Supplement to “Bayesian Nonparametric Dynamic State

Space Modeling with Circular Latent States”

Satyaki Mazumder*and Sourabh Bhattacharya!

Throughout, we refer to our main paper Mazumder and Bhattacharya (2014) as MB.

S-1 Smoothness properties of our Gaussian process with
linear-circular arguments

Here we assume that p(t,6) is twice differentiable with respect to ¢ and 6, and that the

] 1 82“(t70) azﬂ(tﬁ) 32#(15’9) — azﬂ(t»e) 3
derivatives are bounded. Formally, we assume that =52, =55, —555 (= "4 ) exist

and are bounded. We denote the covariance function o2 exp{—o?|t; — t2|*} cos(|0; — 0s])

(where 02 = ©2) by K([t; — to], |61 — 6a]).
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S-1.1 Mean square continuity:

1. With respect to time ¢

E[X(t+h,0)— X(t,0)]
=E[X(t+ h,0)]>+ E[X(t,0)]> —2E[X(t + h,0) X (t,0)]
—K(0,0) + K(0,0) — 2K (h, 0)
—2(K(0,0) — K (h,0))

Now as h — 0, E[X(t + h,0) — X(t,0)]*> — 0 because of the fact that K(h,0) is

continuous in h.

2. With respect to angle 0:

E[X(t,0+a) — X(t,0)]?
=E[X(t,0 + )] + BE[X(t,0)] — 2E[X(t,0 + a) X (t,0)]
=K(0,0) + K(0,0) — 2K (0, @)
=2(K(0,0) — K(0, )
Now as a — 0, E[X(t,0 + a) — X(¢,0)]> — 0 because of the fact that K(0,«) is
continuous in a.

3. With respect to time ¢ and angle 6:

EIX(t+h,0+a) — X(t,0)]?



=E[X(t+h,0+a)>+ E[X(t,0) —2E[X(t+h,0+ a)X(t,0)]
=K(0,0) + K(0,0) — 2K (h, @)
=2(K(0,0) — K(h,a))

Now as (h, a) — (0,0) then E[X (¢t +h,0 +a) — X (t,0)]*> — 0 because of the fact that

K (h, ) is continuous in h and a.

S-1.2 Mean square differentiability

A process X (u), u € R% is said to be Mean Square Differentiable at uy if for any direction

p there exists a process Ly, (p), linear in p, such that

X(ug +p) = X(up) + Lu, () + E(ug, p),

where p € R%, and R(uy, p) satisfies the following

R(uy, p)

— 0, in L?,
|Ipl|

with || - || being the usual Euclidean norm (for details see Banerjee and Gelfand (2003)).
However, we have t € Rt and # € [0, 27|, so we can not directly apply the definition of
mean square differentiability that is appropriate for R%. For our purpose we define a new

metric on time and angular space as

d(ty,ta,61,0) = |t1 — ta| + |61 — ba],



(recall that we have used the angular distance as a metric on the angular space to represent
the covariance as a function of distance in time and angle). Note that d(-,-, -, ) satisfies all

the three criteria for being a metric, that is,

1.d(t1,t2,¢91,92) Z 0
2. d(tl,t2,91,92) == 0 lff tl == t2,91 == 92
3.d(ty,ts, 0h,03) < [|t1 —to| + |61 — O2|] + [[t2 — t3] + |01 — 2]

= d(tla t?a 617 92) + d(t27 t37 927 93)

With the help of this new metric in time and angular space we define Mean Square Differ-

entiability in time and circular domain as

Definition 1 A process X (t,0) is said to be Mean Square Differentiable in L? sense at

(to,0o) if for any direction (h,«) there exists a process Ly, g,(h, @), linear in h,«, such that
X(to + h, 00 + CY) = X(to, (90) + Ltoygo(h, Oé) + R(to, (90, h, a),

where R(to, 0o, h, ) satisfies the following condition

R(t07 607 h7 Oé)

W — 0, in L? as d(h,0,a,0) — 0.

