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Geometry of Multiprimary Display Colors II:
Metameric Control Sets and Gamut Tiling Color

Control Functions
Carlos Eduardo Rodrı́guez-Pardo and Gaurav Sharma

Abstract—For multiprimary displays that have four or more
primaries, a color may be reproduced using multiple alternative
control vectors. We provide a complete characterization of the
Metameric Control Set (MCS), i.e., the set of control vectors that
reproduce a given color on the display. Specifically, we show that
MCS is a convex polytope whose vertices are control vectors
obtained from (parallelepiped) tilings of the gamut, i.e., the
range of colors that the display can produce. The mathematical
framework that we develop: (a) characterizes gamut tilings in
terms of fundamental building blocks called facet spans, (b)
establishes that the vertices of the MCS are fully characterized
by the tilings of the gamut, and (c) introduces a methodology for
the efficient enumeration of gamut tilings. The framework reveals
the fundamental inter-relations between the geometry of the MCS
and the geometry of the gamut developed in a companion Part
I paper, and provides insight into alternative strategies for color
control. Our characterization of tilings and the strategy for their
enumeration also advance knowledge in geometry, providing new
approaches and computational results for the enumeration of
tilings for a broad class of zonotopes in R3.

Index Terms—multiprimary displays, metameric control sets,
color gamut, color control, color control function, zonotope tiling,
polar zonohedra

I. INTRODUCTION

Additive displays systems reproduce color by combining
light emitted by a set of sources known as primaries. A
control vector, which represents the relative intensity of the
primaries, determines the color reproduced by the display.
The set of all colors reproducible on the display through the
use of alternative control vectors constitutes the gamut of the
display. Displays with four or more primaries are known as
multiprimary displays, and a key attribute of multiprimary
displays is their flexibility for color control, as colors in
the gamut may be produced by multiple different primary
combinations. Characterizations of the gamut and the color
control flexibility are important and useful because of their
fundamental roles in the color management and in the design
of multiprimary displays. In a companion Part I paper [1],
we provided a complete geometrical representation for the
gamut of multiprimary displays; including a tiling of the
gamut with parallelepipeds generated by 3-tuples of primaries.
In this Part II paper, we introduce and characterize the set
of control vectors that reproduce a color in the gamut; a
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set that we refer to as the Metameric Control Set (MCS).
Our characterization relates the geometry of the MCS with
the gamut tilings obtained in the companion Part I paper
and highlights the fact that the methodology introduced there
provides only an incomplete set of tilings, therefore, only an
incomplete characterization of the MCS. In this paper, we
completely characterize the tilings of the gamut and establish
that these characterize the MCS for each color in the gamut.

This manuscript is organized as follows. After Section II
introduces notation and the context for the paper, Section III
establishes the MCS as a convex polytope that can be char-
acterized by its vertices and formulates an orthogonal decom-
position of the MCS that can be used for the visualization
of the MCS. Section IV introduces the concept of a facet
span, which is then used to characterize the full set of
tilings of the gamut and to establish, for each tristimulus, the
equivalence between the vertices of the MCS and the control
vectors associated with the tilings. Finally, Section V develops
an efficient methodology and algorithm for enumerating all
the gamut tilings. The paper concludes with a discussion in
Section VI and a summary of key results in Section VII.
Appendices A–E include proofs of the mathematical results,
specifications of the multiprimary systems used as examples in
the paper, and supplementary detail for the algorithm presented
in Section V. Supplementary Materials included with this
paper provide additional visualizations of MCSs, facet spans,
complete sets, and tilings and summarize the computational
time requirements for the tiling enumeration results presented
in this paper.

