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F.1 Motivation 

Reservoirs store water and are critical for human activities like drinking, irrigation, recreation, and flood 

control. Over time, these bodies of water tend to accrue sediment due to a variety of factors, and this 

buildup reduces reservoir capacity. Of interest to geographers, then, is the rate at which the sediment 

accumulates in reservoirs around the U.S., in order to monitor erosion and evaluate water supplies. 

 

F.2 Data Description 

Dr. Bill Renwick, Professor of Geography at Miami University, was the client for this project in early 

2013. The publicly-available dataset of interest included about 3,900 observations on roughly 1,900 

different reservoirs, collected between 1755 and 1992. The desired analysis was somewhat preliminary, 

since some new data was expected to be made available soon. Within the dataset, five variables are of 

interest (Table F.1). 

 

A measurement in this dataset specified a particular reservoir in a particular region (HUC2; Figure F.1), 

and included an estimated sedimentation rate that was calculated based upon estimated reservoir volumes 

measured at two different times. A sedimentation rate was associated with the midpoint between the 

beginning and ending measurements. 

 

F.3 Problem Statement 

There is a general assumption among reservoir managers that modern sedimentation rates are more-or-

less unchanged when compared to the past. However, some hypothesize that due to improved 

environmental conservation, sedimentation rates have decreased. The goal, as communicated by Dr. 
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Renwick, was to model the sedimentation rate as a function of year, to determine if there was a significant 

change in sedimentation rates across different regions within the United States. 

 

Table F.1.  List of variables, descriptions, and purpose of each variable in the model. Adapted from STA 

475 written report to client in spring 2013.  

Variable Name Description Purpose in Model 

SedRate (S) Sedimentation yield (in cubic meters of 

sediment per square kilometers of drainage 

area per year) 

Response 

MidYear (M) Midpoint between beginning and ending 

measurements 

Predictor 

HUC2 (R) Geographic region (1 to 18) Predictor (Categorical) 

RESSED ID Reservoir identification number Correlation structure 

Duration (D) Time between beginning and ending 

measurements (in years) 

Weighting 

 

F.4 Solution 

The challenges presented were considerable. The dataset was messy, including duplicate and conflicting 

observations that had to be resolved. There were also at least four critical complications that precluded a 

straightforward, standard analysis of sedimentation rate regressed on time, for each region.  

 

First, the response was highly skewed due to the natural bound of 0 on the sedimentation rate. This issue 

was largely remediated by a log transformation (though, since the bound of 0 was not inviolable, 

nonpositive observations were omitted based on the argument made by Dr. Renwick that it is unusual for 

a reservoir to naturally exhibit a negative sedimentation rate and more likely to be the result of a man-
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made intervention such as dredging). Scatterplots of the log-transformed sedimentation rates reveal many 

regions with apparently increasing trends (Figure F.2). 

 

 

Figure F.1. Hydrologic Unit Code (HUC2) Map (Jones et al., 2010). Each shading indicates one of 

the 18 regions. 
 

The second difficulty had to do with how the sedimentation rate of a reservoir was measured: At two 

different times, sometimes years apart, the volume of a particular reservoir was calculated and the two 

measurements used to estimate the sedimentation rate. As is clear from Figure F.3, rates are more volatile 

when the two measurements were taken close together and less variable when more time had elapsed 

between the two measurements. This attenuation of variability is, indeed, what was observed (a pattern 

that persists even when the sedimentation rate was log-transformed), which suggests that observations 

should be weighted as a function of the duration. 
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Figure F.2. Scatterplots of the log of the sedimentation rates versus MidYear (with simple linear 

regression line superimposed), for regions 1-18. Taken from STA 475 written report to client in spring 

2013.  

 

The third important complication is that many reservoirs were measured multiple times, meaning that the 

correlation between observations on the same reservoir needed to be incorporated into the model. (The 

simplifying assumption was made, however, that observations from different reservoirs were 

independent.)  None of the students in the class had ever fit a model with such structure. 

 

Finally, multiple comparisons was an issue that needed to be addressed, since there were 18 regions for 

which inference was desired. 

