
Is there a Net Energy Saving by the use of Task Offloading in
Mobile Devices?

Vishnu Cherusola Dev Wichita State University, vxcherusoladev@wichita.edu
Vinod Namboodiri Wichita State University, vinod.namboodiri@wichita.edu
Milind Tandel Wichita State University, mhtandel@wichita.edu
Vijay Venkitachalam Wichita State University, vxvenkitachalam@wichita.edu

Abstract. The cloud computing paradigm enables the work anywhere anytime paradigm
by allowing application execution and data storage on remote servers. This is especially
useful for mobile computing and communication devices that are constrained in terms of
computation power and storage. Relying more on powerful remote servers further allows
each individual device’s hardware to have reduced functionality, thus making them
cheaper. Though there could be energy and performance benefits for mobile devices by
offloading application tasks to remote servers, it is not clear whether there would be
reduction in total end-to-end energy consumed when including energy consumed at the
remote server and the network in between. The goal of this paper is to characterize the
overall end-to-end energy consumed for task offloading in mobile devices. An analytical
model of end-to-end energy consumed for task offloading is proposed and evaluated
to understand the theoretical limits within which task offloading can save energy.
Additionally, an empirical measurement-based evaluation is done with common off-the-
shelf mobile devices to determine whether task offloading is more energy-efficient end-to-
end compared to a scenario where the task is executed locally.

Introduction. Computing with mobile devices have always presented challenges in terms of
storage, memory, processing, network connectivity, bandwidth, and battery lifetime in
comparison to their static counterparts like desktop computers. With the technological
advances in recent years improving ubiquitous connectivity and bandwidth, cloud computing
has become feasible allowing these constrained devices to utilize the greater storage,
memory, and processing capabilities of powerful remote servers.

Proceedings of the International Symposium on Sustainable Systems and Technologies (ISSN 2329-9169) is
published annually by the Sustainable Conoscente Network. Jun-Ki Choi and Annick Anctil, co-editors 2015.
ISSSTNetwork@gmail.com.

Copyright © 2015 by Vishnu Cherusola Dev, Vinod Namboodiri, Milind Tandel, Vijay Venkitachalam, Licensed
under CC-BY 3.0.

Cite as: Is there a Net Energy Saving by the use of Task Offloading in Mobile Devices? Proc. ISSST, Vishnu
Cherusola Dev, Vinod Namboodiri, Milind Tandel, Vijay Venkitachalam. http://dx.doi.org/10.6084/
m9.figshare.1536519 v3 (2015)

mailto:vxcherusoladev@wichita.edu
mailto:vinod.namboodiri@wichita.edu
mailto:mhtandel@wichita.edu
mailto:vxvenkitachalam@wichita.edu
mailto:ISSSTNetwork@gmail.com

Is there a Net Energy Saving by the use of Task Offloading in Mobile Devices?

Cloud computing is typically a client server architecture, where the client can be any
mobile device like a laptop, phone, browser, or any other operating system enabled device.
Users of mobile devices that want to share documents, check email, and surf the Internet
on the go, represent an increasing segment of the population that can utilize the cloud
concept. Google’s introduction of the cloud based Chrome operating system (OS), for
example, fuels this trend of increasingly relying on remote servers instead of local device
resources.

The energy implication of offloading a task or set of tasks (termed task offloading) to a
remote server for execution is not very clear. On one hand relying on a server can reduce
energy spent on task computation; on the other hand, communicating the task to the server will
incur network-wide energy consumption. Such task offloading scenarios have been studied
extensively for performance benefits or for exploring the feasibility of thin-client computing
[1], [2], [3], [4], [5],[6], [7]. More recently such paradigms have also been studied in terms of
reducing energy consumed by mobile devices and increasing battery lifetimes [8], [9], [10],
[11], [12], [13]. These results have provided good guidance on when it is beneficial in terms of
energy consumption for a mobile device to offload tasks. However it is not clear whether
there will be benefits end-to-end when the energy consumption of the network and the
remote server are brought into consideration. A broader study of the energy implications of
task offloading from an end-to-end perspective is still missing. Such an end-to-end study would
be one of the first steps in the path towards environmentally sustainable mobile computing.
When it comes to looking at energy efficiency and the concept of sustainability in
information and communication technologies (ICT), the focus has invariably been on data
centers and mobile infrastructures like cell towers, as these have been considered the most
power intensive within the computing sector. With an increasing emphasis on utilizing cloud
computing through mobile devices, the study and analysis of the complete end-to-end
scenario from mobile devices to end-servers is needed to further sustainability efforts in the
area of information and communication technologies (ICT).