II. BACKGROUND AND PROBLEM FRAMEWORK

We refer the reader to Section II of the companion Part I
paper [1] for a summary of the common notational conventions
and background that are also used in this paper. We introduce
the few additional conventions and definitions that we require
in this section and also quickly describe the problem frame-
work and recapitulate the most relevant concepts and results
from the companion Part I paper. Table I lists the notational
conventions and acronyms. For a non-empty sequence of
integer indices I, we denote the mirror sequence by Ĩ, where
Ĩ[l] = I[N (I) − l + 1], for all l ∈ 〈N (I)〉, where I[l]
denotes the lth index in I and N (I) denotes the cardinality
of the set I. A polytope in RN obtained as an affine map of
[0, 1]M , M ≥ 0, into RN is called a zonotope [2, Chap. 7].
For a 3 × M matrix A = [a1,a2, . . . ,aM ], and a 3 × 1
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vector v, we denote by S(v,A) ≡
{
Aα+ v|α ∈ [0, 1]M

}

the region of tristimulus space spanned by A and located
at the offset v, also referred to as the origin of S(v,A).
For a 3 × 3 matrix A and a 3 × 2 matrix B, both with
linearly independent column vectors, and 3× 1 vectors v and
c 6= 0, the sets P(v,A) ≡ S(v,A), F(v,B) ≡ S(v,B),
and E(v, c) ≡ S(v, c) denote, respectively, a parallelepiped,
a parallelogram, and a line segment, each having origin v;
each of these is a zonotope in R3.

TABLE I
LIST OF SYMBOLS/ACRONYMS

Symbol/Acronym Description

Scalars, Sets, Indices
K Number of primaries

n,m,N,M Generic integers
〈M〉 The set of integers {1, 2, 3, . . . ,M}
A Generic set

N (A) Cardinality of A
I Generic sequence of indices
Ĩ Mirror sequence of I

J, P Sequences of two, three indices
Cm(I) Set of all combinations of m elements from I
P(I) Set of all permutations of the elements in I

Tristimulus and Gamut
t Generic tristimulus

t0, t1 Display black and display white
p Primary tristimulus
P 3×K primary matrix
G Display gamut

Control Vectors and Metameric Control Sets
MCS Metameric Control Set
CBS Control Black Subspace
CVS Control Visual Subspace
α,ω Generic K × 1 control vector
Ω(t) MCS for t
VΩ(t) Set of vertices of the MCS Ω(t)
αΥ,αΦ CVS and CBS components of α
β, Ξ(t) (K − 3)-dimensional CBS coordinate representation of α and

Ω(t) in an orthonormal basis for CBS

Facet spans
Z(J,I) Facet span, J∈Cm (〈K〉), I∈P (〈K〉\J)
P(J,I)

l lth parallelepiped of Z(J,I), l ∈ 〈K − 2〉
F(J,I)

l−1 , F(J,I)
l The pair of facets of P(J,I)

l spanned by P[J]
dJ+

l (I) Origin of F(J,I)
l

K Generic set of compatible facet spans

Collections of Parallelepipeds
T Generic collection of parallelepipeds
TK Collection of all parallelepipeds making up the facet spans of K

Color Control Functions
CCF Color Control Function
C CCF
CT Tiling CCF associated with gamut tiling T

A. Problem Framework

A display system is characterized by its (3×K) matrix of
primaries P = [p1,p2, . . . ,pK ], where pk is the 3× 1 vector
of CIE XYZ tristimulus values for the kth primary. A color is
produced by an additive combination of the primaries that is
described by a color control vector α = [α1, α2, . . . , αK ]T ,
where αk ∈ [0, 1] is the control value that indicates the
relative intensity of primary pk. The reproduced color, as
a function of α, is represented by the 3 × 1 tristimulus

t(α) = Pα + t0 = [tX , tY , tZ ]T , where t0
def
= t(0)

is the display black and t1
def
= t(1) is the display white,

which are the tristimuli obtained when all primaries are
turned completely off and on, respectively. Throughout the
paper, we assume that any three columns of P are linearly
independent. Noting that [0, 1]K defines the domain of all
possible primary combinations, the (tristimulus) gamut of the
display G def

= t
(
[0, 1]K

)
=
{
t(ν)|ν ∈ [0, 1]K

}
defines the

range of (tristimulus) colors that the display can reproduce.
Because G is an affine map of RK into R3, G is a zonotope
whose geometry we characterized in the companion Part I
paper [1]. A color control function (CCF) is a function
C : G → [0, 1]K that assigns to every t ∈ G a control
vector C (t). A tiling T of the gamut G is a collection of
parallelepipeds spanned by sets of three primaries and covering
the gamut, i.e., G =

