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Abstract

This work builds upon previous efforts in online incremental learning, namely the
Incremental Gaussian Mixture Network (IGMN). The IGMN is capable of learning from
data streams in a single-pass by improving its model after analyzing each data point
and discarding it thereafter. Nevertheless, it suffers from the scalability point-of-view,
due to its asymptotic time complexity of O(N K D3) for N data points, K Gaussian
components and D dimensions, rendering it inadequate for high-dimensional data. In
this paper, we manage to reduce this complexity to O(N K D2) by deriving formulas for
working directly with precision matrices instead of covariance matrices. The final result
is a much faster and scalable algorithm which can be applied to high dimensional tasks.
This is confirmed by applying the modified algorithm to high-dimensional classification
datasets.

1 Introduction

The Incremental Gaussian Mixture Network (IGMN) [11[2] is a supervised algorithm
which approximates the EM algorithm [3]. It creates and continually adjusts a
probabilistic model consistent to all sequentially presented data, after each data point
presentation, and without the need to store any past data points. Its learning process is
aggressive, meaning that only a single scan through the data is necessary to obtain a
consistent model.

IGMN adopts a Gaussian mixture model of distribution components that can be
expanded to accommodate new information from an input data point, or reduced if
spurious components are identified along the learning process. Each data point
assimilated by the model contributes to the sequential update of the model parameters
based on the maximization of the likelihood of the data. The parameters are updated
through the accumulation of relevant information extracted from each data point.

The IGMN is capable of supervised learning, simply by assigning any of its input
vector elements as outputs (any element can be used to predict any other element, like
autoassociative neural networks [4]). This feature is useful for simultaneous learning of
forward and inverse kinematics, as well as for simultaneous learning of a value function
and a policy in reinforcement learning [5].

However, the IGMN suffers from cubic time complexity due to matrix inversion
operations and determinant computations. Its time complexity is of O(N K D3), where
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N is the number of data points, K is the number of Gaussian components and D is the
problem dimension. It makes the algorithm prohibitive for high-dimensional tasks (like
visual tasks) and thus of limited use. One solution would be to use diagonal covariance
matrices, but this decreases the quality of the results, as already reported in previous
work [6L|7]. In this work, we propose the use of rank-one updates for both inverse
matrices and determinants applied to full covariance matrices, thus reducing the time
complexity to O(N K D2) for learning while keeping the quality of a full covariance
matrix solution.

For the specific case of the IGMN algorithm, to the best of our knowledge, this has
not been tried before, although we can find similar efforts for related algorithms. In [8],
rank-one updates were applied to an iterated linear discriminant analysis algorithm in
order to decrease the complexity of the algorithm. Rank-one updates were also used
in 9], where Gaussian models are employed for feature selection. Finally, in [10], the
same kind of optimization was applied to Maximum Likelihood Linear Transforms
(MLLT).

The next Section describes the algorithm in more detail with the latest
improvements to date. Section [3| describes our improvements to the algorithm. Section
shows the experiments and results obtained from both versions of the IGMN for
comparison, and Section [5| finishes this work with concluding remarks.

2 Incremental Gaussian Mixture Network

In the next subsections we describe the current version of the IGMN algorithm.

2.1 Learning

The algorithm starts with no components, which are created as necessary (see
subsection . Given input x (a single instantaneous data point), the IGMN algorithm
processing step is as follows. First, the squared Mahalanobis distance d?(x, j) for each
component j is computed:

dhy(x,) = (x = ;) "C; (x — py) (1)

where p; is the jth component mean, C; its full covariance matrix . If any d*(x,7)
is smaller than than X2D71_ 3 (the 1 — 8 percentile of a chi-squared distribution with D
degrees-of-freedom, where D is the input dimensionality and 3 is a user defined
meta-parameter, e.g., 0.1), an update will occur, and posterior probabilities are
calculated for each component as follows:

i) = e o (3 i) 2
PeiRG) “
> plxlk)p(h)

k=1

p(ilx) =

where K is the number of components. Now, parameters of the algorithm must be
updated according to the following equations:

v;(t) = v;(t = 1) +1 (4)

sp;(t) = sp;(t — 1) + p(jlx) (5)
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e; =x—p;(t—1) (6)

oy = pr) (7)

