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Abstract. The cloud computing paradigm enables the work anywhere anytime paradigm 
by allowing application execution and data storage on remote servers. This is especially 
useful for mobile computing and communication devices that are constrained in terms of 
computation power and storage. Relying more on powerful remote servers further allows 
each individual device’s hardware to have reduced functionality, thus making them 
cheaper. Though there could be energy and performance benefits for mobile devices by 
offloading application tasks to remote servers, it is not clear whether there would be 
reduction in total end-to-end energy consumed when including energy consumed at the 
remote server and the network in between. The goal of this paper is to characterize the 
overall end-to-end energy consumed for task offloading in mobile devices. An analytical 
model of end-to-end energy consumed for task offloading is proposed and evaluated 
to understand the theoretical limits within which task offloading can save energy. 
Additionally, an empirical measurement-based evaluation is done with common off-the-
shelf mobile devices to determine whether task offloading is more energy-efficient end-to-
end compared to a scenario where the task is executed locally.  

Introduction. Computing with mobile devices have always presented challenges in terms of 
storage, memory, processing, network connectivity, bandwidth, and battery lifetime in 
comparison to their static counterparts like desktop computers. With the technological 
advances in recent years improving ubiquitous connectivity and bandwidth, cloud computing 
has become feasible allowing these constrained devices to utilize the greater storage, 
memory, and processing capabilities of powerful remote servers.
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Cloud computing is typically a client server architecture, where the client can be any 
mobile device like a laptop, phone, browser, or any other operating system enabled device. 
Users of mobile devices that want to share documents, check email, and surf the Internet 
on the go, represent an increasing segment of the population that can utilize the cloud 
concept. Google’s introduction of the cloud based Chrome operating system (OS), for 
example, fuels this trend of increasingly relying on remote servers instead of local device 
resources. 

The energy implication of offloading a task or set of tasks (termed task offloading) to a 
remote server for execution is not very clear. On one hand relying on a server can reduce 
energy spent on task computation; on the other hand, communicating the task to the server will 
incur network-wide energy consumption. Such task offloading scenarios have been studied 
extensively for performance benefits or for exploring the feasibility of thin-client computing 
[1], [2], [3], [4], [5],[6], [7]. More recently such paradigms have also been studied in terms of 
reducing energy consumed by mobile devices and increasing battery lifetimes [8], [9], [10], 
[11], [12], [13]. These results have provided good guidance on when it is beneficial in terms of 
energy consumption for a mobile device to offload tasks. However it is not clear whether 
there will be benefits end-to-end when the energy consumption of the network and the 
remote server are brought into consideration. A broader study of the energy implications of 
task offloading from an end-to-end perspective is still missing. Such an end-to-end study would 
be one of the first steps in the path towards environmentally sustainable mobile computing. 
When it comes to looking at energy efficiency and the concept of sustainability in 
information and communication technologies (ICT), the focus has invariably been on data 
centers and mobile infrastructures like cell towers, as these have been considered the most 
power intensive within the computing sector. With an increasing emphasis on utilizing cloud 
computing through mobile devices, the study and analysis of the complete end-to-end 
scenario from mobile devices to end-servers is needed to further sustainability efforts in the 
area of information and communication technologies (ICT). 

The specific novel contributions made by this work are the following: 
• An analytical model of energy consumption for task offloading to remote servers is

developed that includes the end-user device energy consumption, the remote server
energy consumption, and the energy consumed by the network in between.

• An evaluation of the theoretical limits of various parameters in the analytical model is
done for which task offloading can be shown to reduce overall end-to-end energy
consumption

• An empirical evaluation of common-off-the-shelf mobile devices is performed to
determine whether task offloading can reduce end-to-end energy consumption. Our
results with a remote server of modest capabilities and a highly computational task
shows that a end-user device like a laptop with only slightly lesser computational
capabilities (than the remote server) could reduce end-to-end energy consumption by
30% easily with task offloading. For a much more relatively computationally-constrained
device like a smartphone, the energy consumption can be considerably reduced.

Problem Statement. This section will focus on an analytical characterization of the task 
offloading problem with a formal problem definition, and an evaluation of the theoretical limits 
of model parameters under which task offloading can reduce overall end-to-end energy 
consumed.

