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Appendices 

 

The software used in this paper (R-code) and the appendices are available at 

https://doi.org10.6084/m9.figshare.15016008. See also 

https://doi.org/10.6084/m9.figshare.13259534 

 

1. Gaussian response and log-linear models for CCA 

 

In this appendix we show in two ways that the Gaussian response model is closely linked 

to a particular log-linear model known as the Goodman (1986) RC-model, of which we 

consider the constrained version. The first way is exact and hinges on the addition of free 

site parameters to the Gaussian model that make it suited for multinomial and 

compositional data. The second way is approximate and holds true for small effects of the 

environmental variables on the species abundance. We then show how CCA is related to 

this particular log-linear model by showing that the transition formulas of CCA are an 

approximation to the ML-equation of this log-linear model under the assumption that 

effects are small and the abundances are Poisson distributed. We conclude with some 

remarks. 

1.1 From Gaussian response to log-linear models 

We start from the Gaussian model for a single environmental variable with formula 

𝜇𝑖𝑗 =  𝐸(𝑦𝑖𝑗) = 𝑟𝑖
∗𝑐𝑗

∗𝑒−(𝑥𝑖−𝑢𝑗)
2

/2𝑡𝑗
2

, (A1) 

where μij and 𝑦𝑖𝑗 denote the expected and observed abundance of species j in site i, 

respectively (i = 1,…, n; j = 1, …, m), E(. ) denotes expectation and 𝑥𝑖 is the value of the 

environmental variable in site i. The unknown parameters 𝑐𝑗
∗, 𝑢𝑗  and 𝑡𝑗 are the maximum 

expected abundance, optimum and tolerance of species j, respectively, and 𝑟𝑖
∗ is an 
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unknown site parameter that may account of unobserved variation in sampling effort 

among sites. The traditional model used in ecology is obtained by setting 𝑟𝑖
∗ = 1. With 𝑟𝑖

∗ 

included in the estimation, the model is equivalent to the generalized logistic model 

(“model B”) of Ihm and van Groenewoud (1984); see also ter Braak (1988). 

Expanding the square in equation (A1) gives 

𝜇𝑖𝑗 = 𝑟𝑖
∗𝑐𝑗

∗𝑒𝑢𝑗 𝑥𝑖/𝑡𝑗
2 −𝑥𝑖

2/2𝑡𝑗
2−𝑢𝑗

2/2𝑡𝑗
2 . (A2) 

The term 𝑒−𝑢𝑗
2/2𝑡𝑗

2  can be absorbed in the parameter 𝑐𝑗
∗. Under the assumption of equal 

tolerance across species (𝑡𝑗 = 𝑡), the term 𝑒−𝑥𝑖
2/2𝑡𝑗

2  can be absorbed in the site parameter 

𝑟𝑖
∗. With 𝑅𝑖 = 𝑟𝑖

∗𝑒−𝑥𝑖
2/2𝑡2

, 𝐶𝑗 =  𝑐𝑗
∗𝑒−𝑢𝑗

2/2𝑡𝑗
2

, the resulting model is 

𝜇𝑖𝑗 = 𝑅𝑖𝐶𝑗𝑒𝑢𝑗𝑥𝑖/𝑡2
=  𝑅𝑖𝐶𝑗𝑒𝑏𝑗𝑥𝑖   where 𝑏𝑗 = 𝑢𝑗/𝑡2. (A3) 

This model is known as the (constrained) RC (for row-column) model of Goodman (1986) 

and can be expressed as a log-linear model  

𝑙𝑜𝑔 𝜇𝑖𝑗 = 𝑟̃𝑖+𝑐̃𝑗 + 𝑏𝑗𝑥𝑖 (A4) 

by setting 𝑟̃i = log (𝑅𝑖) and c̃𝑗 = log (𝐶𝑗). This first derivation required the assumption of 

equal tolerance (𝑡𝑗 = 𝑡), which may not be valid and may not be needed in the context of 

hypothesis testing. 

For the second derivation, we consider the case that the species respond approximately 

monotonic to the environmental variable in the range of values of the environmental 

variable x. This can be achieved in equation (A1) by increasing the tolerance of all species 

(𝑡𝑗 → ∞) and also increasing the optima in absolute value (|𝑢𝑗| → ∞), in such a way that 

𝑏𝑗 = 𝑢𝑗/𝑡𝑗
2 is finite for all values of j. With R𝑖 = 𝑟𝑖

∗ and 𝐶𝑗 =  𝑐𝑗
∗𝑒−𝑢𝑗

2/2𝑡𝑗
2

, the expanded 

Gaussian model (A2) then becomes 

𝜇𝑖𝑗  ≈ 𝑅𝑖𝐶𝑗𝑒𝑏𝑗𝑥𝑖 , (A5)  

so that it is approximately equal to the RC-model (A3) or its log-linear equivalent (A4).  

1.2  From the log-linear model to CCA 

 

For hypothesis testing, we are specifically interested in the case with small values of 𝑏𝑗, as 

such testing wishes to distinguish between no effect and non-zero (small) effects for at least 

one species. 