In our case, since our covariance function K(|t; — ts|, |#1 — 62|) has partial derivatives
of all orders, the partial derivative processes of all orders exist with covariance structures
given by partial derivatives of our covariance function; see Section 2.2 of Adler (1981) for

details. In fact, the partial derivative processes are all Gaussian processes, and hence, they
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are bounded in L2.
Hence, we can apply Taylor series expansion to obtain a linear function Ly,(p). The
following calculation will make the things clear. Following the multivariate Taylor series

expansion (using our new metric) we have

0 0

X(to+h,90+0&) :X(to,eo)—i—haX(t,e) +CY% (t,@) +R(t0,90,h,0&),
t=to,0=0¢ t=to,0=00
. 52 2 2

where [R(to, 6o, h,a)| < M*d(h,0,a,0), with M* = max{ 2560|, | 22| | 2|,

9?X(1,0)
962

the case of R, R(ug, p) < M*||p||?).

’ } (using the analogy with multivariate Taylor series expansion in R?, recall that in

Since each of the partial derivative processes is bounded in L?, it is obvious that M* is
also bounded in L2. Mean square differentiability of our kernel convolved Gaussian process

thus follows.

S-2 MCMC-based inference

In our MCMC-based inference we include the problem of forecasting yr 1, given the observed

data set Dp. The posterior predictive distribution of yry1 given Dy is given by

lyrsa| D] = / Wrei|Dr. 2o, 141, By, B, 0% 02, 0%, 02
X[an" xT-i-lv/Bfa/ng € 77’ g)Uf|DT]

dB;dB,do’doldordotdry . . . dopy. (1)

Thus, once we have a sample realization from the joint posterior



[0, ..., 111, By, By, 02,07, 02,07 Dr], we can generate a realization from [yp1|Dr] by sim-
ply simulating from [yr,1|Dr, 2o, . .., 2141, By, By, o0 n, O‘f, o ] conditional on the realiza-
tion obtained from the former joint posterior. Observe that the conditional distribution

yr1 = f(T'+ 1, 2741) + er1| D1, 2o, - - . 141, By, o2, 0]20] is normal with mean
fiyro = R(T +1,201)' By + 8.0,(T + 1, 27041) A;, (Dr — Hp,By) (2)

and variance

O'ZT_H = 052 —+ O'J% (1 — <3f,DT<T + 1, $T+1))IAJ;7})TSJC7DT<T + 1, xTJrl)) . (3)
Using the auxiliary variables K1, ..., K71, the posterior distribution of the latent circular

variables and the other parameters can be represented as

2
[1’0,331,-- xT+17/8f7 g,O'E, n’ g’o—f’DT]

2 2 2
= Z /[x()axlu xT7xT+1716f7169) € 177O-g7o-fag*(17x0)7DzaK17'"7KT7KT+1|DT}
Ki,....K7 41

X dg*(1,z9)dD,

2 2 2 *
X § /[:C()?xlu $T+17/6f7 guaeu n7ag70f7g (17x0)7D27K17"'7KT7KTJrl?DT]
Ki,....K141

X dg*(1,x¢)dD,

= > /[ﬁf][ﬁg][af][ai][03][0?][930][9*(1,xo)\xo, 0 Ogl[D:1g" (1, 20), w0, By, 7]

Ki,....K141

[$1|9*<17 .I’()), 07277 Kl][Kl‘g*(la $0)7 02][DT|~I‘17 s Xy 18f7 0527 0]2”]



T+1 T+1
H[mt‘ﬁg7 777 gszv'rt laKt] H[Kt|/897 7770-97-D27xt—1] dg*(lwr()) dDz (4)
t=2 t=2

In order to obtain MCMC samples from [zg, 21, .. 33T+1,5f,ﬁg, z, 77, Ufc\DT], we

first carry out MCMC simulations from the joint posterior which is proportional to integrand

(4). Ignoring ¢*(1,z0), D, and Ki,..., Kr;1 in these MCMC simulations and storing the

realizations associated with the remaining parameters yield the desired samples.

S-2.1 Full conditional distributions

Here we provide the full conditional distributions of the unknowns. In what follows, we shall

express [g (1 :L‘O)|ZE07,69, g][‘D |g (1 l'()) anﬂg7 3] [Dzag (1 {L‘O)|ZE07,69, g]

1Byl --

g

2 .

