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Appendices

The software used in this paper (R-code) and the appendices are available at

https://doi.orgl10.6084/m9.figshare.15016008. See also
https://doi.org/10.6084/m9.figshare.13259534

Gaussian response and log-linear models for CCA

In this appendix we show in two ways that the Gaussian response model is closely linked
to a particular log-linear model known as the Goodman (1986) RC-model, of which we
consider the constrained version. The first way is exact and hinges on the addition of free
site parameters to the Gaussian model that make it suited for multinomial and
compositional data. The second way is approximate and holds true for small effects of the
environmental variables on the species abundance. We then show how CCA is related to
this particular log-linear model by showing that the transition formulas of CCA are an
approximation to the ML-equation of this log-linear model under the assumption that
effects are small and the abundances are Poisson distributed. We conclude with some
remarks.

1.1 From Gaussian response to log-linear models

We start from the Gaussian model for a single environmental variable with formula
_ E Ak % —(xi—uj)Z/th Al
tij = EQyij) =ricie 7, (A1)

where W;; and y;; denote the expected and observed abundance of species j in site ,

respectively (i = 1,..., n;j =1, ..., m), E(.) denotes expectation and x; is the value of the
environmental variable in site i. The unknown parameters ¢;, u; and ¢; are the maximum

expected abundance, optimum and tolerance of species j, respectively, and r;" is an
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unknown site parameter that may account of unobserved variation in sampling effort
among sites. The traditional model used in ecology is obtained by setting r;* = 1. With r;*
included in the estimation, the model is equivalent to the generalized logistic model
(“model B”) of Thm and van Groenewoud (1984); see also ter Braak (1988).

Expanding the square in equation (A1) gives

‘ul‘j — ri*cj*euj Xi/tj2 —xiz/ztjz—ujz-/ztjz- ) (AZ)
2 2
The term e %/2% can be absorbed in the parameter ¢;. Under the assumption of equal
2 2
—Xj /Zt 7

tolerance across species (t; = t), the term e J can be absorbed in the site parameter

. 2 —u2/2¢2 . .
. With R; = rj'e™*i/2t* Cj= cje Uj/2tj | the resulting model is

wj = RiCie“ /" = R,Cie?*i where b; = u;/t?. (A3)

This model is known as the (constrained) RC (for row-column) model of Goodman (1986)
and can be expressed as a log-linear model

by setting 7; = log (R;) and T; = log (C;). This first derivation required the assumption of
equal tolerance (t; = t), which may not be valid and may not be needed in the context of
hypothesis testing.

For the second derivation, we consider the case that the species respond approximately
monotonic to the environmental variable in the range of values of the environmental
variable x. This can be achieved in equation (A1) by increasing the tolerance of all species
(t; — o) and also increasing the optima in absolute value (|uj| — 00), in such a way that

2 2

b; = u;/ tjz is finite for all values of j. With R; = 17" and C; = cje J, the expanded

Gaussian model (A2) then becomes
Wi =~ RiCie"i™, (A5)

so that it is approximately equal to the RC-model (A3) or its log-linear equivalent (A4).

1.2 From the log-linear model to CCA

For hypothesis testing, we are specifically interested in the case with small values of b;, as

such testing wishes to distinguish between no effect and non-zero (small) effects for at least
one species.

1.1.1 The reconstitution formula of CCA when effects are small

If b; is close to zero, the term e/ in the RC-model (A3) or (A5) can be linearized using
Taylor approximation, giving



wij = RiCie’ i ~ RiC;(1+ bjx;) = yiry+;(1+ bjxi)/Vis (A6)

which can be considered as a one-dimensional equivalent of equation (1) of the main text
and is known as the reconstitution formula (Greenacre 1984).The rationale for y; v, ; /v,
replacing R;C; is that under the null model (b; = 0 for all j) the maximum likelihood (ML)
estimate of w;; is fljj = ¥i+Y+j/Y++ when y;; is Poisson distributed. We assume

throughout, without loss of generality, that the environmental variable is centred; in
particular )}; ¥;+x;/V++ = 0. This improves the approximation in (A6).

1.1.2  Transition formulas of CCA approximate ML-equations of constrained RC-model

Whereas equation (A6) is the simplest way to derive the reconstitution formula of (C)CA,
it does not yet motivate the transition formulas of CCA (equations (3)-(6) in ter Braak
(1986)) . For this, we show that the transition formulas of CCA are an approximation to
the ML estimation equations of the Poissonian constrained RC-model.

