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1. Identifying low-rank and spatially-varying components of density

It is known in the literature that the general, under-deteem deconvolution problem is solvable only if the un-
known density is intrinsically, “sufficiently” sparse (Dolno & Tanner 2005; Wright et al. 2009). Here we advance a
methodology to learn the density - sparse or dense, , witlgrirame of the designed experiment discussed above.
The density is function recognized to be made of a constaifthe low-rank component in the limiting sense),
and the spatially varying component(z, y, z) that may be sparse or denseRA. We view the constant part of the
density ago = pod(x —x;,y — i, 2) wheres(-, -, -) is the Dirac delta function oR* (Chakraborty 2008), centered at
the center of thék-th interaction volumey k£ = 1,2, ..., Neng. Thenin our problem, the contribution of the constant

part of the density to the projection onto the center ofifiah interaction-volume is

Clpoxn(w,y, )Y = poC(0(a — iy — yi2) % n(x,y,2))")

= J0W), (1.1)

a constant independent of the beam pointing locatidm(z, y, 2) is restricted to be a function of the depth coordinate
Z only. As is discussed in Section 4 of CRGBP, this is indeedtwigaadopt in the model for the kernel.

Then,70*) depends only on the known morphological details of the auton-volume for a given value df,
Vi=1,2..., Naaa Thus, {I®Nea — 171" | 1)1 Nees \whereT1" is the spatially-varying component of
the image data. The identification of the constant compooithie density is easily performed as due to the constant
component of the measurable.

In our inversion exercise, itis tha' 1\ 1 field thatis actually implemented as data, aft@) := inf{ /(") } e
is subtracted fron{ffk)}f\’:di‘a, for eachk = 1,..., Neng Hereafter, when we refer to the data, the spatially-vayyin
part of the data will be implied; it is this part of the datatthal hereafter be referred to f{sffk)}ﬁv:‘ii‘a, at each value
e, Of E, k = 1,..., Neng Its inversion will yield a spatially varying sparse/dergansity, that we will from now,
refer to as(x, y, z) that in general lies in a non-convex subseRafy. Thus, we see that in this model, it is possible
for p(z,y,2) to be 0. The construction of the full density, inclusive o tlow-rank and spatially-varying parts, is

straightforward once the latter is learnt.

2. Discretized versions of sequential projection

In this section we present the discretized form of EquatidroB CRGBP, where this equation presents the sequential
projection of the convolutiop«n of the unknown material densipfx, y, z) and microscopy correction functiopz),

onto the center of the generakf{th) interaction-volume. Here the beam incidence locatimtex: = 1, ..., Ngaiqa

and the energy of the electrons of the incident beam takesthee,, withk =1, ..., Ne,,. Equation 3.4 of CRGBP
takes different forms depending on the resolution in thegendata; we work with 3 different resolution classes where
the resolutionw of the data determines the size of the square cross-selcticreof a voxel at any depth under the

surface of the material sample.
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2.1. 1st model: highZ systems, coarse resolution

When dealing with “highZ” materials (see Equation 3.6 of CRGBP for definition), imdgéthe coarsest resolution
available, we recall that the material density inside aeraattion-volume at a given value of the sub-surface dgpth
is the density inside a single voxel, at that Then the material density inside an interaction-voluma given is
isotropic (see Section 3.1.1 of CRGBP). Then recalling thatdiscrete convolutiop x n within the k-th Z-bin and
at thei-th beam pointing giveép x n)(k) Z $(m) (k=m) "we get the projectiod(p x n)(k) of the convolution

onto the center of thé-th interaction—volume to be the discretized form of Eqoiat.4 of CRGBP:

k q a— a ¢
Clpxm) = Z o) RO( s {Z <(h(t) —ht0) 3 51-(’”)77(“"”)) H (2.1)

q=0 t=0 m=1

2.2. 2nd model: lowZ systems, coarse resolution

In this case, the material density inside tlteth interaction volume is isotropic fat = 1,2, ... k;,, i.e. at anyZ,
theik-th interaction volume is confined to a given voxel. Howewatrhigher values of beam energies, namely, for
k = Eint1, ..., Neng, theik-th interaction volume spills over into the neighboring etsx at a giver. Let theik’-th
voxel lie wholly inside theik-th interaction-volume and let thék’-th voxel be its neighbor. Let the fraction of the
volume of the:’k’-th voxel, contained within thé-th interaction volume be;g,kl;), wherek’ < k.

