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B OpenBUGS code

model {

for(i in 1:NOBS){

z[i, 1:2] ~ dmnorm(z.hat[i, 1:2], omega[,])

z.hat[i,1] <- B[id[i], 1] + B[id[i], 2]*(day[i]-mean(day[])) + beta1.c*sex[i] +

beta2.c*(age[i] - mean(age[])) + beta3.c*tx[i] +

beta4.c*tx[i]*(day[i]-mean(day[])) #cdrs

z.hat[i,2] <- B[id[i], 3] + B[id[i], 4]*(day[i]-mean(day[])) + beta1.h*sex[i] +

beta2.h*(age[i] - mean(age[])) + beta3.h*tx[i] +

beta4.h*tx[i]*(day[i]-mean(day[])) #hdrs

}

omega[1:2,1:2] ~ dwish(R[,],2)

R[1,1] <- 1

R[2,2] <- 1

R[1,2] <- 0

R[2,1] <- 0

V[1:2,1:2] <- inverse(omega[,])

beta1.c ~ dnorm (0.0, .0001)

beta2.c ~ dnorm (0.0, .0001)
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beta3.c ~ dnorm (0.0, .0001)

beta4.c ~ dnorm (0.0, .0001)

beta1.h ~ dnorm (0.0, .0001)

beta2.h ~ dnorm (0.0, .0001)

beta3.h ~ dnorm (0.0, .0001)

beta4.h ~ dnorm (0.0, .0001)

for (j in 1:J){

for (k in 1:K){

B[j,k] <- B.raw[j,k]

}

B.raw[j,1:K] ~ dmnorm (mu.raw[], Tau.B.raw[,])

}

for (k in 1:K){

mu[k] <- mu.raw[k]

mu.raw[k] ~ dnorm (0, .0001)

}

Tau.B.raw[1:K,1:K] ~ dwish(W[,], df)

df <- K + 2

Sigma.B.raw[1:K,1:K] <- inverse(Tau.B.raw[,])

for (k in 1:K){

for (k.prime in 1:K){

rho.B[k,k.prime] <- Sigma.B.raw[k,k.prime]/

sqrt(Sigma.B.raw[k,k]*Sigma.B.raw[k.prime,k.prime])

}

sigma.B[k] <- sqrt(Sigma.B.raw[k,k])

}

}

C Trace plots and density plots for parameters from

the random effects variance-covariance matrix

The key parameters in the random-effects variance-covariance matrix of the imputation

model are the covariances across scales, that is:

• The covariance of the CDRS random intercept and the HDRS random intercept

• The covariance of the CDRS random intercept and the HDRS random slope
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• The covariance of the CDRS random slope and the HDRS random intercept

• The covariance of the CDRS random slope and the HDRS random slope

Figure 1: Trace plots (based on 3 MCMC chains) and density plots for 4 key parameters
from the variance-covariance matrix of the random effects in the imputation model. Plots
are the result of 10,000 MCMC iterations after a 10,000 iteration burn-in. Gelman-Rubin
statistics for all 4 parameters were equal to 1
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CDRS random slope and HDRS random intercept covariance
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CDRS random slope and HDRS random slope covariance
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These 4 parameters, along with the covariance of the error terms, determine the covari-

ance between the HDRS and CDRS and its change over time. Therefore, these are the key
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parameters in terms of generating accurate imputations. Figure 1 presents trace plots (based

on 3 MCMC chains) as well as density plots from 10,000 MCMC iterations (after a 10,000

iteration burn-in period).

As can be seen, there is good mixing among chains and posterior densities are smooth

and unimodal. Further, Gelman-Rubin statistics for all 4 parameters were equal to 1. These

diagnostics suggest that these parameters are identifiable and well-estimated.
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D Post-imputation analyses without the use of a cali-

bration sample

Table 1: Observed-only and post-imputation analyses of CDRS and HDRS scores in fluoxe-
tine trials. Here, the imputed values are generated without using the calibration data. The
observed-only HDRS analysis is based on a single trial and does not include a random effect
at the trial level. All other models include trial-specific random effects.

Observed Imputed w/out calibration
Outcome Parameter Est SE t-val p-val Est SE t-val p-val

Intercept 54.00 2.56 21.12 <.001 54.54 2.12 25.67 <.001
Time -3.79 0.18 -21.34 <.001 -3.80 0.17 -21.89 <.001
Tx*Time -1.06 0.21 -4.92 <.001 -1.06 0.21 -5.07 <.001

CDRS SD(b0l) 5.03 4.57
SD(b0i) 9.91 9.86
SD(b1i) 2.52 2.44
Corr(b0i, b1i) -0.46 -0.45
SD(εijl) 7.23 7.31

Intercept 22.59 0.67 33.48 <.001 19.75 1.63 12.11 <.001
Time -3.34 0.42 -7.87 <.001 -3.27 0.29 -11.39 <.001
Tx*Time -0.57 0.55 -1.03 .308 -0.40 0.30 -1.34 .182

HDRS SD(b0l) NA 1.81
SD(b0i) 2.11 5.54
SD(b1i) 1.46 0.69
Corr(b0i, b1i) 0.13 -0.68
SD(εijl) 3.97 3.95

SD(b0l): Standard deviation of random trial-level intercepts
SD(b0i): Standard deviation of random subject-level intercepts
SD(b1i): Standard deviation of random subject-level slopes
Corr(b0i, b1i): Correlation of random intercepts and slopes
SD(εijl): Standard deviation of residual error
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E Partial correlations in calibration sample by treat-

ment group

Table 2: Partial correlation by treatment group and study (controlling for age and gender)
between CDRS and HDRS in the calibration sample.

Study 1 Study 2 Overall
Week Control Treatment Control Treatment Control Treatment

0 0.68 0.77 0.39 0.62 0.51 0.65
1 0.74 0.76 0.59 0.64 0.67 0.65
2 0.78 0.78 0.71 0.77 0.73 0.75
3 0.81 0.82 0.74 0.77 0.76 0.77
4 0.83 0.85 0.79 0.76 0.81 0.78
6 0.86 0.84 0.77 0.80 0.81 0.80
8 0.88 0.82 0.84 0.79 0.85 0.80
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