 

1.1.1 The reconstitution formula of CCA when effects are small 
 

If 𝑏𝑗 is close to zero, the term e𝑏𝑗𝑥𝑖 in the RC-model (A3) or (A5) can be linearized using 

Taylor approximation, giving   
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𝜇𝑖𝑗 = 𝑅𝑖𝐶𝑗𝑒𝑏𝑗𝑥𝑖 ≈  𝑅𝑖𝐶𝑗(1 +  𝑏𝑗𝑥𝑖) ≈ 𝑦𝑖+𝑦+𝑗(1 +  𝑏𝑗𝑥𝑖)/𝑦++, (A6) 

which can be considered as a one-dimensional equivalent of equation (1) of the main text 

and is known as the reconstitution formula (Greenacre 1984).The rationale for 𝑦𝑖+𝑦+𝑗/𝑦++ 

replacing Ri𝐶𝑗 is that under the null model (𝑏𝑗 = 0 for all j) the maximum likelihood (ML) 

estimate of 𝜇𝑖𝑗 is 𝜇̂𝑖𝑗 =  𝑦𝑖+𝑦+𝑗/𝑦++ when 𝑦𝑖𝑗 is Poisson distributed. We assume 

throughout, without loss of generality, that the environmental variable is centred; in 

particular ∑ 𝑦𝑖+𝑥𝑖/𝑦++ = 0𝑖 . This improves the approximation in (A6). 

 

1.1.2 Transition formulas of CCA approximate ML-equations of constrained RC-model 
 

Whereas equation (A6) is the simplest way to derive the reconstitution formula of (C)CA, 

it does not yet motivate the transition formulas of CCA (equations (3)-(6) in ter Braak 

(1986)) . For this, we show that the transition formulas of CCA are an approximation to 

the ML estimation equations of the Poissonian constrained RC-model.  

 

For more than a single environmental variable, equation (A3) can be extended to a one-

dimensional RC-model with p predictors (environmental variables), which in log-linear 

form is the extension of equation (A4): 

 

𝑙𝑜𝑔(𝜇𝑖𝑗) =  𝑟̃𝑖+𝑐̃𝑗 + 𝑏𝑗 ∑ 𝑎𝑙𝑥𝑖𝑙
𝑝
𝑙=1 . (A7) 

Under the assumption of Poisson distributed abundances {𝑦𝑖𝑗}, the relevant part of the log-

likelihood of the RC-model is 

𝑙(𝜃) = ∑ {𝑦𝑖𝑗 𝑙𝑜𝑔(𝜇𝑖𝑗) − 𝜇𝑖𝑗}𝑖,𝑗 , (A8) 

so that, using equation (A7),  

𝑙(𝜃) = ∑ 𝑦𝑖+𝑟̃𝑖𝑖 + ∑ 𝑦+𝑗𝑐̃𝑗𝑗 +  ∑ 𝑦𝑖𝑗𝑏𝑗 ∑ 𝑎𝑙𝑥𝑖𝑙
𝑝
𝑙=1𝑖,𝑗 − 𝜇++, (A9) 

The ML-equations are obtained by setting the partial derivatives of the log-likelihood l(θ) 

with respect to each of the parameters to zero. The ML-equations are ,  

𝑦𝑖+ = 𝜇𝑖+ ,  𝑦+𝑗 = 𝜇+𝑗  (𝑖 = 1, … , 𝑛; 𝑗 = 1, … , 𝑚), (A10) 

∑ (𝑦𝑖𝑗 − 𝜇𝑖𝑗)𝑏𝑗𝑥𝑖𝑙 = 0𝑖,𝑗     (𝑙 = 1, … , 𝑝), (A11) 

 ∑ (𝑦𝑖𝑗 − 𝜇𝑖𝑗)𝑥̃𝑖 = 0𝑖       (𝑗 = 1, … , 𝑚), with 𝑥̃𝑖 = ∑ 𝑎𝑙𝑥𝑖𝑙
𝑝
𝑙=1 . (A12) 

By inserting the approximation  

𝜇𝑖𝑗 ≈ 𝑦𝑖+𝑦+𝑗(1 +  𝑏𝑗 ∑ 𝑎𝑙𝑥𝑖𝑙
𝑝
𝑙=1 )/𝑦++. (A13) 

in the ML-equations, we obtain, from equation (A10), that the site and species parameters 

{𝑥̃𝑖} and {𝑏𝑗} must both have a weighted mean of zero where the weights are yi+ and y+j, 
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respectively. Similarly, we obtain from equation (A12), 

𝑏𝑗 = (∑ 𝑦𝑖𝑗𝑥̃𝑖/𝑦+𝑗𝑖 )/ ∑ 𝑦𝑖+𝑥̃𝑖
2/𝑦++𝑖 . (A14) 

and, from equation (A11), after defining, 

𝑥̃𝑖
∗ = ∑ 𝑦𝑖𝑗𝑏𝑗/𝑦++𝑗 ,  (A15) 

𝐚 = (𝐗′𝐑𝐗)−1𝐗𝐑𝐱̃∗/(∑ 𝑦+𝑗𝑏𝑗
2/𝑦++).𝑗  (A16) 

On recalling that  

𝑥̃𝑖 = ∑ 𝑎𝑙𝑥𝑖𝑙
𝑝
𝑙=1  or equivalently 𝐱̃ = 𝐗𝐚, (A17) 

equations (A14) – (A17) are formally equivalent with the transition formulas of CCA 

(equations (3)-(6) in ter Braak (1986))1. This completes our demonstration that the 

transition formulas of CCA are an approximation to the ML equations of the constrained 

Poissonian RC-model (A7) under the assumption of closeness to the null model. 

 

1.1.3 Concluding remarks 
 

The transition formulas of CCA are therefore not only an approximation to the ML 

equations of constrained Gaussian ordination under the assumptions of a species packing 

model as shown by (ter Braak 1986), but also of the constrained Poissonian RC-model (A7) 

under the assumption of closeness to the null models. Consequently, CCA can be expected 

to perform well both close to the null model and far from the null model when the 

alternative is an unimodal model, in particular, the Gaussian response model. 

