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1. Identifying low-rank and spatially-varying components of density

It is known in the literature that the general, under-determined deconvolution problem is solvable only if the un-

known density is intrinsically, “sufficiently” sparse (Donoho & Tanner 2005; Wright et al. 2009). Here we advance a

methodology to learn the density - sparse or dense, , within the frame of the designed experiment discussed above.

The density is function recognized to be made of a constantρ0 (the low-rank component in the limiting sense),

and the spatially varying componentρ1(x, y, z) that may be sparse or dense inR3. We view the constant part of the

density asρ0 = ρ0δ(x−xi, y−yi, z) whereδ(·, ·, ·) is the Dirac delta function onR3 (Chakraborty 2008), centered at

the center of theik-th interaction volume,∀ k = 1, 2, . . . , Neng. Then in our problem, the contribution of the constant

part of the density to the projection onto the center of theik-th interaction-volume is

C(ρ0 ∗ η(x, y, z)(k)i ) ≡ ρ0C(δ(x− xi, y − yi, z) ∗ η(x, y, z))(k)i )

= I0(k), (1.1)

a constant independent of the beam pointing locationi, if η(x, y, z) is restricted to be a function of the depth coordinate

Z only. As is discussed in Section 4 of CRGBP, this is indeed what we adopt in the model for the kernel.

Then,I0(k) depends only on the known morphological details of the interaction-volume for a given value ofE,

∀ i = 1, 2, . . . , Ndata. Thus,{Ĩ(k)i }Ndata
i=1 = {Ĩ1(k)i + I0(k)}Ndata

i=1 , whereĨ1
(k)

i is the spatially-varying component of

the image data. The identification of the constant componentof the density is easily performed as due to the constant

component of the measurable.

In our inversion exercise, it is the{Ĩ1(k)i }Ndata
i=1 field that is actually implemented as data, afterI0(k) := inf{Ĩ(k)i }Ndata

i=1

is subtracted from{Ĩ(k)i }Ndata
i=1 , for eachk = 1, . . . , Neng. Hereafter, when we refer to the data, the spatially-varying

part of the data will be implied; it is this part of the data that will hereafter be referred to as{Ĩ(k)i }Ndata
i=1 , at each value

ǫk of E, k = 1, . . . , Neng. Its inversion will yield a spatially varying sparse/densedensity, that we will from now,

refer to asρ(x, y, z) that in general lies in a non-convex subset ofR≥0. Thus, we see that in this model, it is possible

for ρ(x, y, z) to be 0. The construction of the full density, inclusive of the low-rank and spatially-varying parts, is

straightforward once the latter is learnt.

2. Discretized versions of sequential projection

In this section we present the discretized form of Equation 3.4 of CRGBP, where this equation presents the sequential

projection of the convolutionρ∗η of the unknown material densityρ(x, y, z) and microscopy correction functionη(z),

onto the center of the general (ik-th) interaction-volume. Here the beam incidence locationindex i = 1, . . . , Ndata

and the energy of the electrons of the incident beam takes thevalueǫk, with k = 1, . . . , Neng. Equation 3.4 of CRGBP

takes different forms depending on the resolution in the image data; we work with 3 different resolution classes where

the resolutionω of the data determines the size of the square cross-sectional area of a voxel at any depth under the

surface of the material sample.
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2.1. 1st model: high-Z systems, coarse resolution

When dealing with “high-Z” materials (see Equation 3.6 of CRGBP for definition), imaged at the coarsest resolution

available, we recall that the material density inside an interaction-volume at a given value of the sub-surface depthZ,

is the density inside a single voxel, at thatZ. Then the material density inside an interaction-volume ata givenZ is

isotropic (see Section 3.1.1 of CRGBP). Then recalling thatthe discrete convolutionρ ∗ η within thek-th Z-bin and

at thei-th beam pointing gives(ρ ∗ η)
(k)
i =

k
∑

m=1

ξ
(m)
i η(k−m), we get the projectionC(ρ ∗ η)

(k)
i of the convolution

onto the center of theik-th interaction-volume to be the discretized form of Equation 3.4 of CRGBP:

C(ρ ∗ η)(k)i =
1

(R0(k))2

k
∑

q=0

[

(R0(q))2 − (R0(q−1))2

2

{

q
∑

t=0

(

(

h(t) − h(t−1)
)

t
∑

m=1

ξ
(m)
i η(t−m)

)}]

. (2.1)

2.2. 2nd model: low-Z systems, coarse resolution

In this case, the material density inside theik-th interaction volume is isotropic fork = 1, 2, . . . , kin, i.e. at anyZ,

the ik-th interaction volume is confined to a given voxel. However,at higher values of beam energies, namely, for

k = kin+1, . . . , Neng, theik-th interaction volume spills over into the neighboring voxels, at a givenZ. Let theik′-th

voxel lie wholly inside theik-th interaction-volume and let thei′k′-th voxel be its neighbor. Let the fraction of the

volume of thei′k′-th voxel, contained within theik-th interaction volume bew(k′)
i′|i , wherek′ ≤ k.