For more than a single environmental variable, equation (A3) can be extended to a one-
dimensional RC-model with p predictors (environmental variables), which in log-linear
form is the extension of equation (A4):

lOg(‘Lll]) = fl+E] + b] Z?zl apx;. (A7)

Under the assumption of Poisson distributed abundances {y;; }, the relevant part of the log-
likelihood of the RC-model is

1) =X {yijlog(uij) — wij}, (A8)
so that, using equation (A7),
1(6) =X yisTs + X V46 + XijVijbj Ty iXip — Kt (A9)

The ML-equations are obtained by setting the partial derivatives of the log-likelihood 1(6)
with respect to each of the parameters to zero. The ML-equations are ,

Vit =Hiv, Y4j =H4j (=1,..,nj=1,..,m), (A10)
Yij(ij — wij)bxy =0 (I=1,..,p), (A11)
Yi(yij—wij)% =0 (=1,..,m),with% =X, a;x;. (A12)
By inserting the approximation

wij =~ yiry+j(1+ b X0 apxy) /Vs (A13)

in the ML-equations, we obtain, from equation (A10), that the site and species parameters
{X;} and {b;} must both have a weighted mean of zero where the weights are y;, and y,;,
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respectively. Similarly, we obtain from equation (A12),

by = X1 yijXi/Ve)] ZiVisXE [Vt (Al4)
and, from equation (A11), after defining,

X =2;Yijbj/V++r (A15)
a = (X'RX)"'XRX/(E; Y4 b7 /Y1), (A16)
On recalling that

% = XP_, a;x; or equivalently X = Xa, (A17)

equations (A14) — (A17) are formally equivalent with the transition formulas of CCA
(equations (3)-(6) in ter Braak (1986))'. This completes our demonstration that the
transition formulas of CCA are an approximation to the ML equations of the constrained
Poissonian RC-model (A7) under the assumption of closeness to the null model.

1.1.3 Concluding remarks

The transition formulas of CCA are therefore not only an approximation to the ML
equations of constrained Gaussian ordination under the assumptions of a species packing
model as shown by (ter Braak 1986), but also of the constrained Poissonian RC-model (A7)
under the assumption of closeness to the null models. Consequently, CCA can be expected
to perform well both close to the null model and far from the null model when the
alternative is an unimodal model, in particular, the Gaussian response model.

The assumption that the abundance data are Poisson distributed is of course not very
realistic. Nevertheless, the estimators derived from the Poisson are identical to those of the
quasi-Poisson (in which the variance is proportional — instead of equal — to the mean,
sometimes given the unfortunate name of NB1 (Hardin & Hilbe 2007), and the loss in
efficiency for other count distributions (such as the proper negative binomial NB2) might
offset the gain in computational efficiency. Because the Poisson distribution is unrealistic
for real data, statistical inference proceeds by resampling methods and by permutation
methods for statistical significance testing in particular. See ter Braak (2017) for a
discussion. ter Braak (2017) also showed that the fitted inertia of a CCA is the Rao score
test statistic of the log-linear model if the abundance is Poisson distributed. The Rao score
test statistic is asymptotically efficient and is computationally much quicker to compute in
this model than the likelihood-ratio test statistic. Computational speed makes the
resampling practical in every-day applications.

Finally, note that, if the {b;} would be (known) trait values of species, the X{ in equation
(A15) is the community weighted mean (CWM) of these values. This result can be phrased
otherwise, namely that CCA can be viewed as constructing the best possible (latent) trait
of species for a given (set of) environmental variable(s), as CCA optimizes the fourth-

! The equivalence can be made complete by substituting u; for b, x; for X;, yyfor y;;, A for Zz Y; +9~cl-2 /y e+

b for a and Z for X and rescaling the species parameters {bjz} so that Zj yﬂ.b]?/)/JrJr =1.
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corner correlation (ter Braak, 2018) and the (WA) site score is a CWM. This result can be
phrased otherwise, namely that CCA can be viewed as constructing the best possible
(latent) trait of species for a given (set of) environmental variable(s) as CCA optimizes the
fourth-corner correlation (ter Braak, Smilauer & Dray 2018) and the (WA) site score is a
CWM.
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2. Simulation model

Data with # sites, m species and p =12 predictors was simulated using a model with three
ordination axes, two of which were constrained; in the first two series n = 30, m = 50,
whereas in the third series n = 60, m = 100.

The data simulation started with n draws of three independent sets of variables, each set
consisting of four multivariate normal variables each. Each variable had expectation 0 and
variance 1. The subsequent variables within each set had a correlation of 0.7. The variables
of set 1 are denoted by {x;;, X;5, X;3, X;4 } , the variables of set 2 by {x/s, Xj¢, X;7, X;g} and
the variables of set 3 by {x/y, X;10, X{11, Xi12} (i=1,..., n). The first two sets defined the two
constrained ordination axes

Xip = a1xj; + apXjp + Azxiz + dgXiy (A18)
Xiz = AsXjs + eXig + a7X;7 + agX;g (A19)
with a; = -+ = ag = 0.3036, so that their variance is equal to 1. A third unconstrained
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axis was formed by an additional independent standard normal variable and is denoted by
{Xiz}.