The assumption that the abundance data are Poisson distributed is of course not very 

realistic. Nevertheless, the estimators derived from the Poisson are identical to those of the 

quasi-Poisson (in which the variance is proportional – instead of equal – to the mean, 

sometimes given the unfortunate name of NB1 (Hardin & Hilbe 2007), and the loss in 

efficiency for other count distributions (such as the proper negative binomial NB2) might 

offset the gain in computational efficiency. Because the Poisson distribution is unrealistic 

for real data, statistical inference proceeds by resampling methods and by permutation 

methods for statistical significance testing in particular. See ter Braak (2017) for a 

discussion. ter Braak (2017) also showed that the fitted inertia of a CCA is the Rao score 

test statistic of the log-linear model if the abundance is Poisson distributed. The Rao score 

test statistic is asymptotically efficient and is computationally much quicker to compute in 

this model than the likelihood-ratio test statistic. Computational speed makes the 

resampling practical in every-day applications. 

Finally, note that, if the {𝑏𝑗} would be (known) trait values of species, the x̃i
∗ in equation 

(A15) is the community weighted mean (CWM) of these values. This result can be phrased 

otherwise, namely that CCA can be viewed as constructing the best possible (latent) trait 

of species for a given (set of) environmental variable(s), as CCA optimizes the fourth-

 
1 The equivalence can be made complete by substituting 𝑢𝑘 for 𝑏𝑗, 𝑥𝑖 for 𝑥̃𝑖

∗, 𝑦𝑖𝑘for 𝑦𝑖𝑗 , 𝜆 for ∑ 𝑦
𝑖+

𝑥̃𝑖
2

/𝑦
++𝑖 , 

𝐛 for 𝐚 and 𝐙 for 𝐗 and rescaling the species parameters {𝑏𝑗
2} so that ∑ 𝑦

+𝑗
𝑏𝑗

2/𝑦
++

= 1.𝑗  
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corner correlation (ter Braak, 2018) and the (WA) site score is a CWM. This result can be 

phrased otherwise, namely that CCA can be viewed as constructing the best possible 

(latent) trait of species for a given (set of) environmental variable(s) as CCA optimizes the 

fourth-corner correlation (ter Braak, Šmilauer & Dray 2018) and the (WA) site score is a 

CWM. 

1.3 References 

Goodman, L. A. 1986. Some useful extensions of the usual correspondence analysis 

approach and the usual log-linear models approach in the analysis of contingency 

tables. International Statistical Review 54:243-270. 

Greenacre, M. J. 1984. Theory and applications of correspondence analysis. Academic 

Press, London. 

Hardin, J. & Hilbe, J. 2007. Generalized linear models and extensions., 2n ed. Stata Press, 

College Station, Texas.  

Ihm, P., and H. van Groenewoud. 1984. Correspondence analysis and Gaussian ordination. 

Compstat Lectures 3:5-60. 

ter Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique 

for multivariate direct gradient analysis. Ecology 67:1167-1179. 

ter Braak, C. J. F. 1988. Partial canonical correspondence analysis. Pages 551-558 in H. H. 

Bock, editor. Classification and related methods of data analysis. Elsevier Science 

Publishers B.V. (North-Holland) http://edepot.wur.nl/241165, Amsterdam. 

ter Braak, C.J.F. (2017) Fourth-corner correlation is a score test statistic in a log-linear 

trait–environment model that is useful in permutation testing. Environmental and 

Ecological Statistics, 24, 219-242. http://dx.doi.org/10.1007/s10651-017-0368-0 

ter Braak, C.J.F., Šmilauer, P. & Dray, S. (2018) Algorithms and biplots for double 

constrained correspondence analysis. Environmental and Ecological Statistics, 25, 

171-197. https://doi.org/10.1007/s10651-017-0395-x 

 

 

2. Simulation model 

Data with n sites, m species and p =12 predictors was simulated using a model with three 

ordination axes, two of which were constrained; in the first two series n = 30, m = 50, 

whereas in the third series n = 60, m = 100.  

The data simulation started with n draws of three independent sets of variables, each set 

consisting of four multivariate normal variables each. Each variable had expectation 0 and 

variance 1. The subsequent variables within each set had a correlation of 0.7. The variables 

of set 1 are denoted by {𝑥𝑖1
∗ , 𝑥𝑖2

∗ , 𝑥𝑖3
∗ , 𝑥𝑖4

∗ }, the variables of set 2 by  {𝑥𝑖5
∗ , 𝑥𝑖6

∗ , 𝑥𝑖7
∗ , 𝑥𝑖8

∗ } and 

the variables of set 3 by {𝑥𝑖9
∗ , 𝑥𝑖10

∗ , 𝑥𝑖11
∗ , 𝑥𝑖12

∗ } (i=1,…, n). The first two sets defined the two 

constrained ordination axes  

𝑥̃𝑖1 = 𝑎1𝑥𝑖1
∗ + 𝑎2𝑥𝑖2

∗ + 𝑎3𝑥𝑖3
∗ + 𝑎4𝑥𝑖4

∗  (A18) 

𝑥̃𝑖2 = 𝑎5𝑥𝑖5
∗ + 𝑎6𝑥𝑖6

∗ + 𝑎7𝑥𝑖7
∗ + 𝑎8𝑥𝑖8

∗  (A19) 

with 𝑎1 = ⋯ = 𝑎8 = 0.3036, so that their variance is equal to 1. A third unconstrained 
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axis was formed by an additional independent standard normal variable and is denoted by 

{𝑥̃𝑖3}. 