In general, at a givenZ, any bulk voxel has 8 neighboring voxels and when the voxel lies at the corner or edge of

the sample, number of nearest neighbors is less than 8. Then,at a givenZ, there will be contribution from at most 9

voxels towardsC(ρ ∗ η)(k)i . At Z = z ∈ [h(k′−1), h(k′)], for anyi, let the maximum number of contributing nearest

neighbors beimax|i, k so thatimax|i, k ≤ 9. The notation for this number bears its dependence on bothi andk.

We defineξ̄(k
′)

i as the weighted average of the densities in theik′-th voxel and its nearest neighbors that are fully or

partially included within theik-th interaction-volume. Herek′ ≤ k, k = 1, . . . , Neng, i = 1, . . . , Ndata. Thus,

ξ̄
(k′)
i :=

imax|i,k
′

∑

i′=1

ξ
(k′)
i′|i w

(k′)
i′|i , (2.2)

where thei′-th neighbor of theik′-th voxel at the same depth, harbors the densityξ
(k′)
i′|i and there is a maximum

of imax|i, k′ such neighbors. The effect of this averaging over the nearest neighbors at this depth, is equivalent to

averaging over the angular coordinateθ and results in the angular averaged densityξ̄
(k′)
i at thisZ, which by definition,

is isotropic, i.e. independent of the angular coordinate. Then fork > kin, C(ρ ∗ η)(k)i is computed as in Equation2.1

with ξ
(·)
i on the RHS of this equation replaced by the isotropic angularaveraged densitȳξ(·)i . However, fork ≤ kin,

the projection is computed as in Equation2.1.
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2.3. 3rd model: fine resolution

In this class of resolution, the resolution is so fine, i.e.ω is so small thatω ≪ R0(Neng). For this model, the projection

equation is written in terms of the Cartesian coordinates(x, y, z) of a point instead of the polar coordinate represen-

tation of this point, where the point in question lies insidethe ik-th interaction-volume that is centered at(xi, yi, 0).

Then inside theik-th interaction-volume, at a givenx andy, z ∈
[

0,

√

(

R0(k)
)2 − (x− xi)2 − (y − yi)2

]

. For

x− xi ∈ [(u− 1)ω, uω] u = −(int)

(

R0(k)

ω

)

+ 1,−(int)

(

R0(k)

ω

)

+ 2, . . . , (int)

(

R0(k)

ω

)

,

the indexpu(k) of theY -bin of voxels lying fully inside theik-th interaction volume, with respect to the center of

this interaction-volume, are

pu(k) = −qu(k),−qu(k) + 1, . . . , 0, 1, 2, . . . , qu(k)− 1, qu(k),

where

qu(k) := (int)

(

√

(R0(k))2 − u2ω2

ω

)

.

Then using the definition of the beam-pointing index in termsof theX-bin andY -bin indices of voxels (see Equa-

tion 3.1 of CRGBP), we get the beam-pointing index̺u(i, k) of voxels lying wholly inside theik-th interaction-

volume, for a givenu is

̺u(i, k) = i− qu(k)
√

Ndata+ u, i− (qu(k)− 1)
√

Ndata+ u, . . . , i− (qu(k)− 2qu(k))
√

Ndata+ u,

i.e. for a givenu, ̺u(i, k) = i+ pu(k)
√
Ndata+ u.

The depth coordinate of voxels with beam-pointing index̺u(i, k) lying inside theik-th interaction-volume are

z ∈
[

0,
√

(R0(k))2 − (pu(k))2ω2 − u2ω2

]

so that the energy index of voxels lying fully inside atY -bin pu(k) and

x − xi ∈ [(u − 1)ω, uω) are∈ [1, tmax(u)] wheretmax(u) ∈ Z>0 such thattmax(u) = max{1, 2, . . . , Neng} that

satisfies

h(tmax(u)) ≤
√

(R0(k))2 − (pu(k))2ω2 − u2ω2.