 

The model fit was 
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log(𝑆𝑗𝑘) =∑𝛽𝑖𝑅𝑖𝑗𝑘

18

𝑖=1

+∑𝛽𝑖+18𝑅𝑖𝑗𝑘𝑀𝑗𝑘 + 𝜀𝑗𝑘

18

𝑖=1

 

where 

 j represents reservoir j and k represents the kth measurement taken on the jth reservoir; 

 Rijk is an indicator variable for Region i; 

 errors are 𝜀𝑗𝑘~𝑁(0, 𝜎2|𝐷𝑗𝑘|
2𝛿
), with 𝐷𝑗𝑘 the difference between the beginning and end of the 

sedimentation rate measurement (the “duration”), and 𝜎2 and 𝛿 are parameters estimated from the 

data. 

 correlation between multiple measurements on reservoir j is 𝑐𝑜𝑟𝑟(𝜀𝑗𝑘 , 𝜀𝑗𝑘′) = 𝜙𝑠 where 𝜙 is 

estimated from the data and s is the amount of time between measurements. 

 

The model was parameterized to allow for direct hypothesis tests on each region slope parameter in the 

form of 𝐻0: 𝛽𝑖 = 0 vs. 𝐻𝑎: 𝛽𝑖 ≠ 0 for i=19,20,…,36.  It was fit using the gls function in the nlme R 

package (Pinheiro et al., 2014).  

 

The complications in the data posed substantial challenges for the undergraduate consultants. Clearly, the 

necessary procedure was beyond the material that the students had studied; in fact, they were not even 

equipped to identify all of the complications. Thus, the instructor highlighted the necessary sort of model, 

briefly introduced it, and suggested some possible software implementations that could fit it. After the 

brief introduction, the students had to research the details and how to use the appropriate R package. The 

complex data required them to carefully learn several aspects of statistical modeling with which they were 

unfamiliar, while concurrently building up the model in an unfamiliar R function. Then, they had to 

demonstrate their adequate knowledge by writing and orally communicating clearly about the project. 
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Figure F.3. Sedimentation rate versus the duration used to calculate the sedimentation rate.  Taken 

from STA 475 written report to client in spring 2013.  

 

F.5 Results 

Once the complications described in the previous section were accounted for, the resulting fitted model 

produced a standardized residuals vs. fitted plot (Figure F.4) that gave a reasonable level of confidence in 

the subsequent inference. Upon fitting the model, there were eight regions with p-values less than 0.05, 

indicating possible changes in sedimentation rates over time. However, once the p-values were adjusted to 

account for the multiple hypothesis tests, four regions (Mid-Atlantic; South-Atlantic Gulf; Rio Grande; 

California) exhibited a slope parameter significantly different from 0. The procedure due to Holm (Holm, 

1979), a method to control the family-wise error rate that is more powerful than the Bonferroni correction, 

was used to adjust for multiple tests. 



 
 

7 
 

 

Figure F.4. Standardized residuals vs. fitted values for the final model. Taken from STA 475 written 

report to client in spring 2013.  

 

Interestingly, each of the four significant slope parameters were positive, implying that the sedimentation 

rate was increasing across time, in contrast to the initial hypothesis. Though the primary objective of the 

analysis was to establish which relationships exist and the direction of those existing relationships, the 

slope estimates can also be interpreted. For instance, the significant slope estimate for the Mid-Atlantic 

region was 0.017, which can be interpreted roughly as follows: For this region, a one year increase is 

associated with an estimated change in the sedimentation rate of about a factor of 𝑒0.017 = 1.017, i.e. a 

1.7% change (more precisely, the estimated change is in the median of the sedimentation rate, though this 

was not specified in the student report). 

 

F.6 Limitations 

In most consulting projects, there are caveats that temper confidence in the results. Here, one limitation 

was the elimination of the sedimentation rates less than or equal to 0, in order to facilitate the log 

transformation. Though there were scientific justifications for truncating the data in this way, it did reduce 
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the sample size by several hundred. A possible work-around would have been to add a constant to all 

responses in order to ensure that they all were positive. This would not have affected the slope parameter 

estimates and would have allowed the use of the entire dataset. 

 

Another limitation was that correlation between neighboring reservoirs was ignored. Though the HUC2 

region predictor accounts in a crude way for similarities in regions, it is possible that reservoirs in close 

proximity might be associated with each other. This possible correlation structure could have been 

accounted for by incorporating a spatial covariance component, but likely would have made the project 

even more challenging. 
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