The specific novel contributions made by this work are the following:
• An analytical model of energy consumption for task offloading to remote servers is

developed that includes the end-user device energy consumption, the remote server
energy consumption, and the energy consumed by the network in between.

• An evaluation of the theoretical limits of various parameters in the analytical model is
done for which task offloading can be shown to reduce overall end-to-end energy
consumption

• An empirical evaluation of common-off-the-shelf mobile devices is performed to
determine whether task offloading can reduce end-to-end energy consumption. Our
results with a remote server of modest capabilities and a highly computational task
shows that a end-user device like a laptop with only slightly lesser computational
capabilities (than the remote server) could reduce end-to-end energy consumption by
30% easily with task offloading. For a much more relatively computationally-constrained
device like a smartphone, the energy consumption can be considerably reduced.

Problem Statement. This section will focus on an analytical characterization of the task
offloading problem with a formal problem definition, and an evaluation of the theoretical limits
of model parameters under which task offloading can reduce overall end-to-end energy
consumed.

Problem Definition. We will consider one mobile device (also termed as the client) that has to
execute a task. It has the following two options: execute this task on the device locally, or
offload the task to a remote

V.Cherusola Dev et al

server over the network and have it executed there and have the results communicated
back. Let Enoff be the total energy consumed to execute the task on the client device itself
when no offloading is done. Thus, this energy consumption under the no offloading scenario
to execute the task equals the product of the average power consumed to execute the task
locally (Pc) and the time to taken the complete the task tc.

Enoff = Pc* tc …………………………………………… (1)

Under the offloading scenario, the energy consumed end-to-end is the sum of (i) energy
consumed by the client Eco, (ii) energy consumed in the network Enw, and (iii) energy
consumed at the remote server executing the task Eserv. That is,

 Eoff = Eco + Enw + Eserv ………………………………………………………………………………(2)
 = Pco *tco + Pnw* tnw + Ps*ts ………………………………………… (3)

For a given task, we can say that offloading saves energy end-to-end if
Eoff < Enoff ……………………………………………… (4)

Theoretical Limits. Here we numerically investigate the theoretical limits within which offloading
could reduce the energy consumed for executing a task. We introduce some assumptions and
some parameters to evaluate the condition in Equation 4.
Let pnw/c be the ratio of average power consumed by the network to that of the client to execute
the task. That is pnw/c =Pnw/Pc. Similarly, let ps/c= Ps/Pc be the ratio of average power
consumed by the server to execute the task compared to the client locally. If we introduce
another ratio pco/c to denote the ratio of average power consumed by the client when offloading
versus executing the task locally, Equation 2 can be re-written as

Eoff = Pco* tco +pnw/c/pco/c *Pco*tnw + ps/c/pco/c * Pco*ts………………………. (5)

Equation 1 can be re-written as

Enoff = Pco/ pco/c * ts/rs/c ……………………………………………………… (6)

where rs/c = ts/tc is the ratio of relative capabilities of the server and client respectively in terms
of processing times for the same task. From Equations 5 and 6, the energy saving condition
for task offloading reduces to

tco +(pnw/c /pco/c)*tnw +ps/c/pco/c< ts / (pco/c* rs/c) ………………………………… (7)

If we neglect the delays for packet processing, transmission, and queuing for simplicity, and the
total time for task offloading at the client tco would be equal to the sum of the total time spent in
the network (both directions), tnw, and the execution time at the server ts, or tco = tnw + ts. If we
also introduce a ratio rnw/c = tnw /tc as the ratio of time spent to offload the task over the network
to the client local task execution time, then Equation 7 can be re-written as the condition.

Is there a Net Energy Saving by the use of Task Offloading in Mobile Devices?