Apj = wje; (8)

pi(t) = pi(t — 1) + Ap; (9)

e = x— (1) (10)

C;(t) = (1 —w))Cy(t — 1) +wjeter” — Ap;Aut (11)
p(j) = 72 (12)

T M
sy
q=1
where sp; and v; are the accumulator and the age of component j, respectively, and
p(j) is its prior probability.
2.2 Creating New Components

If the update condition in the previous subsection is not met, then a new component j
is created and initialized as follows:

pi=x spj=1 vi=1 p(j)=—F—; C;=05,1
> s
i=1

where K already includes the new component and &;,; can be obtained by:
Oini = 0std(x) (13)

where § is a manually chosen scaling factor (e.g., 0.01) and std is the standard
deviation of the dataset. Note that the IGMN is an online and incremental algorithm
and therefore it may be the case that we do not have the entire dataset to extract
descriptive statistics. In this case the standard deviation can be just an estimation (e.g.,
based on sensor limits from a robotic platform), without impacting the algorithm.

2.3 Removing Spurious Components

A component j is removed whenever v; > Unin, and sp; < $Pmin, Where vVp,in and sppin
are manually chosen (e.g., 5.0 and 3.0, respectively). In that case, also, p(k) must be
adjusted for all k € K, k # j, using (12). In other words, each component is given some
time vy, to show its importance to the model in the form of an accumulation of its
posterior probabilities sp;.
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2.4 Inference

In the IGMN, any element can be predicted by any other element. This is done by
reconstructing data from the target elements (x;, a slice of the entire input vector x) by
estimating the posterior probabilities using only the given elements (x;, also a slice of
the entire input vector x), as follows:

p(xilj)p(5)

y vi (1)
> p(xilg)p(q)

p(jlxi) =

It is similar to (3]), except that it uses a modified input vector x; with the target
elements x; removed from calculations. After that, x; can be reconstructed using the
conditional mean equation:

M
%o =Y (i) (150 + CjuiCy ) (xi — ) (15)
j=1
where C; 4; is the submatrix of the jth component covariance matrix associating the
unknown and known parts of the data, C;; is the submatrix corresponding to the
known part only and p;; is the jth’s component mean without the element
corresponding to the target element.

3 Fast IGMN

One of the contributions of this work lies in the fact that Equation [1| (the squared
Mahalanobis distance) requires a matrix inversion, which has a asymptotic time

complexity of O(D?), for D dimensions (O(Dl°g27+o(1)) for the Strassen algorithm or
at best O(D?3728639) with the most recent algorithms to date [11]). This renders the
entire IGMN algorithm as impractical for high-dimension tasks. Here we show how to
work directly with the inverse of covariance matrix (also called the precision or
concentration matrix) for the entire procedure, therefore avoiding costly inversions.

Firstly, let us denote C™! = A, the precision matrix. Our task is to adapt all
equations involving C to instead use A.

We now proceed to adapt Equation [11| (covariance matrix update). This equation
can be seen as a sequence of two rank-one updates to the C matrix, as follows:

Cj(t) = (1 - Wj)Cj(t - 1) + wje;‘.e;‘.T (16)
C;(t) = C;(t) — Ap;Apy (17)
This allows us to apply the Sherman-Morrison formula [12]:
A 'uvTAT?
Atu)yt=A"t_— — — 18
( av’) 1+vlA a (18)

This formula shows how to update the inverse of a matrix plus a rank-one update.
For the second update, which subtracts, the formula becomes:

A tuvTA?
1-vTA lu

In the context of IGMN, we have A = (1 —w)C;(t—1) = (1 — w)Aj_l(t —1) and
u = v = \/we* for the first update, while for the second one we have A = C;(t) and