At this Y -bin index pu(k), there will also exist a voxel lying partly inside theik-th interaction-volume, at the

(tmax(u) + 1)-th Z-bin, between depthshtmax(u) and
√

(R0(k))2 − (pu(k))2ω2 − u2ω2. In addition, the projec-

tion C(ρ ⋆ η)
(k)
i will include contributions from voxels at the edge of this interaction-volume, lying partly inside

it; the beam-pointing indices of such voxels will bei − (qu(k) + 1)
√
Ndata+ u and i + (qu(k) + 1)

√
Ndata+ u

for x − xi ∈ [(u − 1)ω, uω] with u and q(u) defined as above. Lastly, parts of voxels at beam-pointing indices

i− (int)

(

R0(k)

ω

)

− 1 andi+(int)

(

R0(k)

ω

)

+1 will also be contained inside theik-th interaction-volume. These

voxels at the edges extend into the 1stZ-bin. We can compute the fractionr(b)a (i, k) of the volume of theab-th

voxel contained partly within theik-th interaction-volume by tracking the geometry of the system. Then using the

discretized version of Equation 3.4 of CRGBP, we write,
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ω−2(R0(k))2C(ρ ∗ η)(k)i =

(int)(R0(k)/ω)
∑

u=−(int)(R0(k)/ω)

qu(k)
∑

pu(k)=−qu(k)

tmax(u)
∑

t=1

[

(

h(t)
− h(t−1)

)

t
∑

m=1

ξ
(m)

̺u(i,k)η
(t−m)

]

+

(int)(R0(k)/ω)
∑

u=−(int)(R0(k)/ω)

qu(k)
∑

pu(k)=−qu(k)





(

√

(R0(k))2 − ((qu(k))2 + u2)ω2 − h(tmax(u))

) tmax(u)+1
∑

m=1

χ(m)
̺u (i, k)η(tmax(u)+1−m)



+

∑

ℓ(i,k)

[(

h(1)
)

r
(1)
ℓ (i, k)ξ

(1)

ℓ(i,k)η
(0)

]

(2.3)

where ℓ(i, k) = i−(int)

(

R0(k)

ω

)

−1, i+(int)

(

R0(k)

ω

)

+1, i−(qu(k) + 1)
√

Ndata+u, i+(qu(k) + 1)
√

Ndata+

u, for u = −(int)

(

R0(k)

ω

)

+ 1,−(int)

(

R0(k)

ω

)

+ 2, . . . , (int)

(

R0(k)

ω

)

,

χ
(m)
̺u

(i, k) := r
(m)
̺u

(i, k)ξ
(m)
̺u(i,k)

,

andη(1) is the surface ionization i.e. the measured value of the kernel on the system surface (see Section 4 of CRGBP).

3. Priors on sparsity: illustrations on simulated densities

In order to illustrate that the prior probability density developed in Section 5 of CRGBP, sensitively adapts to the

sparsity in the material density distribution, we present results of 2 simulation studies (shown in Figure1). In these

studies, the density parameter values in theik-th voxel are simulated from 2 simplistic toy models that differ from

each other in the degree of sparsity of the true material density distribution: ξ(k)i = u10
1 /u2, andξ(k)i = u10

3 re-

spectively, (whereu1, u2, u3 are uniformly distributed random numbers in[0, 1]), at a choseni and energy indices

k = 1, 2, . . . , 10. In the simulations we specify the beam penetration depthh(k) ∝ ǫ1.67k as suggested by Kanaya &

Okamaya (1972); as any interaction-volume is hemispherical, its radiusR0(k) = h(k). The kernel parametersη(k) are

generated from a quadratic function ofh(k) with noise added. In the simulations, the material is imagedat resolution

ω such thatπ[R0(10)]2 ≤ ω2, i.e. the “1st model” is relevant (see Section 3.3.1 of CRGBP). This allows for simpli-

fication of the computation ofC(ρ ∗ η)(k)i according to Equation 3.4 of CRGBP. Then at thisi, for k = 1, 2, . . . , 10,

ξ
(k)
i are plotted in Figure1 againstk, as is the logarithm of the priorπ0(ξ

(k)
i ) computed according to Equation 5.4 of

CRGBP, withp held as a random number, uniform in [0.6,0.99]. Logarithm ofthe priors are also plotted as a function

of the material density parameter. We see from the figure thatthe prior developed here tracks the sparsity of the vector

(ξ
(1)
i , ξ

(2)
i , . . . , ξ

(10)
i )T well.

