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1 Quantile Smoothing Regression

As discussed in Koenker (2005), the quantile regression estimate minimizes the solution to the check

loss function

ρτ (c) =

{
c× (τ − 1), c < 0
c× τ, otherwise,

(1)

and this function exists for any 0 < τ < 1. As an example, when τ = 1
2

the check loss function is

proportional to the absolute value function |c|. For the absolute value loss, the value that minimizes

this function is well known to be the median. For an arbitrary distribution represented by the CDF

F (Y ), it can be shown that E

[
ρτ (Y − θ)

]
is minimized when F (θ) = τ. The minimization problem

is a linear programming problem subject to equality constraints. Geometrically, the solution to this

linear programming problem is found on the surface of a polyhedron whose vertices are data points;

consequently, the solution to the minimization problem can exactly interpolate the observed data.

In our problem, θ = ωτ (d) = ατ0 +
∑Q

q=1 β
τ
q bq(d), which is a quantile exposure response function
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given exposure d, and is based upon monotone splines bq(d). Given responses at various doses y1, . . . , yn,

the solution, with no smoothing, is found by minimizing

arg min
βτ

n∑
i=1

ρτ [yi − ωτ (di)] . (2)

We add a smoothness penalty of λ
∑Q

q=1 |β
τj
q − βτjq−1|, which can be seen as adding additional equality

constraints to the minimization problem.

As mentioned in the manuscript, the minimization approach above computes each quantile sep-

arately, and it is possible that these estimated quantiles may intersect. We compute the minimum

subject to non-crossing constraints (Bondell et al., 2010), which adds more constraints to the linear

program. Using this approach, given τ0 and τ1, one finds ωτ0 , and ωτ1 with ωτ0(d) ≥ ωτ1(d) that satisfies

arg min
βτ0

,βτ1

1∑
j=0

{
n∑
i=1

ρτj
[
yi − ωτj(di)

]}
(3)

Here the doses are rescaled to be on [0, 1] and constraints, which are described in Bondell et al. (2010),

are added that force non-crossing of the quantile response curve. These constraints force the quantiles

to not to cross; however, as the solution is found on a polyhedron whose verticies are observed data,

it is possible that the quantiles are equal, especially when τ0 and τ1 are defined to be in the tails of

the distribution. From a practical perspective, this behavior is rare and most often occurs during the

bootstrap resamples when there are few replications per dose group. As mentioned in the manuscript,

it can cause issues in BMD being estimated to be zero especially when λ is chosen to be small.

The choice of the smoothing bandwidth parameter λ is important when estimating the smoothing

spline. For large values of λ, the estimated quantiles will be flat across the domain, and for small values

of λ, the estimated quantiles will approach that of the unsmoothed estimate. We follow Koenker et al.

(1994) and Bondell et al. (2010) and use the Schwartz-type information criterion (SIC) for choosing λ.
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That is, we choose the parameter that minimizes

SIC(λ) =
1∑
j=0

log

{
n−1

n∑
i=1

ρτj

[
yi − ω̂λτj(d)

]}
+ (2n)−1log(n)

1∑
j=0

pλτj ,

where ω̂λτj(d) is the estimated function given λ and pλτj is the number of points interpolated by ω̂λτj(d).

This is the number of points such that the estimate ω̂λτj(d) correspond to an observed data point.

As mentioned in Koenker (2005), this quantity is essentially an ad hoc method for determining the

appropriate level of smoothness, and some care is needed for its use. This function is frequently jagged

with widely different values of λ that produce almost identical SIC values with the method having a

tendency to over smooth the data. In our problem, we search for an optimal λ, over a range of values

that does not favor overly smooth curves. This is done by limiting λ to be between 0 and 1.5.
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