The environmental data were collected in an n × 12 matrix 𝐗 with columns organised in 

three sets of four variables each 

First set:     𝑥𝑖𝑙 =  √1 − 𝜌1
2𝑥𝑖𝑙

∗  + 𝜌1𝜀𝑖𝑗 with 𝑙 = 1, … , 4 (A20) 

Second set: 𝑥𝑖𝑙 =  √1 − 𝜌2
2𝑥𝑖𝑙

∗ + 𝜌2𝑥̃𝑖1 with 𝑙 = 5, … , 8 (A21) 

Third set:    𝑥𝑖𝑙 =  𝑥𝑖𝑙
∗  with 𝑙 = 9, … , 12 (A22) 

with 𝜌1 = √0.1, 𝜌2 = 0.7 and 𝜀𝑖𝑗~𝑁(0,1). Equation (A20) was designed so that the 

predictors of the first set had unit variance and that 10% of their variance was noise.  

Similarly, equation (A21) was designed so the predictors of the second set had unit variance 

and a correlation of 𝜌2 with the first axis. 

The abundance data was generated by a log-linear model containing the three ordination 

axes. In the first series the model was 

𝑙𝑜𝑔(𝜇𝑖𝑗) = 𝑎̃0 + 𝑟̃𝑖 + 𝑐̃𝑗 + 𝑏̃0(𝑏̃𝑗1𝑥̃𝑖1 + 0.5𝑏̃𝑗2𝑥̃𝑖2) +  𝑏̃𝑗3𝑥̃𝑖3 (A23) 

with ã0 = log(10), 𝑟̃𝑖 ~ N(0,𝜎1
2), 𝑐̃𝑗 ~ N(0, 0.25),  𝑏̃𝑗1~𝑁(0,1), 𝑏̃𝑗2~𝑁(0,1), so that, with 

𝑏̃0 ≠ 0, the first axis is four times as important in terms of variance than the second. The 

parameter 𝑏̃0 in equation (A23) is the (overall) effect size of the constrained axes on species 

abundance. Parameter 𝑏̃𝑗3 is the size of the rank 1 noise and 𝜎1 is the standard deviation of 

the site log-linear main effects with values 0 or 0.5.  

In the second series, which is on testing dimensionality, the term b̃0b̃j1x̃i1was replaced by 

a quadratic term 

−(𝑥̃𝑖1 − 𝑢𝑗1)
2

/2𝑡𝑗
2 (A24) 

with uj1~ 𝑁(0,2) and 𝑡𝑗 is exponentially distributed with mean 1. Also, the term 𝑏̃0𝑏̃𝑗2𝑥̃𝑖2 

was replaced by the parameter 𝑏̃2𝑏̃𝑗1𝑥̃𝑖2 so that 𝑏̃2 is the effect of the second axis. 

The model in the third series, which is on the (in)sensitivity of CCA to detect environmental 

main effects, was like the model and parameters of the first series except that n=60 and m 

= 100 and  

𝑟̃𝑖 =  𝜎1(𝜌3𝑥𝑖1 + √1 − 𝜌3
2𝜀𝑖) with 𝑙 = 1, … , 4 (A25) 

with 𝜀𝑖~𝑁(0,1), so that the site log-linear main effect had a standard deviation of 𝜎1 and a 

correlation of 𝜌3 with the first environmental variable. The value of 𝜎1 was set to 0.5 so as 

to obtain a large environmental effect when 𝜌3 is moderate to large.  

Species abundance was drawn from a negative binomial distribution with mean 𝜇𝑖𝑗. The 

variance was 𝜇𝑖𝑗 +  𝜑𝜇𝑖𝑗
2  where 𝜙 is the overdispersion compared to the Poisson 

distribution. 

A summary of the main parameters of the models is given in Table A1. 

 



7 

 

Table A1. The main parameters of the models and the series and figures of the main text 

in which they appear. Figure numbers between brackets had a fixed value of the parameter 

of the corresponding row; the fixed value is given in the column Parameter. 

 

Series Figures Parameter Meaning Abbreviation 

1  1 𝑏̃0 Overall effect size Effect size 

1 1 

(2,3,4) 

𝜎1 

0.5 

Standard deviation of the 

site log-linear main effects 

{𝑟̃i} 

site total sd 

1,2,3 1 

(2,3,4) 

𝜙 

0.2 

overdispersion of the 

count compared to that in 

the Poisson distribution 

overdispersion 

1,2,3 1,2,4 

3 

𝑏̃𝑗3 

0.5 

Effect of the third axis that 

was independent of the 

environmental variables in 

the data (unconstrained 

axis, structured noise) 

size rank 1 

noise 

2 3 𝑏̃2 Effect size of the second 

axis 

Effect size of 

dimension 2 

3 4 ρ3 Correlation of the site log-

linear main effects with 

the first environmental 

variable {𝑥𝑖1} 

𝜌(site main 

effect, x1)  
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3. Simulation results for skewed and binary predictors  

 

This appendix uses the same simulated data as the main text, except that the predictor data 

are either exponentiated, i.e. 𝑥𝑖𝑗  ← exp (𝑥𝑖𝑗), so that the predictors are skewed as 

concentrations of chemicals typically are, or made binary (1 if 𝑥𝑖𝑗 > 0 else 0). The results 

are reported as Figures A1 – A8 which match with Figures 1-4 in the main text, with 

Figures A1-A4 for the exponentiated predictor data and Figure A5-A8 for the binarized 

predictors. 