The environmental data were collected in an n x 12 matrix X with columns organised in
three sets of four variables each

Firstset:  x; = /1 —pfx;; +pig;withl =1,..,4 (A20)
Second set: x;; = /1 — p2x}; + p,%;; with[ =5, ...,8 (A21)
Third set: x; = x;; withl=9,...,12 (A22)

with p; =+0.1, p, = 0.7 and g;j~N(0,1). Equation (A20) was designed so that the
predictors of the first set had unit variance and that 10% of their variance was noise.
Similarly, equation (A21) was designed so the predictors of the second set had unit variance
and a correlation of p, with the first axis.

The abundance data was generated by a log-linear model containing the three ordination
axes. In the first series the model was

lOg(ﬂU) = dO + fi + 61 + EO(Ejlfil + 05512212) + Ej3fi3 (A23)
with &, = log(10), 7 ~ N(0,07), & ~ N(0, 0.25), bj;~N(0,1), b;;~N(0,1), so that, with
b, # 0, the first axis is four times as important in terms of variance than the second. The
parameter b, in equation (A23) is the (overall) effect size of the constrained axes on species

abundance. Parameter bj3 is the size of the rank 1 noise and o, is the standard deviation of
the site log-linear main effects with values 0 or 0.5.

In the second series, which is on testing dimensionality, the term BOleiilwas replaced by
a quadratic term

5 2
(% — )’ /282 (A24)
with uj; ~ N(0,2) and ¢t; is exponentially distributed with mean 1. Also, the term bob i2Xin
was replaced by the parameter b,b 1%z so that b, is the effect of the second axis.

The model in the third series, which is on the (in)sensitivity of CCA to detect environmental
main effects, was like the model and parameters of the first series except that n=60 and m
=100 and

7, = 0y(psxis ++/1— pie) withl =1,...,4 (A25)

with £;~N(0,1), so that the site log-linear main effect had a standard deviation of o, and a
correlation of p; with the first environmental variable. The value of o; was set to 0.5 so as
to obtain a large environmental effect when p3 is moderate to large.

Species abundance was drawn from a negative binomial distribution with mean y;;. The
variance was H;; + <p,ul-2j where ¢ is the overdispersion compared to the Poisson
distribution.

A summary of the main parameters of the models is given in Table Al.



Table A1l. The main parameters of the models and the series and figures of the main text
in which they appear. Figure numbers between brackets had a fixed value of the parameter
of the corresponding row; the fixed value is given in the column Parameter.

Series
h
1 1 01
(2,3,4) 0.5
1,2,3 1 ¢
(2,3,4) 0.2
1,2,3 1,2,4 Bj3
3 0.5
3 5,
4 P3

Figures Parameter Meaning

Overall effect size

Standard deviation of the
site log-linear main effects
{ri}

overdispersion of the

count compared to that in
the Poisson distribution

Effect of the third axis that
was independent of the
environmental variables in
the data (unconstrained
axis, structured noise)

Effect size of the second
axis

Correlation of the site log-
linear main effects with
the first environmental
variable {x;;}

Abbreviation
Effect size

site total sd

overdispersion

size rank 1
noise

Effect size of
dimension 2

p(site main
effect, x1)



3. Simulation results for skewed and binary predictors

This appendix uses the same simulated data as the main text, except that the predictor data
are either exponentiated, i.e. x;; < exp (x;;), so that the predictors are skewed as
concentrations of chemicals typically are, or made binary (1 if x;; > 0 else 0). The results

are reported as Figures A1 — A8 which match with Figures 1-4 in the main text, with
Figures A1-A4 for the exponentiated predictor data and Figure A5-A8 for the binarized
predictors.

1.1.4 Skewed predictors

Figure A1
Testing effect of X in CCA model Y ~ skew X

1.00

site total sd, overdispersion j
© (0,0 )
< (0 ,0.2)
A (05,0 )
o (0.5,0.2)
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o
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0.0 0.3 _ 0.6 0.9
Effect size

Figure Al. Influence of noise types on the rejection rates (Type I error rate if effect size =
0, power otherwise) of three permutation methods for testing the effect of twelve predictors
(X) on abundance data (Y) using CCA with the model Y~X (=30, m=50, p=12) (data
generated using the loglinear simulation model; Effect size = overall effect size; noise
types: (1) site total sd = standard deviation of the site main effect, (2) overdispersion =
overdispersion parameter of the negative binomial (0 = Poissonian), (3) size rank 1 noise
= size of the effect of an unobserved predictor that is independent of X). The horizontal
solid line is at the nominal significance threshold; rates (from 1000 simulations) above the
dashed line (at 0.064) are significantly greater than 0.05.