1 o< [B4[Drlzy, ..., 27, By, 07] (5)
T+1 T+1
’ ] X [/6 ][Dzﬂg (1 $0>|‘r071897 g] H[‘rt|/897 Ons 27DZ7xt71;Kt] H [Kt‘ﬁgﬂjz
t=2 t=2
U§>Dz>$t—1] (6)
] X [052][DT|I17"'axTanvae2] (7)
] X [U?‘][DTLTD---?'%T?BJ’?UJZ‘] (8)
T+1

: ] X [03][$1|9*<1,$0>703>K1][Kl|g*(1;1’0)7072,] H[xt|/8970-7]70-gaDzwrt—th]

t=2
T+1
H[Ktlﬁg7ag70'n,Dz7xt—1] (9)
t=2
T+1 T+1

] (S8 [02][Dzag (1 x0)|x07/6g7 g] H[xt’/ggagnaggaDzaxtflaKt] H [Kt’/gga Og5

t=2 t=2



] -

[$t+1’ e

o2, D, ] (10)

-] o< [wo][D=, 9" (1, z0) |20, By, 7] (11)

-] o< [g* (1, o) |20, By, o2)[D:|g* (1, 20), 20, By, o )[x1lg* (1, 20), 20, 07, K1

[Kilg™ (1, 20), 07 (12)

T+1 T+1

] [D |g (1 ZL'()) aTO:ﬁg? g]H['Ttlﬁgv g7 r]7DZ7It laKt]H [Kt’ﬁg7 g7 777

t=2 t=2
D,z ] (13)
] e [:v1|g*(1,x0),ag][DT|x1, . ,xT,,Bf,af]
[xz\ﬁg,ag,an,Dz,xl,KQ][Kglﬂg,ag,an,Dz,xl] (14)
o (w7418, 0 pr n,Dz,JJT,KTH] (15)

']OC[‘rt+1|lgg70-970-777D27xt][xt+2|/897 g’ 177D27xt+17Kt+2] [Kt-i-zlﬁgv gv 777

Dzwrt—l-l] [DT|(L’1, .o 7'rT718f7062]7 t= 1, ce ,T -1 (].6)

Finally, we write down the full conditional distribution of K;, fort =1,...,T + 1, as

[K1|..

[Kt"'

] [K1|g (1 IO)) n][x1|g (1 IO) IBg7 naKl] (17)

] [l’t’,@g, o zaxt 17Kt][Kt|/697 n’ zaxtfl]a t:277T+1 (18)

S-2.1.1 Updating 3; by Gibbs steps

The full conditional of B is a multivariate normal distribution with mean

E[/Bfl o ] - {H/DT(U]%ALDT + 0_62[)_1HDT + Eﬂf,o}_l

X {HIDT(O'JQCAf,DT +Ue2])_1DT + ngl’()ﬁﬁo} (19)



and variance
VB¢l -1 = {Hp, (07Asp, +021) ' Hp, + g, .} 7. (20)

S-2.1.2 Updating 3,

We first explicitly write down the right hand side of (6).

T+1 T+1
[/Bg][Dz> g*(la x0)|x07 /Bg] H[xt’ﬁw 072]7 Dza Lt—15 Kt] H[Kt‘ﬁga 07277 DZ? $t,1]
t=2 t=2

X exp (_%(ﬁg — 5970)’25;0([39 - ,39,0))

exp (—%[mz,g*)' ~ (Hp.By, B (1L,20) VA (1) [(Dng) = (Hp.B,. h’(lwo))’])

T+1 1 T+1
exp {— > 5o (T 21K, — /ubxt)2} IT To2m () (21)
i=2 U t=2

Observe that the denominator of [;|3,), ag, D, x4, K] cancels with the density of
(K48, ag, D,z ] foreacht =2,..., T+ 1. Also we note that the indicator function does
not involve 3, for all t = 2,...,T + 1. Therefore, after simplifying the exponent terms and

ignoring the indicator function we can write

8,1+ o oxp { =58, s V5318, - ) | (22)

where



ps, = BB, = {25 ot — [H’D ,h(l,xo)]Agi’g*(lm)[H’DZ,h(l,azo)]’
9

T —
z sz ’ ? )
+2 —
Xt

- 1 - .
{Eﬁgl,oﬁg,o + ;[H,Dzv h(17 xo)]ADi,g*(on)[Dza g (17 IL’(])]