 

1.1.4 Skewed predictors 
 

Figure A1 

 

Figure A1. Influence of noise types on the rejection rates (Type I error rate if effect size = 

0, power otherwise) of three permutation methods for testing the effect of twelve predictors 

(X) on abundance data (Y) using CCA with the model Y~X (n=30, m=50, p=12) (data 

generated using the loglinear simulation model; Effect size = overall effect size; noise 

types: (1) site total sd = standard deviation of the site main effect, (2) overdispersion = 

overdispersion parameter of the negative binomial (0 = Poissonian), (3) size rank 1 noise 

= size of the effect of an unobserved predictor that is independent of X). The horizontal 

solid line is at the nominal significance threshold; rates (from 1000 simulations) above the 

dashed line (at 0.064) are significantly greater than 0.05. 
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Figure A2 

 

Figure A2. The influence of data transformation and noise on the rejection rates (Type I 

error rate if effect size = 0, power otherwise) of three permutation methods for testing the 

effect of twelve predictors (X) on transformed abundance data with CCA using model Y~X 

(n=30, m=50, p=12). Data generated using the loglinear simulation model with 

overdispersion 0.2 and a standard deviation of 0.5 of the site main effect. For effect size 

and size rank 1 noise, see legend Figure 1. The horizontal solid line is at the nominal 

significance threshold; rates (from 1000 simulations) above the dashed line (at 0.064) are 

significantly greater than 0.05. 
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Figure A3 

  

Figure A3. Rejection rates of testing the second and third axes against the effect size of the 

second axis by CCA using two alternative test statistics (𝐹eig and 𝐹trace) with n=30, m=50, 

p=12. The rejection rate for the first axis, which had Gaussian response in this simulations 

series, was close to 1 everywhere. Data generated using overdispersion 0.2, a standard 

deviation of 0.5 of the site main effect and rank 1 noise of 0.5. The horizontal solid line is 

at the nominal significance threshold; rates (from 1000 simulations) above the dashed line 

(at 0.064) are significantly greater than 0.05. 
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Figure A4 

 

 

Figure A4. Type I error rate of testing the effect of twelve predictors (X) on transformed 

abundance data with CCA using model Y~X (n=60, m=100, p=12) in relation to the 

correlation of one of the predictors (x1) with the log-linear site main effect, with the 

influence of data transformation, overdispersion and rank 1 noise. Data generated as in 

Figure 1 with effect size = 0, except that the site main effects were made correlated with 

x1. The standard deviation of the site main effects was 0.5. For size rank 1 noise, see legend 

Figure 1. The horizontal solid line is at the nominal significance threshold; rates (from 

1000 simulations) above the dashed line (at 0.064) are significantly greater than 0.05. 
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1.1.5 Binary predictors 
 

Figure A5 

 

Figure A5. Influence of noise types on the rejection rates (Type I error rate if effect size = 

0, power otherwise) of three permutation methods for testing the effect of twelve binary 

predictors (X) on abundance data (Y) using CCA with the model Y~X (n=30, m=50, p=12) 

(data generated using the loglinear simulation model; Effect size = overall effect size; noise 

types: (1) site total sd = standard deviation of the site main effect, (2) overdispersion = 

overdispersion parameter of the negative binomial (0 = Poissonian), (3) size rank 1 noise 

= size of the effect of an unobserved predictor that is independent of X). The horizontal 

solid line is at the nominal significance threshold; rates (from 1000 simulations) above the 

dashed line (at 0.064) are significantly greater than 0.05. 
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Figure A6 

 

Figure A6. The influence of data transformation and noise on the rejection rates (Type I 

error rate if effect size = 0, power otherwise) of three permutation methods for testing the 

effect of twelve binary predictors (X) on transformed abundance data with CCA using 

model Y~X (n=30, m=50, p=12). Data generated using the loglinear simulation model 

with overdispersion 0.2 and a standard deviation of 0.5 of the site main effect. For effect 

size and size rank 1 noise, see legend Figure 1. The horizontal solid line is at the nominal 

significance threshold; rates (from 1000 simulations) above the dashed line (at 0.064) are 

significantly greater than 0.05. 
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Figure A7 

  

Figure A7. Rejection rates of testing the second and third axes against the effect size of the 

second axis by CCA using two alternative test statistics (𝐹eig and 𝐹trace) with n=30, m=50, 

p=12. The rejection rate for the first axis, which had Gaussian response in this simulations 

series, was close to 1 everywhere. Data generated using overdispersion 0.2, a standard 

deviation of 0.5 of the site main effect and rank 1 noise of 0.5. The horizontal solid line is 

at the nominal significance threshold; rates (from 1000 simulations) above the dashed line 

(at 0.064) are significantly greater than 0.05. 
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Figure A8 

 

 

Figure A8. Type I error rate of testing the effect of twelve binary predictors (X) on 

transformed abundance data with CCA using model Y~X (n=60, m=100, p=12) in relation 

to the correlation of one of the predictors (x1) with the log-linear site main effect, with the 

influence of data transformation, overdispersion and rank 1 noise. Data generated as in 

Figure 1 with effect size = 0, except that the site main effects were made correlated with 

x1. The standard deviation of the site main effects was 0.5. For size rank 1 noise, see legend 

Figure 1. The horizontal solid line is at the nominal significance threshold; rates (from 

1000 simulations) above the dashed line (at 0.064) are significantly greater than 0.05. 
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4. First case study: geographic trend in neotropical forests 
before and after adjustment for climate 