Problem Definition. We will consider one mobile device (also termed as the client) that has to 
execute a task. It has the following two options: execute this task on the device locally, or 
offload the task to a remote 
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server over the network and have it executed there and have the results communicated 
back. Let Enoff be the total energy consumed to execute the task on the client device itself 
when no offloading is done. Thus, this energy consumption under the no offloading scenario 
to execute the task equals the product of the average power consumed to execute the task 
locally (Pc) and the time to taken the complete the task tc. 

Enoff = Pc* tc      …………………………………………… (1) 

Under the offloading scenario, the energy consumed end-to-end is the sum of (i) energy 
consumed by the client Eco, (ii) energy consumed in the network Enw, and (iii) energy 
consumed at the remote server executing the task Eserv. That is, 

  Eoff = Eco + Enw + Eserv ………………………………………………………………………………(2) 
 = Pco *tco + Pnw* tnw + Ps*ts    ………………………………………… (3) 

For a given task, we can say that offloading saves energy end-to-end if 
Eoff < Enoff       ……………………………………………… (4) 

Theoretical Limits. Here we numerically investigate the theoretical limits within which offloading 
could reduce the energy consumed for executing a task. We introduce some assumptions and 
some parameters to evaluate the condition in Equation 4. 
Let pnw/c  be the ratio of average power consumed by the network to that of the client to execute 
the task. That is pnw/c =Pnw/Pc. Similarly, let ps/c= Ps/Pc be the ratio of average power 
consumed by the server to execute the task compared to the client locally. If we introduce 
another ratio pco/c   to denote the ratio of average power consumed by the client when offloading 
versus executing the task locally, Equation 2 can be re-written as 

Eoff = Pco* tco +pnw/c/pco/c *Pco*tnw + ps/c/pco/c * Pco*ts……………………….  (5) 

Equation 1 can be re-written as 

Enoff = Pco/ pco/c * ts/rs/c ………………………………………………………  (6) 

where rs/c = ts/tc is the ratio of relative capabilities of the server and client respectively in terms 
of processing times for the same task. From Equations 5 and 6, the energy saving condition 
for task offloading reduces to 

tco +( pnw/c /pco/c )*tnw +ps/c/pco/c<  ts / (pco/c* rs/c) ………………………………… (7) 

If we neglect the delays for packet processing, transmission, and queuing for simplicity, and the 
total time for task offloading at the client tco would be equal to the sum of the total time spent in 
the network (both directions), tnw, and the execution time at the server ts, or tco = tnw + ts. If we 
also introduce a ratio rnw/c = tnw /tc as the ratio of time spent to offload the task over the network 
to the client local task execution time, then Equation 7 can be re-written as the condition. 
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…………………………(8) 

Numerical Evaluation. Here we evaluate the condition in Equation 8 for a range of values for the 
power and processing capability ratios introduced above. The ratios pco/c, pnw/c, rs/c, and rnw/c 
are varied to study the impact on the range of ps/c over which task offloading consumes less 
energy. For a given value of rnw/c, it can be observed from the results in Figure 1 that a smaller 
client offload to no offload power ratio pco/c increases the range under which energy can be 
saved. Thus, efficiency of the low-power state when a client is waiting for a server to return 
a completed task is of great significance. It can also be seen that a lower network to client 
offload power ratio pnw/c helps increase the range over which offloading is superior. For 
small values of rs/c, offloading is always preferable for all values of ps/c. That is, when the 
server can execute the task much faster than the client, offloading always saves energy 
overall. For rs/c closer to 1, offloading is better only at lower values of pnw/c, pco/c, and ps/c. 
Comparing across different values of rnw/c Figure 1 shows that as an offloaded task takes 
more time to be communicated back and forth from the server, the impact of increasing values 
of pco/c and pnw/c becomes more significant. That is, as a task incurs more communication 
delays, the range of power values of model parameters under which task offloading saves 
energy becomes narrower. The analytical model and its evaluations provide a means to study 
the impact of different parameters relative to each other and quantify their impact. The 
presented model is also useful to generalize the potential of end-to-end energy savings for any 
combination of end-user device, server, and network power consumption and processing 
capabilities, and for any type of tasks. In the next two sections, we look at specific current 
COTS devices and deployed networks and study whether offloading would reduce overall 
energy consumed for a specific task under consideration. 