Figure A2

1.00
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"a' ' O none
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|
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Figure A2. The influence of data transformation and noise on the rejection rates (Type I
error rate if effect size = 0, power otherwise) of three permutation methods for testing the
effect of twelve predictors (X) on transformed abundance data with CCA using model Y~X
(n=30, m=50, p=12). Data generated using the loglinear simulation model with
overdispersion 0.2 and a standard deviation of 0.5 of the site main effect. For effect size
and size rank 1 noise, see legend Figure 1. The horizontal solid line is at the nominal
significance threshold; rates (from 1000 simulations) above the dashed line (at 0.064) are
significantly greater than 0.05.



Figure A3
Testing 2nd and 3rd axis Y ~ skew X
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Figure A3. Rejection rates of testing the second and third axes against the effect size of the
second axis by CCA using two alternative test statistics (Fejg and Fipace) with n=30, m=50,
p=12. The rejection rate for the first axis, which had Gaussian response in this simulations
series, was close to 1 everywhere. Data generated using overdispersion 0.2, a standard
deviation of 0.5 of the site main effect and rank 1 noise of 0.5. The horizontal solid line is
at the nominal significance threshold; rates (from 1000 simulations) above the dashed line

(at 0.064) are significantly greater than 0.05.
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Figure A4
Testing effect of X in CCA model Y ~ skew X with sites X-eft
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Figure A4. Type I error rate of testing the effect of twelve predictors (X) on transformed
abundance data with CCA using model Y~X (=60, m=100, p=12) in relation to the
correlation of one of the predictors (x1) with the log-linear site main effect, with the
influence of data transformation, overdispersion and rank 1 noise. Data generated as in
Figure 1 with effect size = 0, except that the site main effects were made correlated with
x1. The standard deviation of the site main effects was 0.5. For size rank 1 noise, see legend
Figure 1. The horizontal solid line is at the nominal significance threshold; rates (from
1000 simulations) above the dashed line (at 0.064) are significantly greater than 0.05.
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1.1.5 Binary predictors

Figure A5
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Figure AS. Influence of noise types on the rejection rates (Type I error rate if effect size =
0, power otherwise) of three permutation methods for testing the effect of twelve binary
predictors (X) on abundance data (Y) using CCA with the model Y~X (=30, m=50, p=12)
(data generated using the loglinear simulation model; Effect size = overall effect size; noise
types: (1) site total sd = standard deviation of the site main effect, (2) overdispersion =
overdispersion parameter of the negative binomial (0 = Poissonian), (3) size rank 1 noise
= size of the effect of an unobserved predictor that is independent of X). The horizontal
solid line is at the nominal significance threshold; rates (from 1000 simulations) above the

0.6 0.9

Effect size

dashed line (at 0.064) are significantly greater than 0.05.
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Figure A6

1.00+

ted

ion rejec

Fract
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Figure A6. The influence of data transformation and noise on the rejection rates (Type I
error rate if effect size = 0, power otherwise) of three permutation methods for testing the
effect of twelve binary predictors (X) on transformed abundance data with CCA using
model Y~X (n=30, m=50, p=12). Data generated using the loglinear simulation model
with overdispersion 0.2 and a standard deviation of 0.5 of the site main effect. For effect
size and size rank 1 noise, see legend Figure 1. The horizontal solid line is at the nominal
significance threshold; rates (from 1000 simulations) above the dashed line (at 0.064) are

o
o
o

o
)
(3

Testing effect of X in CCA model Y ~ binary X
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significantly greater than 0.05.
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Figure A7
Testing 2nd and 3rd axis Y ~ binary X
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Figure A7. Rejection rates of testing the second and third axes against the effect size of the
second axis by CCA using two alternative test statistics (Fejg and Fipace) with n=30, m=50,
p=12. The rejection rate for the first axis, which had Gaussian response in this simulations
series, was close to 1 everywhere. Data generated using overdispersion 0.2, a standard
deviation of 0.5 of the site main effect and rank 1 noise of 0.5. The horizontal solid line is
at the nominal significance threshold; rates (from 1000 simulations) above the dashed line

(at 0.064) are significantly greater than 0.05.
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Figure A8
Testing effect of X in CCA model Y ~ binary X with sites X-ef
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Figure AS8. Type I error rate of testing the effect of twelve binary predictors (X) on
transformed abundance data with CCA using model Y~X (n=60, m=100, p=12) in relation
to the correlation of one of the predictors (x1) with the log-linear site main effect, with the
influence of data transformation, overdispersion and rank 1 noise. Data generated as in
Figure 1 with effect size = 0, except that the site main effects were made correlated with
x1. The standard deviation of the site main effects was 0.5. For size rank 1 noise, see legend
Figure 1. The horizontal solid line is at the nominal significance threshold; rates (from
1000 simulations) above the dashed line (at 0.064) are significantly greater than 0.05.
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4, First case study: geographic trend in neotropical forests
before and after adjustment for climate

rm( 1s( TRUE)) # remove all existing items from the workspace

source("Rfunctions/rXY_permutation.r™)
source("rfunctions/Test_CCA_functions.r")