 

rm(list=ls(all=TRUE))  # remove all existing items from the workspace 
 
source("Rfunctions/rXY_permutation.r") 
source("rfunctions/Test_CCA_functions.r") 
#mysvd <- svd if eig1 test is needed 
mysvd<- dummysvd # if no eig1 tests are needed (avoids svd) 
 
 
nrepet = 199 
n_simul <- 1000 
 
nominal.level <- 0.05 
with_vegan_ade4 <- FALSE 
set.seed(1357) 
 
 
# Read the data -------------------------------------------------------
---- 
 
Y <- read.csv("data/Pinho_SumCountsClustersAnon.csv") 
Y <- Y[,-c(1,2)] 
#Y[5,] <- Y[5,]/3 # the largest cluster 
dim(Y) 

## [1]   59 3416 

env0 <- read.csv("data/Pinho_MeanEnvironmentClusters.csv") 
names(env0) 

##  [1] "cluster"              "Biogeographic.region" 
##  [3] "Latitude"             "Longitude"            
##  [5] "Degrees2equator"      "Dist2Ocean"           
##  [7] "MAT"                  "TS"                   
##  [9] "PET"                  "MAP"                  
## [11] "PS" 

dim(env0) 
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## [1] 59 11 

# Hugely different site totals ----------------------------------------
---- 
 
range(rowSums(Y)) # 35 - 36915  

## [1]    35 36898 

# Select the variables ------------------------------------------------
---- 
 
X<- env0[, c("Longitude"),drop = FALSE] 
Z <- env0[,c("MAT","TS","PET","MAP","PS")] 
 
 
 
 
# Simple and conditional effect of Longitude --------------------------
---------------------------- 
set.seed(1235) 
P_simple <- test_vegan_ade4_randperm_CCA_transf(Y,X, Z = NULL, nrepet = 
nrepet, with_vegan_ade4 =with_vegan_ade4 ) 
P_conditional_on_climate <-  test_vegan_ade4_randperm_CCA_transf(Y,X,Z, 
nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 ) 
P_simple 

##         CCA_Y CCA_Ycan3 CCA_X 
## pow_1   0.005     0.005 0.010 
## pow_0.5 0.005     0.005 0.005 
## pow_0   0.005     0.005 0.005 

P_conditional_on_climate 

##         CCA_Y CCA_Ycan3 CCA_X 
## pow_1   0.005     0.005 0.400 
## pow_0.5 0.005     0.005 0.065 
## pow_0   0.005     0.005 0.045 

 

# Simple and conditional effect of a completely random normal variable 
------------------------------------------------------ 

if (with_vegan_ade4) Ntest <-5 else Ntest <- 3 
pval_mat_simple <- array(NA, dim =c(n_simul,3,Ntest)) 
pval_mat_conditional <- array(NA, dim =c(n_simul,3,Ntest)) 
nran <- n_simul * prod(dim(X)) 
 
Xrandom_array <-array(rnorm(nran), dim=c(n_simul, dim(X))) 
 
for (i in 1:n_simul){ 
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  Xran <- data.frame(Xran = Xrandom_array[i,,]) 
  pval_mat_simple[i,,]<- test_vegan_ade4_randperm_CCA_transf(Y,Xran,Z = 
NULL, nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4, seed = i) 
  pval_mat_conditional[i,,]<- 
test_vegan_ade4_randperm_CCA_transf(Y,Xran,Z, nrepet = nrepet, 
with_vegan_ade4 =with_vegan_ade4, seed = i) 
 
} 
# fraction of rejections 
Fraction_rejected_simple <- colMeans(pval_mat_simple <= nominal.level, 
na.rm = TRUE) 
Fraction_rejected_conditional <- colMeans(pval_mat_conditional <= 
nominal.level, na.rm = TRUE) 
 
dimnames(Fraction_rejected_conditional) <- 
dimnames(Fraction_rejected_simple) <- 
dimnames(P_conditional_on_climate) 
Fraction_rejected_simple 

##         CCA_Y CCA_Ycan3 CCA_X 
## pow_1   0.888     0.905 0.059 
## pow_0.5 0.463     0.505 0.048 
## pow_0   0.330     0.382 0.048 

Fraction_rejected_conditional 

##         CCA_Y CCA_Ycan3 CCA_X 
## pow_1   0.830     0.863 0.058 
## pow_0.5 0.316     0.366 0.046 
## pow_0   0.226     0.262 0.043 

See Appendix A5 for meaning of the abbreviations in the output. 

 

5. Case studies using data from R-packages 

P-values of hypotheses tested on data in R packages ade4, vegan and mvabund by CCA 

using  

CCA_Y:  residualized response permutation 

CCA_Ycan3: residualized response permutation ignoring the intercept as used in Canoco 

from version 3 to 5.12 

vegan:  permutation using vegan 2.5-7 

ade4:  permutation using ade4 1.7-15 

CCA_X: residualized predictor permutation 
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Three type of response data transformation were used: 

pow_1   : no transformation 

pow_0.5 : square-root transformation 

pow_0  : log(y+1) transformation 

 

The R-script is available in the online repository (file real_data_comparison.r). The log of 

running the script, using markdown, is as follows: 

  

Real_data_comparison.r 

rm(list=ls(all=TRUE))  # remove all existing items from the workspace 
 
source("Rfunctions/rXY_permutation.r") 
source("rfunctions/Test_CCA_functions.r") 
#mysvd <- svd if eig1 test is needed 
mysvd<- dummysvd # if no eig1 tests are needed (avoids svd) 
 
library(ade4) 
library(vegan) 
 
nrepet = 1999 
with_vegan_ade4 <- TRUE 
#with_vegan_ade4 <- FALSE 
Pvals <- list() 
 