Empirical Methodology. In this section we describe our empirical approach to understand the 
conditions under which task offloading could save energy end-to-end. This section will focus 
more on the experimental methodology with evaluation results presented in the following section.

Overview. The empirical approach was divided into two cases. The first case involved 
measuring the energy consumed to execute a defined task only on a mobile device. The second 
case involved the mobile client offloading the task to a remote server which the latter 
completes and sends back. The energy consumed at the client, the server, and the network in 
between is measured in the second case with the sum of the three reported as the total energy 
consumed to execute the task. The results of the energy measurements from these two 
cases are then used to evaluate the condition first presented in Equation 4 if Eoff < Enoff. 
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Figure 1. Impact of various parameter values on range over which task offloading can save 
energy over local execution with rnw=c = 0.05, 0.25, and 0.5, and pco=c = 0.1 and 1. 

Experimental Setup. 

Computing Devices. Mobile clients of two classes (based on computational capability) were 
tested, a laptop, and two smartphones. The laptop was a Lenovo SL3000 with an Intel core 2 
duo CPU with each core running at 2.4GHz and 2 GB RAM. One of the smartphones was a 
Motorola Milestone XT 270 and ran Android OS v2.1 with 600 MHz CORTEX-A8 CPU. The 
other smartphone was a HTC Desire A8181 with a 1 GHz Scorpion CPU from Qualcomm 
and ran Android OS v2.2. All devices used the Wi-Fi interface (802.11g) for 
communicating over a network.1 The server machine emulating a cloud server was a more 
powerful laptop machine with an Intel core i3 CPU running at 2.53GHz and 4 GB RAM. Thus, 
the laptop end-user client was only slightly less computationally-capable than the server, 
while the smartphones were much more computationally-constrained than the 
server. Between the smartphones, the Motorola device considered was more 
computationally capable. 

Task. The task considered was to sort a file containing N random integers repeatedly 200,000 
times using the common insertion sort algorithm. Sorting is a task whose computation 
intensity and execution time can be easily varied by varying N making it very useful for the 
problem under consideration. Insertion sort is a commonly used sorting algorithm that is well-
understood. Note that the particular sorting algorithm used could be easily changed and will not 
have any bearing on the conclusions drawn. The time to complete the task at the client (no 
offloading scenario) 
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involved using a simple timer. For the time to complete a task at the server (offloading scenario) 
the timer was set at the client before the task was sent over the network and the value 
was saved when the results were received back. Due to the wide variance in processing 
capabilities, we kept N = 10000 for the laptop and N = 100 for the smartphone. 
Experiments were also conducted to understand the impact of task complexity on the results 
by varying the size of the sorting input as N; 2N; 4N, and 8N 

Power Measurements. Energy consumption was computed as the product of average power 
consumed over the time to complete the task. The time duration to complete the task was 
explained above. The power consumption was measured through the Watts up? PRO 
meter for all devices except the smartphone for which the Monsoon Power Monitor tool 
was used. The Watts up? PRO meter allows recording power values over a period of time 
over a USB port and can provide average power and energy consumed as output. This meter 
had adequate resolution for capturing tasks that took well over 5-10 seconds to complete and 
has a stated accuracy range within ±1.5% of the actual value. For the smartphone, the 
commonly used Monsoon Power Monitor was used. It has a stated accuracy range within ±1% 
of the actual value. 

Populating the Energy Model. Evaluating the energy consumed for the offloading and no 
offloading scenarios involves calculating each term in the energy models proposed in 
Equations 1 and 2. Energy consumed with no offloading: Calculating Enoff in Equation 1 was 
as simple as measuring the average power consumed by the client to complete the task 
locally Pc and multiplying it by the time taken to complete the task tc. Pc was computed by 
subtracting out a “base” power value for the device when idling and thus including only the 
additional power consumed to execute the task. This base power value denotes the power 
consumed by the device when it is not executing any tasks and includes power to run the 
device’s display and the Wi-Fi interface in a low-power sleep state when not actively 
communicating. 