…………………………(8)

Numerical Evaluation. Here we evaluate the condition in Equation 8 for a range of values for the
power and processing capability ratios introduced above. The ratios pco/c, pnw/c, rs/c, and rnw/c
are varied to study the impact on the range of ps/c over which task offloading consumes less
energy. For a given value of rnw/c, it can be observed from the results in Figure 1 that a smaller
client offload to no offload power ratio pco/c increases the range under which energy can be
saved. Thus, efficiency of the low-power state when a client is waiting for a server to return
a completed task is of great significance. It can also be seen that a lower network to client
offload power ratio pnw/c helps increase the range over which offloading is superior. For
small values of rs/c, offloading is always preferable for all values of ps/c. That is, when the
server can execute the task much faster than the client, offloading always saves energy
overall. For rs/c closer to 1, offloading is better only at lower values of pnw/c, pco/c, and ps/c.
Comparing across different values of rnw/c Figure 1 shows that as an offloaded task takes
more time to be communicated back and forth from the server, the impact of increasing values
of pco/c and pnw/c becomes more significant. That is, as a task incurs more communication
delays, the range of power values of model parameters under which task offloading saves
energy becomes narrower. The analytical model and its evaluations provide a means to study
the impact of different parameters relative to each other and quantify their impact. The
presented model is also useful to generalize the potential of end-to-end energy savings for any
combination of end-user device, server, and network power consumption and processing
capabilities, and for any type of tasks. In the next two sections, we look at specific current
COTS devices and deployed networks and study whether offloading would reduce overall
energy consumed for a specific task under consideration.

Empirical Methodology. In this section we describe our empirical approach to understand the
conditions under which task offloading could save energy end-to-end. This section will focus
more on the experimental methodology with evaluation results presented in the following section.

Overview. The empirical approach was divided into two cases. The first case involved
measuring the energy consumed to execute a defined task only on a mobile device. The second
case involved the mobile client offloading the task to a remote server which the latter
completes and sends back. The energy consumed at the client, the server, and the network in
between is measured in the second case with the sum of the three reported as the total energy
consumed to execute the task. The results of the energy measurements from these two
cases are then used to evaluate the condition first presented in Equation 4 if Eoff < Enoff.

V.Cherusola Dev et al

Figure 1. Impact of various parameter values on range over which task offloading can save
energy over local execution with rnw=c = 0.05, 0.25, and 0.5, and pco=c = 0.1 and 1.

Experimental Setup.

Computing Devices. Mobile clients of two classes (based on computational capability) were
tested, a laptop, and two smartphones. The laptop was a Lenovo SL3000 with an Intel core 2
duo CPU with each core running at 2.4GHz and 2 GB RAM. One of the smartphones was a
Motorola Milestone XT 270 and ran Android OS v2.1 with 600 MHz CORTEX-A8 CPU. The
other smartphone was a HTC Desire A8181 with a 1 GHz Scorpion CPU from Qualcomm
and ran Android OS v2.2. All devices used the Wi-Fi interface (802.11g) for
communicating over a network.1 The server machine emulating a cloud server was a more
powerful laptop machine with an Intel core i3 CPU running at 2.53GHz and 4 GB RAM. Thus,
the laptop end-user client was only slightly less computationally-capable than the server,
while the smartphones were much more computationally-constrained than the
server. Between the smartphones, the Motorola device considered was more
computationally capable.

Task. The task considered was to sort a file containing N random integers repeatedly 200,000
times using the common insertion sort algorithm. Sorting is a task whose computation
intensity and execution time can be easily varied by varying N making it very useful for the
problem under consideration. Insertion sort is a commonly used sorting algorithm that is well-
understood. Note that the particular sorting algorithm used could be easily changed and will not
have any bearing on the conclusions drawn. The time to complete the task at the client (no
offloading scenario)

Is there a Net Energy Saving by the use of Task Offloading in Mobile Devices?

involved using a simple timer. For the time to complete a task at the server (offloading scenario)
the timer was set at the client before the task was sent over the network and the value
was saved when the results were received back. Due to the wide variance in processing
capabilities, we kept N = 10000 for the laptop and N = 100 for the smartphone.
Experiments were also conducted to understand the impact of task complexity on the results
by varying the size of the sorting input as N; 2N; 4N, and 8N

Power Measurements. Energy consumption was computed as the product of average power
consumed over the time to complete the task. The time duration to complete the task was
explained above. The power consumption was measured through the Watts up? PRO
meter for all devices except the smartphone for which the Monsoon Power Monitor tool
was used. The Watts up? PRO meter allows recording power values over a period of time
over a USB port and can provide average power and energy consumed as output. This meter
had adequate resolution for capturing tasks that took well over 5-10 seconds to complete and
has a stated accuracy range within ±1.5% of the actual value. For the smartphone, the
commonly used Monsoon Power Monitor was used. It has a stated accuracy range within ±1%
of the actual value.