⋃
P∈T P , such that any two different

parallelepipeds P,P ′ ∈ T are spanned by different sets of
primaries and their intersection P ∩ P ′ is a face of both P
and P ′. The companion Part I paper offers a methodology
for obtaining gamut tilings by building the collection of
parallelepipeds in a progression dictated by the order of the
primaries. A gamut tiling obtained from this methodology
is referred to as a progressive tiling. The progressive tiling
is composed of parallelepipeds P

(
cP,P[P]

)
, one for each

P ∈ C3 (〈K〉), where the origin cP = PαP +t0 has a (binary)
control vector αP ∈ {0, 1}K , whose entries corresponding to
the indices in P are zero. The companion Part I paper also
introduces the progressive tiling CCF, for which, the control
vector for each t ∈ P

(
cP,P[P]

)
, P ∈ C3 (〈K〉), is given by

C (t) = αP + IK [P]P−1[P]
(
t− cP

)
.

III. METAMERIC CONTROL SETS

For t ∈ G, the metameric control set (MCS) Ω(t)
def
={

ν ∈ [0, 1]K
∣∣ t = Pν + t0

}
is the set of all control vectors

that reproduce the tristimulus t. Note that for K = 3, P is an
nonsingular 3×3 primary matrix, so the MCS is the singleton
Ω(t) =

{
P−1 (t− t0)

}
. For K ≥ 4, the primary matrix P

represents an under-determined linear system of equations, so
Ω(t) may contain multiple control vectors. From its definition,
the MCS Ω(t) is the intersection of the feasibility set [0, 1]K

delimiting the region in RK corresponding to physically mean-
ingful control vectors available to drive the display and the
affine subspace Λ(t) =

{
ν ∈ RK

∣∣Pν = (t− t0)
}

. Because
[0, 1]K and Λ(t) are polyhedral sets and the former is bounded,
the MCS Ω(t) = [0, 1]K ∩ Λ(t) is a bounded polyhedral set.
Because every bounded polyhedral set is a polytope [3, pp.
119-120], it follows that the MCS Ω(t) is a convex polytope
with alternative representation as the convex hull of its vertices
VΩ(t), i.e., Ω(t) = conv{ω ∈ VΩ(t)}. The vertices of Ω(t) are
characterized algebraically in the following theorem, whose
proof is presented in Appendix A.

Theorem 1. For a tristimulus t ∈ G, a control vector ω ∈ Ω(t)
is a vertex of the MCS, i.e. ω ∈ VΩ(t) if and only if (iff) ω
has at most three vector components in (0, 1).

Note that the previously introduced progressive tiling con-
trol vectors satisfy the property that only three vectors com-
ponents of ν can have values in (0, 1). As a direct corollary
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of Theorem 1, progressive-tiling control vectors are vertices
of the MCS.

To facilitate representations of the MCS in a lower di-
mensional subspace that can be readily visualized, next, we
develop a convenient subspace decomposition that was intro-
duced in [4].

A. Orthogonal Decomposition and Visualization of the MCS

Observing that Λ(t0) is the null space of P, we have the
standard subspace decomposition [5, pp. 405],

RK = R(PT ) + Λ(t0), (1)

where R(PT ) is the range of of the K × 3 matrix PT .
Because P is a matrix of rank 3, R(PT ) and Λ(t0) are
subspaces of dimensionality 3 and (K − 3), respectively. We
refer to R(PT ) as the control visual subspace (CVS) and to
Λ(t0) as the control black subspace (CBS) drawing upon the
analogy with the human visual subspace and the metameric
black subspace [6], [7].

