

Background

- New neuroimaging datasets are large (10GB to 100TB+)
- Object detection is a canonical problem
- Many techniques exist to aid in scene parsing

Background

NeuroData provides an ecosystem of tools and services to enable data sharing and computation:

- High-throughput reads/writes to spatial database to support high performance computing (HPC)
- Spatially co-registered image and annotation data
- Flexible, interoperable RAMON data standard to enable both annotations and metadata
- RESTful endpoints, with MATLAB and Python interfaces for rapid workflow construction

Challenge

Processing neuroscience data at scale requires addressing a wide range of challenges, including:

- Data storage
- Data access
- Algorithm Implementation
- Algorithm scaling
- Utilizing computational resources
- Enabling reproducible science
- Multiscale scene understanding
- Recording object metadata
- Performance Assessment

Scalable automated (synapse) detection using the Open Connectome Project

William Gray Roncal^{1,2}, Anish K. Simhal³, Joshua T. Vogelstein², Forrest Collman⁴, ⁵Eva L. Dyer, Mark A. Chevillet¹, Randal Burns², Guillermo Sapiro³, Gregory D. Hager² ¹JHU Applied Physics Laboratory, ²Johns Hopkins University, ³Duke University, ⁴Allen Institute for Brain Sciences, ⁵Northwestern University Contact: wgr@jhu.edu

Compute Block

Array Tomography IF Data - EM slice (in grayscale) with IF channels overlaid: PSD-95 (green), synapsin (red), VGluT1 (pink), NR1 (yellow). The synaptic clefts (putative ground truth) are highlighted in blue. A prototype classifier has been developed and tested using the methods described here.

Example LONI workflow, demonstrating the process for object detection using Ilasik, a multipurpose machine learning tool (ilastik.org)

Cube Upload Dense

Resolution

- Our code was used for object detection tasks across multiple modalities, including Array Tomography, X-Ray Microscopy and Electron Microscopy
- Code, data, and an analytics stack are available at neurodata.io

Resolution

- Code and data are open and available at neurodata.io
- NeuroDataVision exists as an integrated analytics stack in an Amazon Machine Image for mesoscale processing and prototyping
- Many algorithms have been included for immediate use; the framework can be easily extended
- More complex workflows (e.g., graph estimation from images) are also available

References

[1] R. Burns, W. Gray Roncal, D. Kleissas, K. Lillaney, P. Manavalan, E. Perlman, D. R. Berger, D. D. Bock, K. Chung, L. Grosenick, N. Kasthuri, N. C. Weiler, K. Deisseroth, M. Kazhdan, J. Lichtman, R. C. Reid, S. J. Smith, A. S. Szalay, J. T. Vogelstein, and R. J. Vogelstein, "The Open Connectome Project Data Cluster: Scalable Analysis and Vision for High-Throughput Neuroscience," Proc. 25th Int. Conf. SSDBM.

[2] F. Collman, J. Buchanan, K. D. Phend, K. D. Micheva, R. J. Weinberg, and S. J. Smith, "Mapping Synapses by Conjugate Light-Electron Array Tomography," vol. 35, no. 14, pp. 5792-5807, 2015.

[3] I. D. Dinov, J. D. Van Horn, K. M. Lozev, R. Magsipoc, P. Petrosyan, Z. Liu, A. Mackenzie-Graham, P. Eggert, D. S. Parker, and A. W. Toga, "Efficient, Distributed and Interactive Neuroimaging Data Analysis Using the LONI Pipeline," *Front. Neuroinform.*, vol. 3, p. 22, Jan. 2009.

[4] W. Gray Roncal, M. Pekala, V. Kaynig-fittkau, D. M. Kleissas, J. T. Vogelstein, H. Pfister, R. Burns, R. J. Vogelstein, M. A. Chevillet, and G. D. Hager, "VESICLE : Volumetric Evaluation of Synaptic Interfaces using Computer vision at Large Scale," *BMVC*, 2015.

Acknowledgements

OCP is graciously supported by the following awards: NIBIB 1RO1EB016411-01 (CRCNS), DARPA N66001-14-1-4028 (GRAPHS), NSF ACI-1261715, NSF OCI-1040114, NIDA 1R01DA036400-01, JHU Applied Physics Laboratory IRAD, and JHU Whiting School of Engineering, Dean's Award.

