Pu{ls, 0n00 i Y Ya) D} = Po{lian0u00u (Vi Yas Vo) ()} + (Pu = Po) {l(5, 0,.00) (V13 Ya: Ya) (1)}
: 2 . 2
+F [{l(%,@h@)m;n;n)<h>} —{it0.010.020) (Y1 Y23 V) (1) } } :

: 2
It follows from the continuity of P, {l(v,Ql,Qz)(YB Ys; Yg)(h)} with respect to (7, @1, Q2) uniformly

over h and Lemma 3 on the Gilvenko-Cantelli classes that

. 2 . 2
I {l(%,QhQﬂ(Yl; Ya; YE)’)(h)} — B {l(’Yo,Qw,on)(Yl; Yo; YS)(h)}

uniformly on h € Hy x H; x Hy. It now follows from 67 '(h) — o~ !(h) that

. L 2 . . 2
Podls, 6000 (Y11 Ya: Y3)6 (ho,0,0)} = Po{i50.010.0u0 (Y13 Yai Y3)o ' (ho, 0,0)} .

To show the consistency of the numeric differentation in estimating the asymptotic variance

when the odds ratio model is correctly specified, note that, for v = 4, +ho/+/n and v1 = vo+ho/+/n,

\/ﬁPn {iw('Ya le QQV) - l.v(’?na Qly QZ)} - \/ﬁ(Pn - PO) {l.v(’% Ql'ya QQw) - iﬂ/(’?’m Qh QQ)}
+\/5P0 {l'y(% Qm, Q2«,) - l.w(%, Ql; QQ) - Zv(%; QlO’yu Q20w1) + jv(VO, Qho, QQO)}
+v/nPy {%(’Yb Q10415 Q20y1) — l"y(707 Q1o, on)} )

where (Q10y, @20,) are the maximum likelihood estimators of (Q1, Q) for fixed v, and i7 is the

likelihood score for 7. (Q1oy,, @20+, ) are the least favorite model defined by

dQlO’}q (yl) = u(1+ < O—*_l{al(h()/\/ﬁa 07 O)a UQ(hO/\/Ea 07 0)}7 €1 >)dQ10<yl)a

dQQOM <y2) = U(1+ < O-*_l{o-l(hO/\/ﬁa 0, 0)7 UQ(hO/\/ﬁy 0, O)}a €2 >)dQ20(y2)7
where e; = (1,0) and e; = (0, 1), < a,b >= 3", axby for vector a = (ax) and b = (by,), o.(h1, he) =
0(0, hy, hy), and uw and v are taken such that [dQio,(y1) = 1 and [ dQ20,(y2) = 1 respectively.
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The first two terms on the right-hand side of the equation are op(1) from Lemma 3 and the last

term converges to o(hg,0,0) following similar arguments to those of Murphy and van der Vaart

(2000).
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