Energy consumed for task offloading. Calculating Eoff in Equation 2 was more involved due to 
multiple components spread over the network including a remote server. Our server as 
mentioned before was a more powerful laptop device. The network between the two was a LAN 
environment to get a best case result on top of which an analytical model was superimposed 
to vary the actual server location and WAN network characteristics. 

For energy consumed by the client device when offloading tco was computed by computing the 
time required to send the task to the remote server and getting it back, including the 
communication network latency.  Pco was computed over this time and was found to be close to 
the base power of the device when it was awaiting results back from the remote server 
with spikes only for packet processing. 

For energy consumed by the server device when executing the task, the energy consumed 
was found in a similar fashion to the client device. The time taken to complete the task at the 
server, ts, was computed along with the average power consumed in the process Ps after 
subtracting off the base idling power of the server device. Note that ts < tco, with the 
difference primarily being the round trip network delay between the client and server. We 
also account for the overhead due to heating and cooling costs by the commonly used 
Power Usage Effectiveness (PUE) factor for only this server giving 
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   Eserv = PUE *Ps.ts……………………………………………….. (9) 

According to the Uptime Institute in a survey of data centers in 2012, the typical range of PUE 
was between 1.8 to 1.89. Thus we used the value of 1.8 for PUE in our calculations. Finally, we 
computed the energy consumed in the network. A router’s energy consumption was modeled as 
in [15] by 

Erouter =Vr * Pr /C*U ……………………………………………………. (10) 

where Vr is the total routed data volume in bits over the period of consideration, Pr is the 
average power consumption of the router, U is the utilization of the router, and C is the 
data handling capacity of router in bits per second. If we ignore protocol overhead, the data 
volume in our case will be equal to the data sent as part of task offloading to the remote server 
and the result back from the server. This is easily known based on the number of integers N 
that are being sorted for the example considered in this paper. We assume a utilization U of 
25% as done in [15]. The parameters Pr and C can be easily found from specifications of 
a specific router. 

Our network model consisted of a client router, ke edge routers, and kc core routers. The overall 
energy consumed in the network was computed as  

Enw = Euser + ke*Eedge + kc*Ecore   ……………………………………………… (11) 

where we put in values corresponding to specifications for each type of router as listed in Table 
I. Our results in the next section are presented with ke = 2 and kc = 18 to model a long-
distance WAN with 21 network hops overall. Note that this assumption likely overestimates the 
energy consumed by the network as, in most cases, kc is likely to be much smaller than 18.

Empirical Results. In this section we present results empirically measured on different 
COTS mobile devices by applying the methodology described in the previous section. The 
first set of results are for a laptop, an end-user device which was only slightly less 
computationally-capable than the server, while the second set of results are for smartphones, a 
much more computationally constrained device than the server. The presented results try to 
answer two main questions for each class of end-user device: (i) how does the energy 
consumption compare between executing the task locally and remotely, and how does the 
energy consumption in the offloading scenario break down across the individual components 
Eco, Enw, and Eserv, and (ii) how does the energy consumed in the offloading and no 
offloading case vary as the computation required (and hence processing duration) by the task 
increases. Each experiment was run 12 times with plots showing the mean value and 
standard deviation denoted S.D.

Results for laptops. The initial result of interest for laptops was whether task offloading 
would save energy in laptops, and by how much. Figure 2(a) plots Enoff, Eoff, and the 
individual terms that comprise Eoff, namely, Eco, Enw, and Eserv. All terms except Enw were 
measured empirically by repeatedly taking 12 different measurements with the mean value 
shown in the plot. The standard deviation of these measurements is also indicated above each 
bar. It can be observed that task offloading reduced the energy consumed by almost 50% over 
the no-offloading scenario. 
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(a) N=10000 for Laptop, File size= 81.8KB (b) Energy consumed for varying input size ona laptop

(c) N= 100 for  HTC Smart Phone, File size=852 Bytes    (d) N=100 for Motorola Smart Phone, File Size=852 Bytes

(e) Energy consumed for varying input size on HTC Smart     (f) Energy consumed for varying input size on Motorola
     Phone   Smart Phone 

Figure 2. Energy consumed to execute task with and without offloading on laptops.