 
# data from ade4  -----------------------------------------------------
--------- 
 
data("doubs", package = "ade4") 
 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(doubs$fish,doubs$env, nrepet = 
nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan  ade4 CCA_X 
## pow_1   5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0.5 5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0   5e-04     5e-04 5e-04 5e-04 5e-04 

data("dunedata", package = "ade4" ) 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(dunedata$veg,dunedata$envir, nrepet 
= nrepet, with_vegan_ade4 =with_vegan_ade4 )) 
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##          CCA_Y CCA_Ycan3  vegan  ade4 CCA_X 
## pow_1   0.0020    0.0020 0.0020 0.001 0.001 
## pow_0.5 0.0015    0.0015 0.0015 0.001 0.001 
## pow_0   0.0015    0.0015 0.0015 0.001 0.001 

# data from vegan  ----------------------------------------------------
---------- 
 
data("mite", "mite.env","mite.xy", package = "vegan") 
# test on effect of env on the species data 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(mite,mite.env, nrepet = nrepet, 
with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan  ade4 CCA_X 
## pow_1   5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0.5 5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0   5e-04     5e-04 5e-04 5e-04 5e-04 

names(mite.xy)[2]<-"yy" # y-> yy to avoid name conflict in 
ade4::randtest(cca1,...)   
# test on geographic trend in the species data 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(mite,mite.xy, nrepet = nrepet, 
with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan  ade4 CCA_X 
## pow_1   5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0.5 5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0   5e-04     5e-04 5e-04 5e-04 5e-04 

# effect of env conditional on linear geography 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(mite,mite.env, Zdf = mite.xy, 
nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan ade4 CCA_X 
## pow_1   5e-04     5e-04 5e-04   NA 5e-04 
## pow_0.5 5e-04     5e-04 5e-04   NA 5e-04 
## pow_0   5e-04     5e-04 5e-04   NA 5e-04 

data("BCI", package = "vegan") 
data("BCI.env", package = "vegan") 
# set constant or near constant variables to null 
BCI.env$Geology <- BCI.env$Age.cat <- BCI.env$Precipitation <- 
BCI.env$Elevation <- NULL 
# effect of env on the species data? 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(BCI,BCI.env[, -c(1,2)], nrepet = 
nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan  ade4 CCA_X 
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## pow_1   5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0.5 5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0   5e-04     5e-04 5e-04 5e-04 5e-04 

#  geography trend (linear) in species data? 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(BCI,BCI.env[, c(1,2)], nrepet = 
nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan  ade4 CCA_X 
## pow_1   5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0.5 5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0   5e-04     5e-04 5e-04 5e-04 5e-04 

# effect of env conditional on linear geographic trend? 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(BCI,BCI.env[, -c(1,2)],BCI.env[, 
c(1,2)], nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan ade4 CCA_X 
## pow_1   5e-04     5e-04 5e-04   NA 5e-04 
## pow_0.5 5e-04     5e-04 5e-04   NA 5e-04 
## pow_0   5e-04     5e-04 5e-04   NA 5e-04 

data("sipoo", package = "vegan") 
data("sipoo.map", package = "vegan") 
names(sipoo.map) 

## [1] "N"    "E"    "area" 

# effect of area 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(sipoo,sipoo.map$area, nrepet = 
nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan  ade4 CCA_X 
## pow_1   0.001     5e-04 5e-04 5e-04 5e-04 
## pow_0.5 0.001     5e-04 5e-04 5e-04 5e-04 
## pow_0   0.001     5e-04 5e-04 5e-04 5e-04 

# geographic trend? 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(sipoo,sipoo.map[, c(1,2)], nrepet = 
nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan   ade4  CCA_X 
## pow_1   0.148     0.121 0.121 0.5155 0.5155 
## pow_0.5 0.148     0.121 0.121 0.5155 0.5155 
## pow_0   0.148     0.121 0.121 0.5155 0.5155 

# effect  of area conditional on linear geography trend 
(Pvals[[length(Pvals)+1]] <- 
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test_vegan_ade4_randperm_CCA_transf(sipoo,sipoo.map$area,sipoo.map[, 
c(1,2)], nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan ade4 CCA_X 
## pow_1   0.002     0.002 0.002   NA 0.001 
## pow_0.5 0.002     0.002 0.002   NA 0.001 
## pow_0   0.002     0.002 0.002   NA 0.001 

data("varespec", package = "vegan") 
data("varechem", package = "vegan") 
# too many predictor variables for this small dataset? 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(varespec,varechem, nrepet = nrepet, 
with_vegan_ade4 =with_vegan_ade4 )) 

##          CCA_Y CCA_Ycan3  vegan   ade4  CCA_X 
## pow_1   0.0320    0.0320 0.0320 0.0365 0.0365 
## pow_0.5 0.0635    0.0630 0.0630 0.0785 0.0785 
## pow_0   0.0720    0.0715 0.0715 0.1015 0.1015 

# data from mvabund ---------------------------------------------------
------------------ 
 
data("spider", package = "mvabund") 
colnames(spider$x) 

## [1] "soil.dry"      "bare.sand"     "fallen.leaves" "moss"          
## [5] "herb.layer"    "reflection" 

(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(spider$abund,spider$x, nrepet = 
nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan  ade4 CCA_X 
## pow_1   5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0.5 5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0   5e-04     5e-04 5e-04 5e-04 5e-04 

data("tikus", package = "mvabund") 
#View(tikus$abund) 
str(tikus$x) 

## 'data.frame':    60 obs. of  2 variables: 
##  $ time: Factor w/ 6 levels "81","83","84",..: 1 1 1 1 1 1 1 1 1 1 
... 
##  $ rep : Factor w/ 10 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 
10 ... 