Now consider a tristimulus t ∈ G. For a pair of control
vectors α1,α2 ∈ Ω(t), we have P (α1 −α1) = 0, whereby
the difference (α1 −α2) ∈ Λ(t0). Therefore, variations
within the MCS Ω(t) are fully contained in the CBS and can
be visualized for K ≤ 6, as we show next. Let (the columns
of) B be an orthonormal basis for Λ(t0). Then, from (1), we
express α ∈ Ω(t) as

α =PT
(
PPT

)−1
(t− t0) + Bβ, (2)

def
=αΥ +αΦ (3)

where αΥ = PT
(
PPT

)−1
(t− t0) = PT

(
PPT

)−1
Pα is

the projection of α onto the CVS, αΦ = Bβ = BBTα is the
projection of α onto the CBS, and the (K−3)×1 vector β =
BTα is the coordinate representation of the CBS component
of α in the basis B. Fig. 1 schematically illustrates the afore-
mentioned decomposition, where for convenient visualization,
one-dimensional representations are used for CBS and CVS
with a two-dimensional representation for the space of control
vectors. Observing that the CVS component of α is uniquely
determined by t, we obtain a similar decomposition for the
MCS Ω(t),

Ω(t) = PT
(
PPT

)−1
(t− t0) + BΞ(t), (4)

where Ξ(t) =
{
BTν

∣∣ν ∈ Ω(t)
}

is the representation of the
CBS component of Ω(t) in the basis B. Because Ω(t) is a
convex polytope, Ξ(t) is also a convex polytope with a set of
vertices VΞ(t) =

{
BTω | ω ∈ VΩ(t)

}
. We visualize α ∈ Ω(t)

and Ω(t) using their (K − 3) dimensional CBS coordinate
representations β = BTα and Ξ(t), respectively.

Figures 2 (a) and (b) illustrate two examples of the (CBS
coordinate representation of the) MCS polytope Ξ(t) for
K = 5 and K = 6 primary systems, respectively, as (K − 3)
dimensional polytopes. The vertices of the MCS polytopes
colored red in these figures correspond to the progressive-
tiling control vectors, whereas the clear/white vertices do
not correspond to any progressive-tiling control vector. The
examples illustrate that the progressive tiling control vectors

RK

CBS= Λ(t0)

C
V
S
=

R
(P

T
)

(3
-d
im

.)

CIEXYZ(R3)
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0
t0

tΩ(t)
ω 2

ω 1
α

ω 2
Φ

t(α)

α
Φ

((K−3)-dim.)

ω 1
Φ

[0, 1]K
0

Λ(t)

α
Υ

Fig. 1. Decomposition of MCS into CVS and CBS components. On the
right, the CIEXYZ gamut G (solid-gray) for a 3 × K primary matrix P
with display black t0 (black vector), and a tristimulus t ∈ G (blue vector).
On the left, the MCS Ω(t) represented by the solid-blue line that results
from the intersection of the feasibility set [0, 1]K (delimited by the solid-
black square) and the affine subspace Λ(t) (dashed-purple line). The control
vectors α,ω1,ω2 ∈ Ω(t) and the latter two are vertices of Ω(t) that are
plotted as blue dots. The CVS and the CBS are represented by the orthogonal
red lines, and the CVS and CBS components of α,ω1,ω2 and Ω(t) are
plotted on the corresponding subspaces. The green line shows the mapping
from the control vector α to its corresponding tristimulus t(α).

obtained via the methodology described in the companion Part
I paper, do not define the full set of vertices of the MCS. This
motivates the obvious question as to how the full set of vertices
of the MCS can be characterized, which we answer next.
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(a) K = 5

0
-0.4
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0

0.3

0.6
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(b) K = 6

Fig. 2. Example MCS polytopes Ξ(t) in the (K − 3)-dimensional CBS
coordinate representations for the K = 5, 6 primary systems P

(5)
w ,P

(6)
V .

See appendices C and D for the specifications of the primary matrices and
the CBS bases used in this and subsequent figures.

IV. FACET SPANS, GAMUT TILINGS, MCS VERTICES

We now introduce the concept of a facet span to build a
framework for characterizing gamut tilings, which we subse-
quently use to characterize the vertices of MCS as tiling con-
trol vectors. Proofs of the lemmas and the theorem occurring
in this section are presented in Appendix B.