In general, at a give, any bulk voxel has 8 neighboring voxels and when the vorsl 4t the corner or edge of
the sample, number of nearest neighbors is less than 8. @hargivenZ, there will be contribution from at most 9
voxels toward (p = 7). At Z = z € [h*' =D K], for anyi, let the maximum number of contributing nearest
neighbors be,,,..|i, k so thati,,..|i,k < 9. The notation for this number bears its dependence on batid k.

We definef_fk/) as the weighted average of the densities iniftieh voxel and its nearest neighbors that are fully or

partially included within thek-th interaction-volume. Here’ < k, k =1,..., Neng @ = 1,..., Ngaa Thus,
7:7na.t|7;ak
gk _ (K’ (k )
&= > elllul), 2.2)

/=1
where thei’-th neighbor of thek’-th voxel at the same depth, harbors the densﬁﬁ{/) and there is a maximum
of i |i, k' such neighbors. The effect of this averaging over the neagighbors at this depth, is equivalent to
averaging over the angular coordinétand results in the angular averaged derféffﬂ) at thisZ, which by definition,
is isotropic, i.e. independent of the angular coordinatenirfork > k;,, C(p * n)§k> is computed as in Equatichl
with §§') on the RHS of this equation replaced by the isotropic ancauaraged densit&f'). However, fork < k;,,

the projection is computed as in Equati®i.



D. Chakrabarty et al./Multiple Sequential Inversions 4
2.3. 3% model: fine resolution
In this class of resolution, the resolution is so fine,d:és so small thaty << R0(Neww) . For this model, the projection

equation is written in terms of the Cartesian coordinétey, z) of a point instead of the polar coordinate represen-

tation of this point, where the point in question lies insideik-th interaction-volume that is centered(at, y;, 0).

Then inside thek-th interaction-volume, at a givenandy, = € {0, \/(Ro(k>)2 —(x—x)?2—(y— yi)ﬂ. For

z—a; € [(u—Dw,uw] u=—(int) (R(jjk)) +1, —(int) (R(jjk)> +2,..., (int) (R(jjk)),

the indexp, (k) of the Y-bin of voxels lying fully inside thek-th interaction volume, with respect to the center of

this interaction-volume, are

pu(k) = _QU(k)v _Qu(k) + 17 s 707 1727 .- qui(k) - 1;Qu(k)a

where

w

(k) = (ind) ( (RO — u2w2>.

Then using the definition of the beam-pointing index in teohthe X -bin andY -bin indices of voxels (see Equa-
tion 3.1 of CRGBP), we get the beam-pointing indexi, k) of voxels lying wholly inside thek-th interaction-

volume, for a givenu is
Qu(i7 k) =1 — Qu(k) Ngata+ u, © — (Qu(k) - 1) Ndata+u, ..., 1 — (Qu(k) - QQu(k)) Ngata+ u,

i.e. for a givenu, o, (i, k) = i + pyu(k)v/ Ndata+ .
The depth coordinate of voxels with beam-pointing index:, k) lying inside theik-th interaction-volume are

z € [07 \/(RO(’C))2 — (pu(k))?w? — u%Q} so that the energy index of voxels lying fully insideYatbin p,, (k) and
z—x; € [(u— 1w, uw) are€ [1,tmqq(u)] Wheret,, ., (u) € Zso such that,,,,(v) = max{1,2,..., Neng} that

satisfies

(tmaz(w) < \/(Ro(k))Q — (pu(k))2w? — u2w?.

At this Y-bin index p,(k), there will also exist a voxel lying partly inside thé&-th interaction-volume, at the
(tmaz(u) + 1)-th Z-bin, between depthstma=(*) and \/(R0O*®))2 — (p,(k))2w? — u2w?. In addition, the projec-
tion C(p * n)gk) will include contributions from voxels at the edge of thigeiraction-volume, lying partly inside
it; the beam-pointing indices of such voxels will be- (¢, (k) + 1) v/Ngata+ v andi + (g, (k) + 1) v/Nyata + u
for z — x; € [(u — 1)w,uw] with « and ¢(u) defined as above. Lastly, parts of voxels at beam-pointidicés

(k) (k)
i— (int) <RO ) —landi+ (int) (RO
w

voxels at the edges extend into the ¥sbin. We can compute the fracticnib)(z', k) of the volume of theub-th

) + 1 will also be contained inside th&-th interaction-volume. These

voxel contained partly within thék-th interaction-volume by tracking the geometry of the egst Then using the
discretized version of Equation 3.4 of CRGBP, we write,
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w 2(ROW)2C(px ) =