4. Inference

In this work, we learn the unknown material density and kernel parameters using the mismatch between the data

{Ĩ(k)i }k=Neng; i=Ndata

k=1; i=1 and{C(ρ∗η)(k)i }k=Neng; i=Ndata

k=1; i=1 , in terms of which, the likelihood is defined. The material density

and kernel are convolved, and this convolution is sequentially projected onto the center of the theik-th interaction

volume, in the model (out of the 3 models, depending on the resolution of the image data at hand).
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FIG 1. Top: in the left panel black filled circles depict values of simulated material density parametersξ(k)i = u10
1 /u2, u1, u2 ∼

U [0, 1], at an arbitrary beam position indexi, as a function of the energy indexk, for k = 1, 2, . . . , 10. Log of the priorπ0(ξ
(k)
i ),

as given in Equation 5.4 of CRGBP, is shown in the middle panel as a function of k for p ∼ U [0.6, 0.99]. The log prior is plotted
against the true values ofξ(k)i in black filled circles in the right panel. Bottom: As in the top panels, except that this simulation is

of a sparser material density distribution with density parameters generated asξ(k)i = u10
1 .

We choose to work with a Gaussian likelihood:

L
(

ξ
(1)
1 , . . . , ξ

(Neng)
1 , . . . , ξ

(1)
Ndata

, . . . , ξ
(Neng)
Ndata

, η(1), . . . , η(Neng)|Ĩ(1)1 , Ĩ
(2)
1 , . . . , Ĩ

(Neng)
1 , Ĩ

(1)
2 , . . . , Ĩ

(Neng)
2 , . . . , Ĩ

(Neng)
Ndata

)

=

Neng
∏

k=1

Ndata
∏

i=1

1
√
2πσ

(k)
i

exp






−

(

C(ρ ∗ η)(k)i − Ĩ
(k)
i

)2

2
(

σ
(k)
i

)2






,

(4.1)

where the noise in the image datum̃I(k)i is σ
(k)
i ; it is discussed in Section 3.4 of CRGBP.

Towards the learning of the unknown functions, the joint posterior probability density of the unknown parameters,

given the image data, isπ
(

ξ
(1)
1 , . . . , ξ

(Neng)
1 , . . . , ξ

(1)
Ndata

, . . . , ξ
(Neng)
Ndata

, η(1), . . . , η(Neng)|Ĩ(1)1 , . . . , Ĩ
(Neng)
Ndata

)

, defined using

Bayes rule in terms of the likelihood (Equation4.1), the adaptive prior probability on the sparsity of the density

function (Section 5 of CRGBP) and the prior on the kernel, (Section 4 of CRGBP). Once the posterior probability

density of the material density function and kernel, given the image data is defined, we use the adaptive Metropolis

within Gibbs (Haario, Laine, Mira & Saksman 2006) to generate posterior samples.

At the n-th iteration,n = 1, . . . , Nmax, ξ(k)i is proposed from a folded normal density1. This choice of the

proposal density is motivated by a non-zero probability forξ
(k)
i to be zero. The latter constraint rules out a gamma or
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beta density thatξ(k)i is proposed from but truncated and folded normal densities are acceptable;k = 1 . . . , Neng, i =

1, . . . , Ndata. Of these we choose the easily computable folded normal proposal density (Leone, Nottingham & Nelson

1961). The proposed density in then-th iteration, in theik-th voxel is

ξ̃
(k)
i |n ∼ NF (µ

(k)
i |n, ς(k)i |n) (4.2)

while the current density in this voxel at then-th iteration is defined asξ(k)i |n. . We choose the mean and variance of

this proposal density to be

(4.3)

µ
(k)
i |n = ξ

(k)
i |n−1, ∀ n = 1, . . . , Nmax

(

ς
(k)
i |n

)2

=























∑n−1
p=n0

(

ξ
(k)
i |p

)2

n− n0
−





∑n−1
p=n0

(

ξ
(k)
i |p

)

n− n0





2

if n ≥ n0

Tξ
(k)
i |0 if n < n0

The random variableT is considered to be uniformly distributed, i.e.T ∼ U(0, 1]. Thus, forn ≥ n0, the proposal

density is adaptive, (Haario et al. 2006). We choosen0 = 103 andNmax is of the order of 8×104.