Populating the Energy Model. Evaluating the energy consumed for the offloading and no
offloading scenarios involves calculating each term in the energy models proposed in
Equations 1 and 2. Energy consumed with no offloading: Calculating Enoff in Equation 1 was
as simple as measuring the average power consumed by the client to complete the task
locally Pc and multiplying it by the time taken to complete the task tc. Pc was computed by
subtracting out a “base” power value for the device when idling and thus including only the
additional power consumed to execute the task. This base power value denotes the power
consumed by the device when it is not executing any tasks and includes power to run the
device’s display and the Wi-Fi interface in a low-power sleep state when not actively
communicating.

Energy consumed for task offloading. Calculating Eoff in Equation 2 was more involved due to
multiple components spread over the network including a remote server. Our server as
mentioned before was a more powerful laptop device. The network between the two was a LAN
environment to get a best case result on top of which an analytical model was superimposed
to vary the actual server location and WAN network characteristics.

For energy consumed by the client device when offloading tco was computed by computing the
time required to send the task to the remote server and getting it back, including the
communication network latency. Pco was computed over this time and was found to be close to
the base power of the device when it was awaiting results back from the remote server
with spikes only for packet processing.

For energy consumed by the server device when executing the task, the energy consumed
was found in a similar fashion to the client device. The time taken to complete the task at the
server, ts, was computed along with the average power consumed in the process Ps after
subtracting off the base idling power of the server device. Note that ts < tco, with the
difference primarily being the round trip network delay between the client and server. We
also account for the overhead due to heating and cooling costs by the commonly used
Power Usage Effectiveness (PUE) factor for only this server giving

V.Cherusola Dev et al

 Eserv = PUE *Ps.ts……………………………………………….. (9)

According to the Uptime Institute in a survey of data centers in 2012, the typical range of PUE
was between 1.8 to 1.89. Thus we used the value of 1.8 for PUE in our calculations. Finally, we
computed the energy consumed in the network. A router’s energy consumption was modeled as
in [15] by

Erouter =Vr * Pr /C*U ……………………………………………………. (10)

where Vr is the total routed data volume in bits over the period of consideration, Pr is the
average power consumption of the router, U is the utilization of the router, and C is the
data handling capacity of router in bits per second. If we ignore protocol overhead, the data
volume in our case will be equal to the data sent as part of task offloading to the remote server
and the result back from the server. This is easily known based on the number of integers N
that are being sorted for the example considered in this paper. We assume a utilization U of
25% as done in [15]. The parameters Pr and C can be easily found from specifications of
a specific router.

Our network model consisted of a client router, ke edge routers, and kc core routers. The overall
energy consumed in the network was computed as

Enw = Euser + ke*Eedge + kc*Ecore ……………………………………………… (11)

where we put in values corresponding to specifications for each type of router as listed in Table
I. Our results in the next section are presented with ke = 2 and kc = 18 to model a long-
distance WAN with 21 network hops overall. Note that this assumption likely overestimates the
energy consumed by the network as, in most cases, kc is likely to be much smaller than 18.

Empirical Results. In this section we present results empirically measured on different
COTS mobile devices by applying the methodology described in the previous section. The
first set of results are for a laptop, an end-user device which was only slightly less
computationally-capable than the server, while the second set of results are for smartphones, a
much more computationally constrained device than the server. The presented results try to
answer two main questions for each class of end-user device: (i) how does the energy
consumption compare between executing the task locally and remotely, and how does the
energy consumption in the offloading scenario break down across the individual components
Eco, Enw, and Eserv, and (ii) how does the energy consumed in the offloading and no
offloading case vary as the computation required (and hence processing duration) by the task
increases. Each experiment was run 12 times with plots showing the mean value and
standard deviation denoted S.D.