A. Facet Spans

Recall from the companion Part I paper [1], that for each
pair of indices J ∈ C2(〈K〉), the gamut boundary includes
the pair of congruent parallelogram facets F

(
dJ−,P[J]

)
and

F
(
dJ+,P[J]

)
, spanned by the two primaries P[J], where

dJ− = t0+PχJ− and dJ+ = t0+PχJ+ are the facet origins,
with control vectors χJ− =

[
χ−
(
uT
J p1

)
, . . . , χ−

(
uT
J pK

)]T

and χJ+ =
[
χ+
(
uT
J p1

)
, . . . , χ+

(
uT
J pK

)]T
, respectively,
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with uJ denoting the normalized cross-product1 pJ[1] ⊗
pJ[2]/

∥∥pJ[1] ⊗ pJ[2]

∥∥. The complete gamut boundary BG is
the essentially disjoint union of these

(
K
2

)
congruent pairs

of facets. For a given J ∈ C2(〈K〉), via simple arithmetic
manipulation, the facet origin dJ+ can be represented in terms
of the facet origin dJ− as

dJ+ = dJ− + P
(
χJ+ − χJ−) (5)

= dJ− +
∑

j∈〈K〉\J
sgn
(
uT
J pj

)
pj . (6)

Thus dJ+ is obtained from dJ− through a series of signed
displacements by all the other (K − 2) primaries, with the
sign determined as indicated in (6). The commutativity of
addition implies that the (K − 2) terms being added in
the summation in (6) can be ordered in any sequence. We
consider the sequence of points obtained by choosing a specific
ordering. In particular, for any permutation I ∈ P (〈K〉 \ J)
of the (K − 2) indices in 〈K〉 \ J, consider the sequence
of tristimuli, dJ+

0 (I) ,dJ+
1 (I) , . . .dJ+

K−2(I), obtained by using
the corresponding order for the signed primary displacements
in (6), viz., dJ+

0 (I) = dJ− and for l = 1, 2, . . . (K − 2),

dJ+
l (I) = dJ− +

l∑

j=1

sgn
(
uT
J pI[j]

)
pI[j]. (7)

Then, the same signed primary displacements, applied to
the facet F

(
dJ−,P[J]

)
in the same sequence, delimit a

region of the gamut that constitutes a fundamental building
block of gamut tilings. More precisely, let Z(J,I) denote the
sequence of (K − 2) parallelepipeds P(J,I)

1 , . . . ,P(J,I)
K−2, where

P(J,I)
l

def
= P

(
c

(J,I)
l ,P[J I[l]]

)
is the parallelepiped spanned

by P[J I[l]] with origin c
(J,I)
l = dJ+

l (I) − χ+
(
uT
J pI[l]

)
pI[l]

(note that c
(J,I)
l ∈ {dJ+

l ,dJ+
l−1}). We refer to Z(J,I) as the

(gamut traversing) facet span corresponding to the gamut
facets spanned by primaries indexed by J in the order I for
the remaining (K − 2) primaries. We also use Z(J,I) to refer
to the region formed by the union of the parallelepipeds, i.e.,

Z(J,I) =

(K−2)⋃

l=1

P(J,I)
l . (8)

The pair of facets of P(J,I)
l spanned by the two pri-

maries indexed by J are denoted as F (J,I)
l−1 and F (J,I)

l ,

where F (J,I)
l

def
= F

(
dJ+
l (I) ,P[J]

)
is the lth displace-

ment of F
(
dJ−,P[J]

)
, in the sequence defined by (7).

Thus, F (J,I)
0 , . . . ,F (J,I)

K−2 is a sequence of displaced congru-
ent parallelograms. Observing that dJ+

l (I) = dJ+
l−1(I) +

sgn
(
uT
J pI[l]

)
pI[l], and that uT

J

(
dJ+
l (I)− dJ+

l−1(I)
)
> 0, we

see that uT
J d

J+
0 (I), . . . ,uT

J d
J+
K−2(I) is a strictly increasing

sequence, so the facet span Z(J,I) is the union of (K−2) essen-
tially disjoint parallelepipeds, with consecutive parallelepipeds
intersecting in a common facet, P(J,I)

l−1 ∩ P
(J,I)
l = F (J,I)

l−1 ,

1To render our definition unambiguous, we assume throughout that a pair of
indices J used in a cross-product definition are always ordered in increasing
order.

for l > 1. We note here that this “chaining property” also
applies to progressive tilings obtained using the methodology
developed in the companion Part I paper [1], as stated in
Clause 9 of Theorem 1 in [1]. Fig. 3 illustrates a facet span
for a K = 5 primary system.