We chooseξ(k)i |0 by assigning constant density to the voxels that constitutethe ik-th interaction-volume,k =

1 . . . , Neng, i = 1, . . . , Ndata.

When a distribution-free model for the kernel is used, in then-th iteration,η(k) is proposed from a folded normal

proposal density with mean set by the current value of this parameter and an experimentally chosen dispersions1.

When the parametric model for the kernel is used,η(z) is calculated as given in Equation 4.2 of CRGBP, conditional

on the values of 2 the parametersQ andη0. The proposed parameters at then-th iteration areQ̃n and(η̃0)n. Q̃n and

(η̃0)n are each proposed from independent exponential proposal densities with constant rate parameters.

Inference is performed by sampling from the high dimensional posterior using Metropolis-within-Gibbs block

update, (Gilks & Roberts 1996; Chib & Greenberg 1995). Let the state vector at then-th iteration be

εn = (ξ
(1)
1 |n, . . . , ξ(Neng)

1 |n, . . . , ξ(Neng)
2 |n, . . . , ξ(Neng)

Ndata
|n, η(1)|n, . . . , η(Neng)|n)T . (4.4)

For the implementation of the block Metropolis-Hastings, we partition the state vectorεn as:

εTn = ((ε(ξ)n )T , (ε(η)n )T ),

where

ε(ξ)n = (ξ
(1)
1 |n, . . . , ξ(Neng)

1 |n, . . . , ξ(Neng)
2 |n, . . . , ξ(Neng)

Ndata
|n)T ,

ε(η)n = (η(1)|n, . . . , η(Neng)|n)T . (4.5)

Heren = 1, . . . , Nburnin
, . . . , Nmax. We typically useNmax > 8×104 andNburnin

=5×103. Then, the stateεn+1 is

given by the successive updating of the two blocks:ε
(ξ)
n+1 andε(η)n+1.

1The distributionNF (a, b) is the folded normal distribution with meana ∈ R, a > 0 and standard deviationb ∈ R, b > 0 (Leone et al. 1961)
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5. In the small noise limit

Theorem 5.1. In the limit of small noise,σ(k)
i −→ 0, the joint posterior probability of the density and kernel

parameters, given the image data, for all beam-pointing indices (i = 1, . . . , Ndata) and all ǫk, k = 1, . . . , Neng,

reduces to a product ofNdata×Neng Dirac measures, with theik-th measure centered at the solution to the equation

Ĩ
(k)
i = C(ρ ∗ η)(k)i ,

Proof. Recalling the developed priors on the density parameters and on the kernel parameters and the Gaussian

likelihood, logarithm of the posterior probability of the discretized distribution-free model is

log π
(

ξ
(1)
1 , . . . , ξ

(Neng)
1 , . . . , ξ

(1)
Ndata

, . . . , ξ
(Neng)
Ndata

, η(1), . . . , η(Neng)|Ĩ(1)1 , . . . , Ĩ
(Neng)
Ndata

)

=

Ndata
∑

i=1

Neng
∑

k=1

[

− log σ
(k)
i −

(

(Ĩ
(k)
i − C(ρ ∗ η)(k)i )2

2(σ
(k)
i )2

)]

−
Neng
∑

k=1

[

(η(k) + η
(k)
0 )2

2N(s(k))2

]

−
Ndata
∑

i=1

Neng
∑

k=1

[

(

ξ
(k)
i ν(τ

(k)
i )

)2
]

+A,

(5.1)

whereA ∈ R is a finite constant. Thus,

lim
σ
(k)
i

−→0

π(ξ
(1)
1 , . . . , ξ

(Neng)
Ndata

, η(1), . . . , η(m)|Ĩ(1)1 , . . . , Ĩ
(Neng)
Ndata

) ∝

lim
σ
(k)
i

→0





Ndata
∏

i=1

Neng
∏

k=1

1

σ
(k)
i

exp

(

− (Ĩ
(k)
i − C(ρ ∗ η)(k)i )2

2(σ
(k)
i )2

)



. (5.2)

The right hand side of this equation is the product of Dirac delta functions centered at̃I(k)i = C(ρ ∗ η)
(k)
i , for

i = 1, . . . , Ndata, k = 1, . . . , Neng. Thus, the joint posterior probability density of the unknowns reduces to a product

of Dirac measures for eachi, k, with each measure centered on the solution of the equationĨ
(k)
i = C(ρ ∗ η)(k)i .
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