
1 Supplementary proofs

1.1 Derivation of the Estimator

For the special case of α = 2 and q = 2, fn(γ;λ) in (3.1) can be rewritten in the matrix form as

follows:

fn(γ;λ) = (y −Xγ)T(y −Xγ) + λ(Aγ)T(Aγ).

The first derivative of fn(γ;λ) with respect to γ(k) are

∂fn(γ;λ)

∂γ(0)
=2nγ(0)− 2zT

01n,

∂fn(γ;λ)

∂γ(k)
=2(n− k)γ(k)− 2zT

k1n−k + 2λk2γ(k).

Let ∂fn(γ;λ)
∂γ(k) = 0 for k = 0, 1, . . . , n− 1. Solving these equations gives

γ̂(0) =
1

n
1T
nz0, γ̂(k) =

1

(n− k) + λk2
1T
n−kzk, for k = 1, . . . , n− 1.

We note that if k ≤ λk2,

|γ̂(k)| ≤ |γ̄(k)| ≤ γ̄(0) = γ̂(0).

Hence, the proposed estimator satisfies the restriction C = {γ : γ(0) ≥ |γ(k)| , k = 1, . . . , n − 1}.

Here, we use the fact that γ̄(k), the sample autocovariance function defined in (1.2), is nonnegative

definite, and thus |γ̄(k)| ≤ γ̄(0).

1.2 Proofs of Theorems 1 and 2

We present the proofs of Theorems 1 and 2 by following the setting and notation in Wu (2009).

Let κp = ‖Yi‖p.

For Theorem 1, we use the coupling argument and central limit theorem for stationary processes

(Hannan, 1973). Similar calculations to the proof of Theorem 1 in Wu (2009) give

∞∑
i=0

‖P0(YiYi−k)‖ ≤ 2κ4

∞∑
i=0

δ4(i) <∞.

Also, for 0 ≤ j ≤ k and appropriate λ, n
(n−j)+λj2 ≤ 1, which results in

∑∞
i=0 ‖P0(YiAkηi)‖ <∞.

Hence, by the Cramer-Wold device, (3.4) follows from Theorem 1 in (Hannan, 1973).
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For Theorem 2, let Tnj =
∑n−j

i=1 (YiYi+j − γ(j)). The calculations of the proof are similar to the

proof of Theorem 7 (i) in Wu (2011). In particular following Wu (2011) we obtain:

‖P0(YiYi+j)‖p/2 ≤ ‖Yi‖pδp(i+ j) + δp(i)‖Y
′
i+j‖p,

for j ≥ 0. By the triangle inequality,

‖Tnj‖p/2 = ‖
n−j∑
i=1

∑
l∈Z
Pi−lYiYi+j‖p/2 ≤

∑
l∈Z
‖
n−j∑
i=1

Pi−lYiYi+j‖p/2.

Note that Pi−lYiYi+j , i = 1, . . . , n, form stationary martingale differences. Using Burkholder’s

moment inequality for martingale differences (Burkholder, 1988), the fact p/4 ≤ 1 and simple

algebra we obtain

‖
n−j∑
i=1

Pi−lYiYi+j‖
p/2
p/2 ≤

E{[
∑n−j

i=1 (Pi−lYiYi+j)2]p/4}
(p/2− 1)p/2

≤
(n− j)‖P0YlYl+j‖

p/2
p/2

(p/2− 1)p/2
.

From these three facts

‖Tnj‖p/2 ≤
∑
l∈Z
‖
n−j∑
i=1

Pi−lYiYi+j‖p/2

≤
∑
l∈Z

(n− j)2/p‖P0YlYl+j‖p/2
p/2− 1

=
(n− j)2/p

p/2− 1

∑
l∈Z

(
‖Yl‖pδp(l + j) + δp(l)‖Y

′
l+j‖p

)

≤4(n− j)2/pκp∆p

p− 2
.

Since δp(i) = 0 if i < 0,

γ̂(k)− n− k
(n− k) + λk2

γ(k) =
1

(n− k) + λk2

n−k∑
i=1

(YiYi+k − γ(k))

≤ 1

n− k

n−k∑
i=1

(YiYi−k − γ(k))

=
1

n− k
Tnk

for appropriate λ. Hence,∥∥∥∥γ̂(k)−
(

1− λk2

(n− k) + λk2

)
γ(k)

∥∥∥∥
p/2

≤ 4(n− k)2/pκp∆p

(p− 2)n

=
4‖Y1‖p∆p

(p− 2)n1−2/p
.
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loque Paul Lévy sur les Processus Stochastiques, pages 75–94. Ecole polytechnique, Palaiseau.
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