#mysvd <- svd if eigl test is needed

mysvd<- dummysvd # if no eigl tests are needed (avoids svd)

nrepet = 199
n_simul <- 1000

nominal.level <- 0.05
with_vegan_ade4 <- FALSE
set.seed(1357)

7 (MEEE WiR @] s==cseeeecccccosoososenscssoononnosssscooooonooonooooos

Y <- read.csv("data/Pinho_SumCountsClustersAnon.csv")
Y <- Y[)_c(lJz)]

#Y[5,] <- Y[5,]/3 # the largest cluster

dim(Y)

## [1] 59 3416

envd <- read.csv("data/Pinho_MeanEnvironmentClusters.csv")
names(envo)

##t [1] "cluster" "Biogeographic.region”
## [3] "Latitude" "Longitude"

## [5] "Degrees2equator” "Dist20cean”

## [7] "MAT" "TS™

## [9] "PET" "MAP"

## [11] "PS"

dim(envo)
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## [1] 59 11

Z [ERly eiliFerant SttR Touuls seereeeesossccsssossssssoscononossosnooos

range(rowSums(Y)) # 35 - 36915
## [1] 35 36898

# Select the variables ---------cccoooomm oo

X<- env@[, c("Longitude"),drop = FALSE]
Z <- envO[,c("MAT","TS","PET", "MAP","PS")]

set.seed(1235)

P_simple <- test_vegan_ade4_randperm_CCA_transf(Y,X, NULL,

nrepet, with_vegan_ade4 )

P_conditional on_climate <- test vegan_ade4 randperm_CCA transf(Y,X,Z,
nrepet, with_vegan_ade4 )

P_simple

it CCA_Y CCA_Ycan3 CCA_X

## pow_ 1 0.005 0.005 0.010

## pow_0.5 0.005 0.005 0.005

## pow © 0.005 0.005 0.005

P_conditional_on_climate

#t CCA_Y CCA_Ycan3 CCA_X
## pow 1 0.005 0.005 0.400
## pow_0.5 0.005 0.005 0.065
## pow @ 0.005 9.005 0.045

# Simple and conditional effect of a completely random normal variable

if (with_vegan_ade4) Ntest <-5 else Ntest <- 3
pval_mat_simple <- array(NA, c(n_simul,3,Ntest))

pval mat conditional <- array(NA, c(n_simul,3,Ntest))
nran <- n_simul * prod(dim(X))

Xrandom_array <-array(rnorm(nran), c(n_simul, dim(X)))

for (i in 1:n_simul){
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Xran <- data.frame( Xrandom_array[i,,])
pval mat_simple[i,,]<- test vegan_ade4 randperm CCA_transf(Y,Xran,

NULL, nrepet, with_vegan_ade4, i)
pval mat_conditional[i,, ]<-
test_vegan_ade4 randperm_CCA transf(Y,Xran,Z, nrepet,
with_vegan_ade4, i)
}

# fraction of rejections

Fraction_rejected_simple <- colMeans(pval_mat_simple <= nominal.level,
TRUE)

Fraction_rejected_conditional <- colMeans(pval_mat_conditional <=

nominal.level, TRUE)

dimnames(Fraction_rejected_conditional) <-
dimnames(Fraction_rejected simple) <-
dimnames (P_conditional on_climate)
Fraction_rejected_simple

#t CCA_Y CCA_Ycan3 CCA_X
## pow 1 0.888 9.905 0.059
## pow 0.5 0.463 9.505 0.048
## pow © 0.330 9.382 0.048

Fraction_rejected_conditional

H#H CCA_Y CCA_Ycan3 CCA_X
## pow 1 ©.830 ©.863 0.058
## pow 0.5 0.316 9.366 0.046
## pow 0 ©.226 9.262 0.043

See Appendix A5 for meaning of the abbreviations in the output.