(int) (RO /w) qu (k) tmaz () (m)
R® _ p=1) m (t )
( ) Z Coutii | F

u=—(int)(ROK) /w) pu(k)=—qu(k) t=1

(int) (RO /o) du (k) tmaz(u)+1

W (RO<k>)2—((qu<k>>2+u2>w2—h“"“’“"”) PO

u=—(int)(ROK) Jw) pu(k)=—qu(k) m=t

> [() VRl 0] (2.3)
£(3,k)

(k)

where ((i, k) = i (int) (RO ) L it (int) (Rfjk) ) i (gu(R) 1) Va4 (gu (k) + 1) v/ Noma

(k) (k) (k)

u, foru = —(int) (RO ) +1,—(int) (RO > +2,...,(int) (RO ).
w w w

Xou k) =5 (0, RS

andnV) is the surface |on|zat|on i.e. the measured value of thedtemthe system surface (see Section 4 of CRGBP).

3. Priorson sparsity: illustrations on simulated densities

In order to illustrate that the prior probability densityveéped in Section 5 of CRGBP, sensitively adapts to the
sparsity in the material density distribution, we presesuits of 2 simulation studies (shown in Figlde In these
studies, the density parameter values indh¢h voxel are simulated from 2 simplistic toy models thafetiffrom
each other in the degree of sparsity of the true materialiedistribution: §,§k) = ui®/uy, andffk) = ul® re-
spectively, (whereu;, us, us are uniformly distributed random numbers|in 1]), at a choseri and energy indices

k =1,2,...,10. In the simulations we specify the beam penetration déffth €157 as suggested by Kanaya &
Okamaya (1972); as any interaction-volume is hemisphleiisaadiusR0*) = h(*). The kernel parameterg”) are
generated from a quadratic function/gf) with noise added. In the simulations, the material is imaafe@solution

w such thatr[R011?)]2 < w?, i.e. the “1st model” is relevant (see Section 3.3.1 of CREBRis allows for simpli-
fication of the computation af(p n)gk) according to Equation 3.4 of CRGBP. Then at thitor k£ = 1,2,.. ., 10,

ffk) are plotted in Figurd againstk, as is the logarithm of the prioro(quk)) computed according to Equation 5.4 of
CRGBP, withp held as a random number, uniform in [0.6,0.99]. Logarithrthefpriors are also plotted as a function
of the material density parameter. We see from the figuretiegtrior developed here tracks the sparsity of the vector
(€W e® N well,

4. Inference

In this work, we learn the unknown material density and kepagameters using the mismatch between the data
(I h= Ne"g’f Neaia and{C(p )™ Zifei"if:]v"a‘a, in terms of which, the likelihood is defined. The materiahsiey
and kernel are convolved, and this convolution is sequignpiaojected onto the center of the thik-th interaction

volume, in the model (out of the 3 models, depending on thaluéen of the image data at hand).
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Fic 1. Top: in the left panel black filled circles depict values of simulated mategakbity parametersz(k) = ui®/ug, w1, us ~
U|[0, 1], at an arbitrary beam position indeX as a function of the energy indéxfor k = 1,2, ..., 10. Log of the priormry (ffk)),
as given in Equation 5.4 of CRGBP, is shown in the middle panel as a fundtiofoop ~ 14/[0.6,0.99]. The log prior is plotted
against the true values oj’“) in black filled circles in the right panel. Bottom: As in the top panels, excepthimsimulation is
of a sparser material density distribution with density parameters gemb&steg’“) = ui’.

We choose to work with a Gaussian likelihood:

1 (Neng) (Neng) eng) | 7(1) 7(2 7(Neng) 7(1 7(Neng) 7(Neng) \ __
,c(§>,..., Nerd) g0 gl Oy WNena) | FO 72N D7 g,...,deat:)_
]ﬁg ]ﬁ (ctoxm - »““’)

k) 2 ’
kel i=1 V2 ( Q(O'i(k)>

(4.1)

where the noise in the image dattf{ﬁ) is agk); it is discussed in Section 3.4 of CRGBP.

Towards the learning of the unknown functions, the jointtpoer probability density of the unknown parameters,
given the image data, vs( L e ,gNdma ...@%j{"ﬁg W,y Nend | FU .7I~J(V];§2")>, defined using
Bayes rule in terms of the likelihood (Equatidnl), the adaptive prior probability on the sparsity of the digns
function (Section 5 of CRGBP) and the prior on the kernelc{i®a 4 of CRGBP). Once the posterior probability
density of the material density function and kernel, gives image data is defined, we use the adaptive Metropolis
within Gibbs (Haario, Laine, Mira & Saksman 2006) to genembsterior samples.