(A—uv)t=A"14 (19)
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u=v = Ap,;. Rewriting |18 and |19 we get (for the sake of compactness, assume all
subscripts for A and Ap to be j):

A(t) _ A(t — 1) _ (1:}1,)2 A(t — ]-)e*e*TA(t - ].) (20)
1-—w 1+ 2Z-eTA(t - 1)e

A ApApTA(t)
1—ApuTA(t)Ap

These two equations allow us to update the precision matrix directly, eliminating the
need for the covariance matrix C. They have O(N 2) complexity due to matrix-vector
products.

Following on the adaptation of the IGMN equations, Equation [1| (the squared
Mahalanobis distance) allows for a direct substituion, yielding the following new
equation:

A(t)=A(t) + (21)

dag(x,5) = (x = pj) T A (x — pj) (22)
which now has a O(N 2) complexity, since there is no matrix inversion as the original
equation. After removing the cubic complexity from this step, the determinant
computation will be dealt with next.

Since the determinant of the inverse of a matrix is simply the inverse of the
determinant, it is sufficient to invert the result. But computing the determinant itself is
also a O(D3) operation, so we will instead perform rank-one updates using the Matrix
Determinant Lemma [13], which states the following:

A +uv?| = |A|(1+vTA ) (23)
A —uv?| = |[A|(1 —vTA u) (24)

Since the IGMN covariance matrix update involves a rank-two update, adding a
term and then subtracting one, both rules must be applied in sequence, similar to what
has been done with the A equations. Equations [I6] and [I7] may be reused here, together
with the same substitutions previously showed, leaving us with the following new
equations for updating the determinant (again, j subscripts were dropped):

IC(1)] = (1-w)P|C(t - 1) (1 + e At~ 1)e*> (25)

[C(H)| = ICH)I(1 — Ap" A(t)Ap) (26)

This was the last source of cubic complexity, which is now quadratic.

Finishing the adaptation in the learning part of the algorithm, we just need to define
the initialization for A for each component. What previously was C; = o2 I now
becomes A; = a;,21, the inverse of the variances of the dataset. Since this matrix is
diagonal, there are no costly inversions involved. And for initializing the determinant
|CJ, just set it to [[ o2,,, which again takes advantage of the initial diagonal matrix to
avoid costly operations. Note that we keep the precision matrix A, but the determinant
of the covariance matrix C instead. See algorithms [I] to [3] for a summary of the new
learning algorithm (excluding pruning, for brevity).

Finally, the inference Equation [15| must also be updated in order to allow the IGMN
to work in supervised mode. This can be accomplished by the use of a block matrix
decomposition (note that here C is just another sub-matrix, not the covariance matrix

as used before):
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Algorithm 1 Fast IGMN Learning

Input: §,5,X
K>0,0,}=(stdX))"",M =0
for all input data vector x € X do
if K =0or 3j, d3,(x,j) < X2D,1—/3 then
update(x)
else
M + M U create(x)
end if

end for

Algorithm 2 update

Input: x
for all Gaussian component j € M do
Compute equations [I] to [I2] substituting [I] for 22| and 1] for [20] and

Compute equations [25] and
end for

A:[A B]lz[x Y}:

C D Z W
(A-BD 'C)! ~-A'B(D-CA'B)!
-D!'C(A-BD'C)! (D-CA'B)!

Here, according to Equation we need C and A~'. But since the terms that
constitute these sub-matrices are relative to the original covariance matrix (which we do
not have), they must be extracted from the precision matrix directly. Looking at the
decomposition, it is clear that YW ™' = —A"'B = —CA ™' (the terms between
parenthesis in Y and W cancel each other, while B = CT due to symmetry). So
Equation [15| can be rewritten as:

M
Xy = Zp(j\xi)(ﬂj,t YW (x; — ;) (27)
j=1
where Y and W can be extracted directly from A. However, we still need to
compute the inverse of W. So we can say that this particular implementation has
O(NKD?) complexity for learning and O(NK D?) for inference. The reason for us to
not worry about that is that d = ¢ + o, where ¢ is the number of inputs and o is the
number of outputs. The inverse computation acts only upon the output portion of the
matrix. Since, in general, o < 4 (in many cases even o = 1), the impact is minimal, and
the same applies to the YW ™! product. In fact, Weka (the data mining platform used
in this work [14]) allows for only 1 output, leaving us with just scalar operations.