5. Case studies using data from R-packages

P-values of hypotheses tested on data in R packages ade4, vegan and mvabund by CCA
using

CCA Y: residualized response permutation

CCA_Ycan3: residualized response permutation ignoring the intercept as used in Canoco
from version 3 to 5.12

vegan: permutation using vegan 2.5-7
ade4: permutation using ade4 1.7-15
CCA X: residualized predictor permutation
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Three type of response data transformation were used:

pow 1 : no transformation
pow 0.5 : square-root transformation
pow 0 : log(y+1) transformation

The R-script is available in the online repository (file real data comparison.r). The log of
running the script, using markdown, is as follows:

Real data_comparison.r

rm(list=1s(all=TRUE)) # remove all existing items from the workspace

source("Rfunctions/rXY_permutation.r™)
source("rfunctions/Test CCA_functions.r")

#mysvd <- svd if eigl test 1is needed

mysvd<- dummysvd # if no eigl tests are needed (avoids svd)

library(ade4)
library(vegan)

nrepet = 1999
with_vegan_ade4 <- TRUE
#with _vegan ade4d <- FALSE
Pvals <- list()

data("doubs", package = "ade4")

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(doubs$fish,doubs$env, nrepet =
nrepet, with_vegan_ade4 =with_vegan_ade4d ))

#it CCA_Y CCA_Ycan3 vegan ade4 CCA_X
## pow_1 5e-04 5e-04 5e-04 5e-04 5e-04
## pow 0.5 5e-04 5e-04 5e-04 5e-04 5e-04
## pow_©O 5e-04 5e-04 5e-04 5e-04 5e-04

data("dunedata"”, package = "ade4" )

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(dunedata$veg,dunedata$envir, nrepet
= nrepet, with_vegan_ade4 =with_vegan_ade4 ))
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H## CCA_Y CCA Ycan3 vegan ade4 CCA X

## pow 1 ©.0020
## pow_0.5 0.0015
## pow © ©.0015

0.0020 0.0020 0.001 0.001
0.0015 0.0015 0.001 0.001
0.0015 0.0015 0.001 0.001

data("mite", "mite.env","mite.xy", package = "vegan")

# test on effect of env on the species data
(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(mite,mite.env, nrepet = nrepet,
with_vegan_ade4 =with_vegan_ade4 ))

#i CCA_Y CCA_Ycan3 vegan aded4 CCA X

## pow_1 S5e-04
## pow_0.5 5e-04
## pow O 5e-04

5e-04 5e-04 5e-04 5e-04
5e-04 5e-04 5e-04 5e-04
5e-04 5e-04 5e-04 5e-04

names(mite.xy)[2]<-"yy" # y-> yy to avoid name conflict 1in

ade4: :randtest(ccal,...)

# test on geographic trend in the species data
(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(mite,mite.xy, nrepet = nrepet,
with_vegan_ade4 =with_vegan_ade4 ))

#i CCA_Y CCA_Ycan3 vegan aded4 CCA X

## pow_1 S5e-04
## pow_0.5 5e-04
## pow_0 S5e-04

5e-04 5e-04 5e-04 5e-04
5e-04 5e-04 5e-04 5e-04
5e-04 5e-04 5e-04 5e-04

# effect of env conditional on Linear geography
(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(mite,mite.env, Zdf = mite.xy,
nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 ))

## CCA_Y CCA_Ycan3 vegan ade4 CCA_X

## pow_1 5e-04
## pow_0.5 5e-04
## pow_© 5e-04

data("BCI", package

5e-04 5e-04 NA 5e-04
5e-04 5e-04 NA 5e-04
5e-04 5e-04 NA 5e-04

- "Vegan")

data("BCI.env", package = "vegan")

# set constant or near constant variables to null

BCI.env$Geology <- BCI.env$Age.cat <- BCI.env$Precipitation <-
BCI.env$Elevation <- NULL

# effect of env on the species data?

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(BCI,BCI.env[, -c(1,2)], nrepet =
nrepet, with_vegan_ade4 =with_vegan_ade4 ))

#it CCA_Y CCA_Ycan3 vegan ade4 CCA_X
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## pow 1 5e-04 5e-04 5e-04 5e-04 5e-04
## pow_0.5 5e-04 5e-04 5e-04 5e-04 5e-04
## pow O 5e-04 5e-04 5e-04 5e-04 5e-04

# geography trend (lLinear) in species data?
(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(BCI,BCI.env[, c(1,2)], nrepet =
nrepet, with_vegan_ade4 =with_vegan_ade4 ))

#t CCA_Y CCA_Ycan3 vegan ade4 CCA X
## pow_1 5e-04 5e-04 5e-04 5e-04 5e-04
## pow_0.5 5e-04 5e-04 5e-04 5e-04 5e-04
## pow_© 5e-04 5e-04 5e-04 5e-04 5e-04

# effect of env conditional on Llinear geographic trend?
(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(BCI,BCI.env[, -c(1,2)],BCI.env[,
c(1,2)], nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 ))