At the n-th iteration,n = 1,..., Nz, gi(k) is proposed from a folded normal densityrhis choice of the

proposal density is motivated by a non-zero probability{ﬁ(‘i? to be zero. The latter constraint rules out a gamma or
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beta density thaﬁti(k) is proposed from but truncated and folded normal densiteseceptablet = 1..., Neng, ¢ =
1,..., Nyata Of these we choose the easily computable folded normabgedplensity (Leone, Nottingham & Nelson

1961). The proposed density in theth iteration, in the k-th voxel is
gz‘(k)|n ~ NF(/Lz(‘k)|n7§z‘(k)|n) 4.2)

while the current density in this voxel at theth iteration is defined ag“” | . We choose the mean and variance of

this proposal density to be

(4.3)
i = €, V=1 N
n—1 k 2 n—1 k
Zp:no (51( )‘P) Zp:no (52( )|P) .
K \2 — if n>ng
(9( |n> = n—ng n — ng

TeM |, i n<ng

The random variabl@ is considered to be uniformly distributed, iZB.~ U(0, 1]. Thus, forn > ng, the proposal
density is adaptive, (Haario et al. 2006). We choege= 10® and N, is of the order of &10%.

We choosegl(k)\o by assigning constant density to the voxels that consttheek-th interaction-volumek =
1...,Neng i =1,..., Ndata

When a distribution-free model for the kernel is used, insikt iteration,n*) is proposed from a folded normal
proposal density with mean set by the current value of thiampater and an experimentally chosen dispersion
When the parametric model for the kernel is usgd,) is calculated as given in Equation 4.2 of CRGBP, conditional
on the values of 2 the parameté&)sandr,. The proposed parameters at th¢h iteration are),, and (7o) .- Q,, and
(70)n are each proposed from independent exponential propossitids with constant rate parameters.

Inference is performed by sampling from the high dimendigeterior using Metropolis-within-Gibbs block
update, (Gilks & Roberts 1996; Chib & Greenberg 1995). Letdtate vector at the-th iteration be

1 Nen Nen, Nen en
en = (€ s, €89 | e ) (Ne)| )T (4.4)

ata

For the implementation of the block Metropolis-Hastings, partition the state vecter, as:

en = (E)T, (€M),

where
1 Neng) Neng) (Nen
8;&) = ( § )‘TH L) § ¢ |n7"'7 é o |n7 '7£Nda1ag)|n)Ta
e = O] (4.5)
Heren =1,..., Nournivs- - - » Nnaz- We typically UseN, .. > 8x10* and Ny, =5x103. Then, the state,, ;1 is

given by the successive updating of the two bIo<z3I§,§::1 andsﬁf’ﬁl.

1The distribution\' (a, b) is the folded normal distribution with meanc R, a > 0 and standard deviatidn€ R, b > 0 (Leone et al. 1961)
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5. In the small noise limit

Theorem 5.1. In the limit of small n0|sea(k)

— 0, the joint posterior probability of the density and kernel
parameters, given the image data, for all beam-pointingdesl ¢ = 1,..., Ngata) and all e, £ = 1,..., Neng,
reduces to a product dVya X Neng Dirac measures, with thé:-th measure centered at the solution to the equation

I = c(pxm)”,

Proof. Recalling the developed priors on the density parametedsoanthe kernel parameters and the Gaussian

likelihood, logarithm of the posterior probability of thésdretized distribution-free model is

(Neng) (Nen T 7(Nen
togm (&7, €8™, el g ...,n(NE“g)\If1>7...,Ij(vdalag)) =
Nata Neng 7(k) (k)\2 Neng (k) Nata Neng
(I;" =Clpxn)i)? ('™ + 770 (=®)
DY - tose - (Ul ) |5 | SO () ]
i=1 k=1 (Ui )2 k=1 i=1 k=1
(5.2)
whereA € R is a finite constant. Thus,
Neng) m)| T Nen
(lgm ﬂ-(f LA ’§§Vdatag 77(1)’ e 7n( )|I1(1) I](Vdatag))
—0
Nata Neng #(k) (k)\2
(I;" —=Clpxn);")*
(lklgm H H (k exp ( (U(k)> . (5.2)
9 i=1 k= 10 7

The right hand side of this equation is the product of Diraltadfinctions centered ai(’“ = C(p * n) , for
i=1,...,Ngata k =1,..., Neng Thus, the joint posterior probability density of the unims reduces to a product

of Dirac measures for eadghk, with each measure centered on the solution of the equéﬁ’félt C(p* n)(k) O
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