4 Experiments

In order to evaluate the performance of the proposed algorithm, 11 classification tasks
(Table [1)) were given to the original and improved IGMN algorithms (§ = 1 and 8 =0,
so a single component was created for each run and we could focus on speed ups only
due to dimensionality). Results were obtained from 2-fold cross-validation and
statistical significances came from paired t-tests with p = 0.05.

This experiment was meant to verify that both IGMN implementations produce
exactly the same results, which was confirmed, as well as to show that the proposed
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Algorithm 3 create

Input: x
K+ K+1
return new Gaussian component K with urx = x, Ax = o1, |Cx| = [Ax| ™,
spj=1,v; =1,p(j) = &

K
> s
k=1

Table 1. Datasets

Dataset Instances (N)  Attributes (D)  Classes
breast-cancer 286 9 2
german-credit 1000 20 2
pima-diabetes 768 8 2
Glass 214 9 7
ionosphere 351 34 2
iris 150 4 3
labor-neg-data 57 16 2
soybean 683 35 19
twospirals 193 2 2
MNIST [15] (subset) 1000 784 10
CIFAR-10 |16] (subset) 1000 3072 10
CIFAR-10b (subset) 100 3072 10

improvements really deliver the expected speed up (the Weka packages for both
variations of the IGMN algorithm can be found at
http://www.inf.ufrgs.br/~rcpinto). This was also confirmed, as can be seen in
tables 2| and [3| (note that the experiments were divided into training and test phases
just for comparison purposes, but IGMN is in fact an online algorithm; also note that
standard deviations were rounded to 3 decimal places and, in fact, there are not any
null standard deviations in the results). Our improved algorithm could deliver a speed
up of 2 orders of magnitude in training time (learning) for the CIFAR-10 subset, which
follows our expectations according to the new time complexity. Datasets with less
dimensions could benefit from the improvements too, albeit in a smaller scale, which
was also expected. The other confirmation came from the testing times (inference): they
were also improved, since the inverse matrix computation was eliminated from the
probability density equation, which is also necessary for inference, and the matrix
multiplications and inversions are actually scalar operations, having no impact. In fact,
the speed up for inference was around 3 orders of magnitude for the CIFAR-10 subset.

Table 2. Training Time (in seconds)

Dataset IGMN Fast IGMN
breast-cancer 0.010+ 0.004 0.006 =+ 0.000
german-credit 0.031+  0.012 0.016 <+ 0.000
pima-diabetes 0.013+  0.000 0.010 + 0.001
Glass 0.008+  0.000 0.005 4+ 0.000 e
ionosphere 0.022+  0.002 0.014 £+ 0.002 e
iris 0.005+  0.000 0.007 £+ 0.001
labor-neg-data 0.006+  0.001 0.007 4+ 0.001
soybean 0.042+  0.004 0.030 + 0.003
twospirals 0.005+ 0.001 0.006 + 0.001 o
MNIST 281.257+  3.157 10.675 £ 0.272 e
CIFAR-10 20768.494+1244.221 175.243 + 1.190
Average 1754.417 15.526

o, e statistically significant increase or decrease in time

Although not the focus of this work, we could also observe the accuracy of the
IGMN algorithm on the tested datasets in comparison to other algorithms available in
the Weka software, like Support Vector Machines (SVM) and the state-of-the-art
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Table 3. Testing Time (in seconds)