Results for laptops. The initial result of interest for laptops was whether task offloading
would save energy in laptops, and by how much. Figure 2(a) plots Enoff, Eoff, and the
individual terms that comprise Eoff, namely, Eco, Enw, and Eserv. All terms except Enw were
measured empirically by repeatedly taking 12 different measurements with the mean value
shown in the plot. The standard deviation of these measurements is also indicated above each
bar. It can be observed that task offloading reduced the energy consumed by almost 50% over
the no-offloading scenario.

Is there a Net Energy Saving by the use of Task Offloading in Mobile Devices?

(a) N=10000 for Laptop, File size= 81.8KB (b) Energy consumed for varying input size ona laptop

(c) N= 100 for HTC Smart Phone, File size=852 Bytes (d) N=100 for Motorola Smart Phone, File Size=852 Bytes

(e) Energy consumed for varying input size on HTC Smart (f) Energy consumed for varying input size on Motorola
 Phone Smart Phone

Figure 2. Energy consumed to execute task with and without offloading on laptops.

The energy consumed by the server to execute the task was the largest component in Eoff with
the network and client energy consumption relatively much smaller. The next result of
interest for laptops was the impact of the complexity and duration to execute the task. This
was studied by varying the number of integers to be sorted as per the sequence N, 2N, 4N, 8N,
and 16N for

V.Cherusola Dev et al

N = 10000. This study was more or less an analysis of the sensitivity of energy consumption to
task complexity and duration. Figure 2(b) plots Enoff and Eoff for varying input sizes. It can be
seen that both increase with the increase in input sizes in line with the O(n2) complexity of
insertion-sort. In absolute terms, greater the input size, greater the energy saved by offloading
for the scenario considered. In relative percentage terms, however, the converse seems true
with the ratio of Eoff/ Enoff decreasing with greater input size. For the inputs tested, and relative
performance difference between the laptop and server used, 30% savings in end-to-end energy
savings was easily possible by task offloading.

Results for Smartphones. The initial result of interest for mobile phones was again whether
task offloading would save energy in a computationally-constrained form-factor device like
smartphones and by how much. Plots for two different smartphones that we considered are
shown in Figures 2(c) and 2(d). An important distinction from the experiments for laptops is
that N is set now equal to only 100 due to the much lesser computational capabilities of these
devices. Both plots show that even for smartphone, task offloading seems to consume much
less energy, an even more pronounced difference than in laptops. This is because Enoff
values are much larger for local execution in phones whose processing capabilities are
limited and the duration to complete the task being relatively much larger than on the
powerful server. This trend is seen on both phones, though Enoff is much smaller on the
Motorola phone as it is newer hardware model with higher processing capability and a
newer OS. The end-to-end energy consumption was reduced considerably in both cases.
The next result of interest for smartphones was based on the sensitivity to input size. Just
as the case of laptops, the input size was varied in multiples of two. Figures 2(e) and 2(f) show
these results. The sensitivity analysis for both phones 2 to varying input size demonstrated
that a powerful server can handle much larger input sizes easily compared to a phone
and hence offers a continuing advantage that is much higher than what was seen for laptops.

Discussion of Results. The results for both classes of mobile devices studied in this section
highlight that the benefits of task offloading increases as the computational-capability of the
end-user device decreases. For the laptop, reduction in end-to-end energy consumption
was only of the order of 30% because the server itself was a laptop, albeit a more powerful
one. If a more commercial grade server were used, much greater benefits to task offloading
could perhaps be seen. Surprisingly, the energy consumed in the network was much lesser
than we had anticipated before our experiments in spite of the worst case assumption of
21 hops as network diameter. After studying these empirical results, it becomes apparent
that the analytical model presented in Section II is a useful complementary contribution as
well in generalizing when task offloading is likely to reduce end-to-end energy consumption.
For example, one can compute (omitted due to space limitations) the range at which
offloading will save energy for some given power consumption values and processing
capabilities at the client, network, and server and predict the benefits of offloading for other
unknown values.