The energy consumed by the server to execute the task was the largest component in Eoff with 
the network and client energy consumption relatively much smaller. The next result of 
interest for laptops was the impact of the complexity and duration to execute the task. This 
was studied by varying the number of integers to be sorted as per the sequence N, 2N, 4N, 8N, 
and 16N for 
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N = 10000. This study was more or less an analysis of the sensitivity of energy consumption to 
task complexity and duration. Figure 2(b) plots Enoff and Eoff for varying input sizes. It can be 
seen that both increase with the increase in input sizes in line with the O(n2) complexity of 
insertion-sort. In absolute terms, greater the input size, greater the energy saved by offloading 
for the scenario considered. In relative percentage terms, however, the converse seems true 
with the ratio of Eoff/ Enoff decreasing with greater input size. For the inputs tested, and relative 
performance difference between the laptop and server used, 30% savings in end-to-end energy 
savings was easily possible by task offloading.  

Results for Smartphones. The initial result of interest for mobile phones was again whether 
task offloading would save energy in a computationally-constrained form-factor device like 
smartphones and by how much. Plots for two different smartphones that we considered are 
shown in Figures 2(c) and 2(d). An important distinction from the experiments for laptops is 
that N is set now equal to only 100 due to the much lesser computational capabilities of these 
devices. Both plots show that even for smartphone, task offloading seems to consume much 
less energy, an even more pronounced difference than in laptops. This is because Enoff 
values are much larger for local execution in phones whose processing capabilities are 
limited and the duration to complete the task being relatively much larger than on the 
powerful server. This trend is seen on both phones, though Enoff is much smaller on the 
Motorola phone as it is newer hardware model with higher processing capability and a 
newer OS. The end-to-end energy consumption was reduced considerably in both cases. 
The next result of interest for smartphones was based on the sensitivity to input size. Just 
as the case of laptops, the input size was varied in multiples of two. Figures 2(e) and 2(f) show 
these results. The sensitivity analysis for both phones 2 to varying input size demonstrated 
that a powerful server can handle much larger input sizes easily compared to a phone 
and hence offers a continuing advantage that is much higher than what was seen for laptops.
  
Discussion of Results. The results for both classes of mobile devices studied in this section 
highlight that the benefits of task offloading increases as the computational-capability of the 
end-user device decreases. For the laptop, reduction in end-to-end energy consumption 
was only of the order of 30% because the server itself was a laptop, albeit a more powerful 
one. If a more commercial grade server were used, much greater benefits to task offloading 
could perhaps be seen. Surprisingly, the energy consumed in the network was much lesser 
than we had anticipated before our experiments in spite of the worst case assumption of 
21 hops as network diameter. After studying these empirical results, it becomes apparent 
that the analytical model presented in Section II is a useful complementary contribution as 
well in generalizing when task offloading is likely to reduce end-to-end energy consumption. 
For example, one can compute (omitted due to space limitations) the range at which 
offloading will save energy for some given power consumption values and processing 
capabilities at the client, network, and server and predict the benefits of offloading for other 
unknown values. 

Conclusions. This paper characterized the overall end-to-end energy consumed for task 
offloading in mobile devices. An analytical model of end-to-end energy consumed for task 
offloading was proposed and evaluated to understand the theoretical limits within which task 
offloading can save energy. Additionally, an empirical measurement-based evaluation was 
done with common-off-the-shelf mobile devices to determine whether task offloading is 
more energy-efficient end-to-end compared to a scenario where the task is executed locally. 
Our results show that task offloading can significantly reduce end-to-end energy consumed, 
with greater benefits seen when end-user mobile devices are less powerful; for a 
smartphone considerable reduction in energy
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consumption is seen as opposed to a laptop for which energy reduction is 30%. Future work 
to be done could include studying how results may vary when the profile of tasks to be 
offloaded is changed. Multiple types of servers could also be experimented with studying 
the impact of server processing capability empirically. The analytical model of the 
network energy consumption could also be improved by adding more details. 
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