#i CCA_Y CCA_Ycan3 vegan aded4 CCA_X
## pow_1 5e-04 5e-04 5e-04 NA 5e-04
## pow 0.5 5e-04 5e-04 5e-04 NA 5e-04
## pow O 5e-04 5e-04 5e-04 NA 5e-04
data("sipoo", package = "vegan")
data("sipoo.map"”, package = "vegan")

names (sipoo.map)
## [1] lINII IIEII Ilar‘eall

# effect of area

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(sipoo,sipoo.map$area, nrepet =
nrepet, with_vegan_ade4 =with_vegan_ade4d ))

#it CCA_Y CCA _Ycan3 vegan aded4 CCA X
## pow_1 0.001 5e-04 5e-04 5e-04 5e-04
## pow_0.5 0.001 5e-04 5e-04 5e-04 5e-04
## pow_© 0.001 5e-04 5e-04 5e-04 5e-04

# geographic trend?

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(sipoo,sipoo.map[, c(1,2)], nrepet =
nrepet, with_vegan_ade4 =with_vegan_ade4 ))

#it CCA_Y CCA_Ycan3 vegan ade4 CCA_X
## pow_1 0.148 ©0.121 0.121 0.5155 0.5155
## pow_0.5 0.148 ©0.121 0.121 0.5155 0.5155
## pow_0 0.148 ©0.121 0.121 0.5155 0.5155

# effect of area conditional on Linear geography trend
(Pvals[[length(Pvals)+1]] <-
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test_vegan_ade4 _randperm_CCA_transf(sipoo,sipoo.map$area,sipoo.map[,
c(1,2)], nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 ))

H## CCA_Y CCA_Ycan3 vegan ade4 CCA_X
## pow 1 0.002 0.002 0.002 NA 0.001
## pow_0.5 0.002 0.002 0.002 NA 0.001
## pow © 0.002 0.002 0.002 NA 0.001

data("varespec", package = "vegan")

data("varechem", package = "vegan")

# too many predictor variables for this small dataset?
(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(varespec,varechem, nrepet = nrepet,
with_vegan_ade4 =with_vegan_ade4 ))

H## CCAY CCA_Ycan3 vegan aded4 CCA_X
## pow_1 0.0320 0.0320 0.0320 0.0365 0.0365
## pow_0.5 0.0635 0.0630 0.0630 0.0785 0.0785
## pow_© 0.0720 0.0715 0.0715 0.1015 0.1015

data("spider", package = "mvabund")

colnames (spider$x)

## [1] "soil.dry" "bare.sand" "fallen.leaves" "moss"
## [5] "herb.layer" "reflection”

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(spider$abund,spider$x, nrepet =
nrepet, with_vegan_ade4 =with_vegan_ade4 ))

## CCA_Y CCA_Ycan3 vegan ade4 CCA_X
## pow_1 5e-04 5e-04 5e-04 5e-04 5e-04
## pow_0.5 5e-04 5e-04 5e-04 5e-04 5e-04
## pow_© 5e-04 5e-04 5e-04 5e-04 5e-04
data("tikus", package = "mvabund")
#View(tikus$abund)

str(tikus$x)

## 'data.frame’: 60 obs. of 2 variables:

## $ time: Factor w/ 6 levels "81","83","84",..: 1111111111

## $ rep : Factor w/ 10 levels "1","2","3","4",..: 1234567 89
10 ...

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(tikus$abund,tikus$x, nrepet
nrepet, with_vegan_ade4 =with_vegan_ade4 ))
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H## CCA_Y CCA Ycan3 vegan aded4 CCA X

## pow_1 5e-04 5e-04 5e-04 5e-04 5e-04
## pow_0.5 5e-04 5e-04 5e-04 5e-04 5e-04
## pow_© 5e-04 5e-04 5e-04 5e-04 5e-04

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(tikus$abund, tikus$x$time, nrepet =
nrepet, with_vegan_ade4 =with_vegan_ade4 ))

#t CCA_Y CCA_Ycan3 vegan ade4 CCA X
## pow_1 5e-04 5e-04 5e-04 5e-04 5e-04
## pow_0.5 5e-04 5e-04 5e-04 5e-04 5e-04
## pow_© 5e-04 5e-04 5e-04 5e-04 5e-04

# Llocation effect ignoring time

# interest?

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(tikus$abund,tikus$x$rep, nrepet =
nrepet, with vegan_ade4 =with_vegan_ade4 ))

#i CCA_Y CCA _Ycan3 vegan ade4 CCA X
## pow_1 S5e-04 5e-04 5e-04 0.0005 0.0005
## pow_0.5 5e-04 5e-04 5e-04 0.0010 0.0010
## pow O 5e-04 5e-04 5e-04 0.0025 0.0025

# time given Location (rep)

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(tikus$abund,tikus$x$time,z =
tikus$x$rep, nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 ))