Conclusions. This paper characterized the overall end-to-end energy consumed for task
offloading in mobile devices. An analytical model of end-to-end energy consumed for task
offloading was proposed and evaluated to understand the theoretical limits within which task
offloading can save energy. Additionally, an empirical measurement-based evaluation was
done with common-off-the-shelf mobile devices to determine whether task offloading is
more energy-efficient end-to-end compared to a scenario where the task is executed locally.
Our results show that task offloading can significantly reduce end-to-end energy consumed,
with greater benefits seen when end-user mobile devices are less powerful; for a
smartphone considerable reduction in energy

Is there a Net Energy Saving by the use of Task Offloading in Mobile Devices?

consumption is seen as opposed to a laptop for which energy reduction is 30%. Future work
to be done could include studying how results may vary when the profile of tasks to be
offloaded is changed. Multiple types of servers could also be experimented with studying
the impact of server processing capability empirically. The analytical model of the
network energy consumption could also be improved by adding more details.

References
[1] J. Flinn, S. Park, and M. Satyanarayanan, “Balancing performance, energy, and quality in
pervasive computing,” in Proceedings of the 22nd International Conference on Distributed
Computing Systems (ICDCS’02), ser. ICDCS ’02, 2002, pp. 217–226.

[2] N. Tolia, D. G. Andersen, and M. Satyanarayanan, “Quantifying interactive user experience
on thin clients,” IEEE Computer, vol. 39, no. 3, pp. 46–52, 2006.

[3] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets: bringing the cloud to the
mobile user,” in Proceedings of the third ACM workshop on Mobile cloud computing and
services, ser. MCS ’12, 2012, pp. 29–36.

[4] S. Wang and S. Dey, “Cloud mobile gaming: modeling and measuring user experience in
mobile wireless networks,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 16, no. 1, pp. 10–
21, Jul. 2012.

[5] Y. Guo, L. Zhang, J. Kong, J. Sun, T. Feng, and X. Chen, “Jupiter: transparent augmentation
of smartphone capabilities through cloud computing,” in Proceedings of the 3rd ACM SOSP
Workshop on Networking, Systems, and Applications on Mobile Handhelds, ser. MobiHeld ’11,
2011, pp. 2:1–2:6.
[6] S. Imai and C. A. Varela, “Light-weight adaptive task offloading from smartphones to nearby
computational resources,” in Proceedings of the 2011 ACM Symposium on Research in Applied
Computation, ser. RACS ’11, 2011, pp. 146–152.

[7] E. Miluzzo, R. Caceres, and Y. farn Chen, “mClouds: Computing on Clouds of Mobile
Devices,” International Workshop on Mobile Cloud Computing and Services (MCS ’12) with
MobiSys 2012, Tech. Rep., June 2012.

[8] Z. Li, C. Wang, and R. Xu, “Computation offloading to save energy on handheld devices: a
partition scheme,” in Proceedings of the 2001 international conference on Compilers,
architecture, and synthesis for embedded systems, ser. CASES ’01, 2001, pp. 238–246.

[9] G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and R. Chandramouli,
“Studying energy tradeoffs in offloading computation/ compilation in java-enabled mobile
devices,” IEEE Trans. Parallel Distrib. Syst., vol. 15, pp. 795–809, September 2004.

[10] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can offloading computation
save energy?” IEEE Computer, vol. 43, no. 4, pp. 51–56, 2010. [11] E. Cuervo, A.
Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl, “Maui: making
smartphones last longer with code offload,” in MobiSys, 2010, pp. 49–62.

[11] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic execution
between mobile device and cloud,” in Proceedings of the sixth conference on Computer
systems, ser. EuroSys ’11, 2011, pp. 301–314.

V.Cherusola Dev et al

[12] V. Namboodiri and T. Ghose, “To cloud or not to cloud: A mobile device perspective on
energy consumption of applications,” in WOWMOM, 2012, pp. 1–9.

[13] Cisco, “Product support and
documentation,”http://www.cisco.com/cisco/web/support/index.html.

[14] D. Schien, C. Preist, M. Yearworth, and P. Shabajee, “Impact of location on the energy
footprint of digital media,” in Sustainable Systems and Technology (ISSST), 2012 IEEE
International Symposium on, may 2012, pp. 1 –6.

[15] M. Tandel and V. Venkitachalam, “Cloud computing in smartphone: Is offloading a better-
bet?” Electrical Engineering and Computer Science, Wichita State University, Tech. Rep. TR-
EECS-WSU-2012-002, 2012.

	References