(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(tikus$abund,tikus$x, nrepet = 
nrepet, with_vegan_ade4 =with_vegan_ade4 )) 
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##         CCA_Y CCA_Ycan3 vegan  ade4 CCA_X 
## pow_1   5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0.5 5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0   5e-04     5e-04 5e-04 5e-04 5e-04 

(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(tikus$abund,tikus$x$time, nrepet = 
nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan  ade4 CCA_X 
## pow_1   5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0.5 5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0   5e-04     5e-04 5e-04 5e-04 5e-04 

# location effect ignoring time 
# interest? 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(tikus$abund,tikus$x$rep, nrepet = 
nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan   ade4  CCA_X 
## pow_1   5e-04     5e-04 5e-04 0.0005 0.0005 
## pow_0.5 5e-04     5e-04 5e-04 0.0010 0.0010 
## pow_0   5e-04     5e-04 5e-04 0.0025 0.0025 

# time given location (rep) 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(tikus$abund,tikus$x$time,Z = 
tikus$x$rep, nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan ade4 CCA_X 
## pow_1   5e-04     5e-04 5e-04   NA 5e-04 
## pow_0.5 5e-04     5e-04 5e-04   NA 5e-04 
## pow_0   5e-04     5e-04 5e-04   NA 5e-04 

# location given time (rep) 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(tikus$abund,tikus$x$rep, Z = 
tikus$x$time, nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan ade4 CCA_X 
## pow_1   5e-04     5e-04 5e-04   NA 5e-04 
## pow_0.5 5e-04     5e-04 5e-04   NA 5e-04 
## pow_0   5e-04     5e-04 5e-04   NA 5e-04 

data("antTraits", package = "mvabund") 
names(antTraits) 

## [1] "abund"  "env"    "traits" 

#str(antTraits$env) 
#str(antTraits$abund) 
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#str(antTraits$traits) 
# effect of effect on the abundance 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(antTraits$abund,antTraits$env,nrepe
t = nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan  ade4 CCA_X 
## pow_1   5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0.5 5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0   5e-04     5e-04 5e-04 5e-04 5e-04 

# no effect of traits on the abundance detected 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(t(antTraits$abund),antTraits$traits
,nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##          CCA_Y CCA_Ycan3 vegan   ade4  CCA_X 
## pow_1   0.4680     0.433 0.433 0.7675 0.7675 
## pow_0.5 0.6940     0.662 0.662 0.2960 0.2960 
## pow_0   0.6385     0.603 0.603 0.2130 0.2130 

data("solberg", package = "mvabund") 
names(solberg) 

## [1] "abund" "x" 

# almost constant site totals (98-102), very variable species totals 
(1-189) 
# untransformed: no effect detectable; after sqrt or log: effect 
detectable 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(solberg$abund,solberg$x,nrepet = 
nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##          CCA_Y CCA_Ycan3  vegan   ade4  CCA_X 
## pow_1   0.1840    0.1840 0.1840 0.1770 0.1770 
## pow_0.5 0.0295    0.0285 0.0285 0.0300 0.0300 
## pow_0   0.0180    0.0180 0.0180 0.0175 0.0175 

data("Tasmania", package = "mvabund") 
names(Tasmania) 

## [1] "abund"     "copepods"  "nematodes" "treatment" "block"     
## [6] "tr.block" 

(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(Tasmania$abund,Tasmania$treatment,Z
= Tasmania$block, nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##          CCA_Y CCA_Ycan3  vegan ade4 CCA_X 
## pow_1   0.0015    0.0015 0.0015   NA 1e-03 
## pow_0.5 0.0010    0.0005 0.0005   NA 5e-04 
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## pow_0   0.0005    0.0005 0.0005   NA 5e-04 

# data from TraitEnvMLMWA ---------------------------------------------
----- 
 
#install.packages("remotes") 
#remotes::install_github("CajoterBraak/TraitEnvMLMWA") 
data("Revisit", package = "TraitEnvMLMWA") 
#str(Revisit) 
#str(Revisit$y) 
Y <- matrix(Revisit$y[,1], nrow = 52, ncol =75) 
X <- Revisit$env[1:52] 
T1 <-matrix(Revisit$trait, nrow = 52, ncol =75)[1,] 
# a strong  environment gradient topographic moisture gradient 
(Pvals[[length(Pvals)+1]] <- test_vegan_ade4_randperm_CCA_transf(Y,X, 
nrepet = nrepet, with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan  ade4 CCA_X 
## pow_1   5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0.5 5e-04     5e-04 5e-04 5e-04 5e-04 
## pow_0   5e-04     5e-04 5e-04 5e-04 5e-04 

# a weak trait response, stronger with sqrt and log-transformation in 
predictor permutation,  
# for the log perhaps helped by the trait main effect; see 
https://doi.org/10.1111/2041-210X.13278 
(Pvals[[length(Pvals)+1]] <- 
test_vegan_ade4_randperm_CCA_transf(t(Y),X= T1, nrepet = nrepet, 
with_vegan_ade4 =with_vegan_ade4 )) 

##         CCA_Y CCA_Ycan3 vegan   ade4  CCA_X 
## pow_1   5e-04     5e-04 5e-04 0.0420 0.0420 
## pow_0.5 5e-04     5e-04 5e-04 0.0085 0.0085 
## pow_0   5e-04     5e-04 5e-04 0.0045 0.0045 

length(Pvals) 

## [1] 24 

#save.image("real_data.rdata") 
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