## CCA_Y CCA_Ycan3 vegan ade4 CCA_X
## pow_1 5e-04 5e-04 5e-04 NA 5e-04
## pow_0.5 5e-04 5e-04 5e-04 NA 5e-04
## pow_© 5e-04 5e-04 5e-04 NA 5e-04

# Location given time (rep)

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(tikus$abund,tikus$x$rep, Z =
tikus$x$time, nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 ))

#it CCA_Y CCA _Ycan3 vegan aded4 CCA X
## pow_ 1 5e-04 5e-04 5e-04 NA 5e-04
## pow_0.5 5e-04 5e-04 5e-04 NA 5e-04
## pow_© 5e-04 5e-04 5e-04 NA 5e-04
data("antTraits", package = "mvabund")
names (antTraits)

## [1] "abund" "env" "traits"
#str(antTraitsgenv)

#str(antTraits$abund)
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#str(antTraits$traits)

# effect of effect on the abundance

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(antTraits$abund,antTraits$env, nrepe
t = nrepet, with_vegan_ade4 =with_vegan_ade4 ))

H## CCA_Y CCA_Ycan3 vegan ade4 CCA X
## pow_1 5e-04 5e-04 5e-04 5e-04 5e-04
## pow_0.5 5e-04 5e-04 5e-04 5e-04 5e-04
## pow_© 5e-04 5e-04 5e-04 5e-04 5e-04

# no effect of traits on the abundance detected
(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(t(antTraits$abund),antTraits$traits
,nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 ))

#i CCA_Y CCA _Ycan3 vegan ade4 CCA X
## pow_1 0.4680 0.433 0.433 0.7675 0.7675
## pow_0.5 0.6940 0.662 0.662 0.2960 0.2960
## pow_©  0.6385 0.603 0.603 0.2130 0.2130

data("solberg", package = "mvabund")
names (solberg)

## [1] "abund" "x"

# almost constant site totals (98-102), very variable species totals
(1-189)

# untransformed: no effect detectable; after sqrt or log: effect
detectable

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(solberg$abund, solberg$x,nrepet =
nrepet, with_vegan_ade4 =with_vegan_ade4 ))

#it CCA_Y CCA _Ycan3 vegan ade4 CCA X
## pow_1 0.1840 0.1840 0.1840 0.1770 0.1770
## pow_0.5 0.0295 ©0.0285 0.0285 0.0300 0.0300
## pow_©0 0.0180 0.0180 0.0180 0.0175 0.0175

data("Tasmania", package = "mvabund")
names (Tasmania)
## [1] "abund" "copepods" "nematodes" "treatment" "block"

## [6] "tr.block"

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(Tasmania$abund, Tasmania$treatment,Z
= Tasmania$block, nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 ))

#it CCA_Y CCA _Ycan3 vegan aded4 CCA X
## pow_1 0.0015 0.0015 0.0015 NA 1le-03
## pow_0.5 0.0010 0.0005 0.0005 NA 5e-04
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## pow_©  0.0005 0.0005 0.0005 NA 5e-04

#install.packages("remotes")

#remotes: :install _github("CajoterBraak/TraitEnvMLMWA")
data("Revisit", package = "TraitEnvMLMWA")
#str(Revisit)

#str(Revisitgy)

Y <- matrix(Revisit$y[,1], nrow
X <- Revisit$env[1:52]

T1 <-matrix(Revisit$trait, nrow = 52, ncol =75)[1,]

# a strong environment gradient topographic moisture gradient
(Pvals[[length(Pvals)+1]] <- test_vegan_ade4_randperm_CCA_transf(Y,X,
nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 ))

52, ncol =75)

#i CCA_Y CCA_Ycan3 vegan aded4 CCA X
## pow_1 S5e-04 5e-04 5e-04 5e-04 5e-04
## pow_0.5 5e-04 5e-04 5e-04 5e-04 5e-04
## pow_0 S5e-04 5e-04 5e-04 5e-04 5e-04

# a weak trait response, stronger with sqrt and log-transformation in
predictor permutation,

# for the log perhaps helped by the trait main effect; see
https://doi.org/10.1111/2041-216X.13278

(Pvals[[length(Pvals)+1]] <-
test_vegan_ade4_randperm_CCA_transf(t(Y),X= T1l, nrepet = nrepet,
with_vegan_ade4 =with_vegan_ade4 ))

## CCA_Y CCA _Ycan3 vegan ade4 CCA X
## pow_1 5e-04 5e-04 5e-04 0.0420 0.0420
## pow_0.5 5e-04 5e-04 5e-04 0.0085 0.0085
## pow_0 5e-04 5e-04 5e-04 0.0045 0.0045
length(Pvals)

## [1] 24

#save.image("real data.rdata")
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