Dataset IGMN Fast IGMN
breast-cancer 0.001+ 0.000 0.001 + 0.001
german-credit 0.013+  0.004 0.002 + 0.000
pima-diabetes 0.004+ 0.000 0.001 + 0.000 e
Glass 0.001£+£ 0.000 0.001 + 0.000
ionosphere 0.010+ 0.001  0.008 + 0.008
iris 0.000+ 0.000 0.001 + 0.000 o
labor-neg-data 0.000+  0.000 0.001 + 0.001
soybean 0.026+  0.007  0.004 + 0.000
twospirals 0.000+ 0.000 0.000 + 0.000
MNIST 225.262+  5.638  0.607 + 0.149 e
CIFAR-10 17821.4074+1699.599  7.793 + 0.098
Average 1504.097 0.702

o, e statistically significant increase or decrease in time

Table 4. Area Under ROC Curve

Dataset Neural Network 1-NN Naive Bayes SVM IGMN FIGMN
breast-cancer 0.65+ 0.01  0.59+0.02 0.7040.02 0.6140.04 0.6040.00 0.6040.00
CIFAR-10b 0.83+ 0.03  0.61£0.19 0.51£0.03 0.64+0.14 0.62+0.20 0.62+0.20
german-credit 0.79+ 0.01  0.65+0.01 ¢  0.79+£0.00 0.60+0.01 0.62+0.03 0.6240.03
pima-diabetes 0.84+ 0.00  0.64+0.02 0.8140.01 0.7340.02 0.69+0.03 0.6940.03
Glass 0.81+ 0.02  0.78%+0.05 0.70£0.10 0.7240.12 0.7940.04 0.7940.04
ionosphere 0.95+ 0.03  0.81£0.01 0.934+0.00 0.824+0.03 ¢  0.90+0.03 0.90+0.03
iris 1.00+ 0.00  1.00=£0.00 1.00+£0.00 1.00£0.00 1.00+0.00 1.00£0.00
labor-neg-data  0.93% 0.01  0.79+0.07 0.9440.02 0.9440.02 0.914+0.02 0.9140.02
MNIST 1.00+ 0.00  0.97+0.03 0.96+0.00 0.9740.04 0.95+0.05 0.9540.05
soybean 1.00+ 0.00  1.00+0.00 1.00£0.00 1.00£0.00 1.00+£0.00 1.00+0.00
twospirals 0.50+ 0.08 0.76£0.02 0.484+0.00 0.47+0.03 0.61+0.12 0.61+0.12
Average 0.84 0.78 0.80 0.77 0.79 0.79

e statistically significant degradation

Dropout Neural Networks [17] (with 50 hidden neurons, 50% dropout for the hidden
layer and 20% dropout for the input layer; the specific implementation can be found at
https://github.com/amten/NeuralNetwork). It was statistically similar to them with
8 =0.001 (now more than one Gaussian component was allowed) and tuning the &
parameter by 2-fold cross-validation using 3 different values (0.01, 0.1 and 1), but with
the additional benefit of a single-scan through data, allowing it to operate on data
streams. Results are shown in table [4] (note that, for this experiment, a smaller subset
of CIFAR-10 was used, in order to compensate for the higher computational
requirements of more Gaussian components).

5 Conclusion

We have shown how to work directly with precision matrices in the IGMN algorithm,
avoiding costly matrix inversions by performing rank-one updates. The determinant
computations were also avoided using a similar method, effectively eliminating any
source of cubic complexity for the learning algorithm. This resulted in substantial speed
ups for high-dimensional datasets, turning the IGMN into a good option for this kind of
tasks. The inference operation still has cubic complexity, but we argue that it has a
much smaller impact on the total runtime of the algorithm, since the number of outputs
is usually much smaller than the number of inputs. This was confirmed for
one-dimensional outputs, which require only scalar operations.

In general, we could see that the fast IGMN is a good option for supervised learning,
with low runtimes and good accuracy after adjusting the two main meta-parameters 3
and d. It should be noted that this is achieved with a single-pass through the data,
making it also a valid option for data streams.
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