(Hp A L sgp.(t+1,2) —h(t+1,2,)) (Hp Ay} sgp.(t+1,2,) — h(t + 1, xt)),}

9
d (241 + 27Ky — 8gp. (E+ 1, xt)’A;}DzDz) (h(t+1,2) — H/DZA;lDzSQ:Dz (t+1,24))
2 -2
t=1 @t
(23)
and

1 _
S, = VIB,| -] = {zﬁgo + 5 [Hp (1L, 20)| AL .oy [H ., h(1,20))

9

D3 —
Tt

L (HYy A sgp. (t+1,0) —h(t+1,2,)) (Hp A} sep.(t+1,7,) —h(t+1,xt))’}

(24)

Hence [3,|---] follows a four-variate normal distribution with mean and variance pg, and

35,, respectively, and therefore, we update 3, using Gibbs sampling.

S-2.1.3 Updating ¢} and o

The mathematical form of the full conditional distributions of J]% and 03 are not tractable,

so we update o7 and o2 by random walk Metropolis-Hastings steps.
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S-2.1.4 Updating o?

The mathematical form of the full conditional distribution of ¢? is not tractable, so we

update o2 by a random walk Metropolis-Hastings step.

S-2.1.5 Updating ag

For full conditional distribution of 0727 right hand side of (9) simplifies a bit in the sense that

the denominator of [x;|8,, 07, D, z;_1, Ky cancels with the density of [Ky|8,,07, D., z_1]

fort =2,...,T+1, and the denominator of [z[g*(1, x0), B, 0,27, K] cancels with the density

of [K1|g*(1,z0), B, 0'727], which, in turn, gives the following form:

T+1
1 1
2 2 2 )2
[0n| ] o [Un] exp {—ZZ:; —20% (x¢ + 2 Ky — pg,) }exp {—rﬂ%(m + 21K, — g") } (25)

However, the above equation does not have a closed form; hence, for updating 0,27 as well, we

use random walk Metropolis-Hastings.

S-2.1.6 Updating x,

The full conditional distribution of xy is not tractable and hence again here we use random
walk Metropolis-Hastings for updating xy. Now note that z( is a circular random variable,

so to update " to 2™ we use the vonMises distribution with location parameter z\"'"

11



S-2.1.7 Updating ¢*(1, z)

Equation (12), after cancelling the denominator of [z1]g*(1, z0), %o, B,, 0727, K] with the den-

sity of [K1|g*(1, x0), 70, B,, 03], and ignoring the indicator function on z(, reduces to

97 (L) -] ¢ [g"(L ), B,]1D.1g" (1), 0 B, exp { =5 o+ 20K = 472

n

After further simplification the full conditional distribution of ¢*(1,zg) reduces to

P e (26)

273
where
1 1 =
= Elg (L) ++] = { 5 + 25004 80, (L) By, 300, (10)
o o2
T+ 27TK1 1 _ %
[P LB, + 5 2 b D0 (D
n 9
and
2 * 1 ]' Iv—1
2= Vi)l ={ o Lt s (L) S h s (L) b (28)
n g
with
DZ :Dz_HDleg_l_h(laxO)//Bgsg,Dz? (29)
and
¥yp.=Ayp. — sg,Dz(LxO)Sg,Dz(LxO)/- (30)
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Hence [g*|-- -] follows a normal distribution with mean v, and variance ,. Therefore, we

update ¢* using Gibbs sampling.

S-2.1.8 Updating D,

Here also we observe that in the full conditional distribution of D, the denominator of

[xt|Bg, 2 D,z 1, Ki] cancels with the density of [K;|3,, o 2 D,, x| foreacht =2,... T+

92T
1. After simplification it turns out that the full conditional distribution of D, is an n-variate

normal with mean

—1
2_}3 B T s D.(t+1,m)s) p (41, 24) B
E(D.|-) = {—fﬂ +A ], <Z : " ATl

i Sg,Dz (t + ]_, xt){$t+1 + 27TKt+1 — B;(h(l,t + ]_,.Tt) HI A;D Sg D, (t + ]_ :Et))}}

=1 Tat

(31)

and covariance matrix

1
>l B T s p.(t+1,x)s p (t+1,2¢) B
I R b o Abt @

2
Ug t=1 Uxt

Therefore, we update D, using Gibbs sampling.

S-2.1.9 Updating z;

For the full conditional distribution of x; we write down the complete expression of (14) as

follows:

13



i oxp (— 5l (01 + 20K = 9)?) Toam (@)
) <2“(K1+1)—9*> — P <27rK17_q*>

on on

o]+ o

1 _
exp{_E(DT - I’l’yt)lzytl(DT - I“l’yt)}

1 1
5 oxP (_F(@ + 21K, — Nm2)2) : (33)
To 2

where p,, and X, are given by (10) and (11) of MB. Here we note that the denominator
of [12]8,, 0’2, D.,x,, Ky] cancels with [K>|8,), 02, D, z]. Also we ignore the indicator term

an

x1. Hence ignoring ® (W) - (%) we get

associated with x5. We note that the term ® <M> — ¢ <W> does not involve

1 1 .
[$1| .. ] X \/%o' exp (—T‘Q(Jfl + 27TK1 —g )2> [[O,Qﬂ(ﬂfl)
n n

1 .
eXp {_§<DT - l’l’yt)/zytl(DT - l’l'yt)}

1 ( 1 )
exp | —=—— (w2 + 20Ky — fiy,) ) , (34)
V2710, 202, ’
However, it is not possible to get a closed form expression of [z1]-- -], so we update it by

random walk Metropolis-Hastings.
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S-2.1.10 Updating z;1, t=1,...,T —1

For x;,; we have the same structure as for x;, except for some changes in the parameters.

To be precise, the full conditional distribution can be explicitly written as

i e (— g (s + 27K — pra)?) T (o
[xt+1‘ . ] x \/%errl p ( 20%t+1< t+1 t+1 :u t+1) [072 }( t+1)
P <2W(Kt+1+1)_uzz+1) _® <M>

Ozty1

Ozty1

Tt4+2

1 1
NI exp <_F<£t+2 + 21K yo — Nmt+2)2>
Ti42

exp {—5(Dr — 1,5, (D — )} (35)

21 (Kiy14+1)—p 2 Kiy1—p .
We note here that ¢ ( ST Ay LS ) - (M> does not involve x,41 because p, , ,

Oz Ozyy1
27"(Kt+1+1)*ﬂzt+1 > B

Oxyyq

and o, , depend on x;, not on x,,, and hence we can ignore the term ® (

o <M> and rewrite (35) as

Ozpy1

(T + 27K — Mzt+1)2> 110,27) (Tt41)

\% 27T0--Tt+1 20_3t+1
! ! (Tiq2 + 27K, )2
VXD | —5 5 (T2 TN 42 — Mgy
V210, ., 20§t+2 +2
1 _
exp {—§(DT — 1) %, (Dr — )} (36)

Here also the expression of the full conditional distribution of x;, is not tractable. So,

we adopt random walk Metropolis-Hastings to update x4, fort =1,...,T.
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S-2.1.11 Updating z7

The full conditional distribution of zr,1 has probability density function of the form (29) of

MB with parameters

Parey = h(1, mT)’ﬁg +s,p. (T +1, xT)'A;})Z(DZ —Hp.B,) (37)
and
aiﬂl = 0,3 + 03{1 —syp. (T +1, IT)/A;lDZSQ,DZ (T+1,z7)}. (38)

We note here that given all unknowns except xry1, x7r1+27 K7y follows a truncated normal
distribution with left side truncation at 2w Ky, and right side truncation at 27w (Kr4q + 1)
(K41 is constant in this case). Hence we update zr,1 + 2w Kryq using Gibbs sampling and

then subtract 2w K, from it to update zp,4.

S-2.1.12 Updating K, t=1,...,T +1

The full conditional distribution of K; reduces to the following form

[K1|---]O(

1 1
= Ky — a2 ) I, _ K 39
Voo, exp( 202 (v 4+ 271K, — g )) {101, (K1), (39)

and similarly the full conditional distribution of K; becomes

1
[Kt| .. ] ——Q(xt + 27K, — ,uzt)2) I{...,fl,O,l,...}(Kt)a (40)

1
X —— ex
V2o, P ( 20,

fort =2,...,T+1. Weupdate K;, fort =1,..., K+1, by random walk Metropolis-Hastings.
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