F (J,I)
2P (J,I)

2P (J,I)
1 F (J,I)

1 P (J,I)
3

p
5

p
2

dJ+
2 (I)dJ+

1 (I) dJ+
3 (I)=dJ+c

(J,I)
2 c

(J,I)
30dJ+

0 (I)=dJ− c
(J,I)
1

t0

p3

p 1

p
4F

(J
,I
)

0
=
F

( d
J−
,P

[J
])

F
(J
,I
)

3
=
F

( d
J+
,P

[J
])

uJ

Fig. 3. Example facet span Z(J,I) for the K = 5 primary display system
P

(5)
e , where J=[1 5] ∈ C2 (〈K〉) and I=[2 3 4] ∈ P (〈K〉 \ J).

Note that every facet span in a gamut with K = 3 has only
one parallelepiped, the gamut itself, thus, all facet spans are
the same. For K ≥ 4 and J, J′ ∈ C2(〈K〉), note that J 6= J′

implies that Z(J,I) 6= Z(J′,I′) for any I, I′, while for J = J′
different pair of sequences I, I′ correspond to different pair of
facet spans, as stated in following lemma.

Lemma 1. Let J ∈ C2(〈K〉), I, I′ ∈ P (〈K〉 \ J), and K ≥ 4.
Then, Z(J,I) = Z(J,I′), iff, I = I′.

The number of distinct facet spans is immediately deter-
mined by Lemma 1, which we state as the following corollary.

Corollary 1. For each J ∈ C2(〈K〉), there are (K − 2)!
different facet spans spanned by the primaries identified by
the indices J. For K ≥ 4, there are a total of K!/2 different
facet spans.

Figure 4 illustrates all the facet spans for a K = 4 primary
configuration. Facet spans are building blocks of gamut tilings,
as we show next.

B. Gamut Tilings from Sets of Compatible Facet Spans

We define compatibility for a pair of facet spans in terms
of the pairwise relations between parallelepipeds from each
facet span. Specifically, for J, J′ ∈ C2(〈K〉), I ∈ P (〈K〉 \ J),
and I′ ∈ P (〈K〉 \ J′), we say that a pair of parallelepipeds
P(J,I)
l ∈ Z(J,I) and P(J′,I′)

l′ ∈ Z(J′,I′), with l, l′ ∈ 〈K − 2〉
are compatible if the intersection P(J,I)

l

⋂P(J′,I′)
l′ is a face

for both parallelepipeds, and furthermore, when J ∪ I[l] =

J′ ∪ I′[l′], i.e., P(J,I)
l and P(J′,I′)

l′ are spanned by the same
primaries, we have P(J,I)

l

⋂P(J′,I′)
l′ = P(J,I)

l = P(J′,I′)
l′ . For

J, J′ ∈ C2(〈K〉), I ∈ P (〈K〉 \ J), and I′ ∈ P (〈K〉 \ J′), we
say that the facet spans Z(J,I) and Z(J′,I′) are compatible, if
every pair of parallelepipeds P(J,I)

l ∈ Z(J,I) and P(J′,I′)
l′ ∈

Z(J′,I′) is compatible.
We refer to the facet span Z(J,̃I) as the mirror symmetric

facet span for the facet span Z(J,I). A pair of facet spans
is compatible iff the corresponding pair of mirror symmetric
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Fig. 4. All K!/2=12 facet spans for the K=4 primary display system P
(4)
e shown in the context of the display gamut (light-gray dashed-lines). Example

pairs of compatible/incompatible facet spans include
(
Z([1 2],[3 4]),Z([1 3],[4 2])

)
/
(
Z([1 4],[2 3]),Z([3 4],[1 2])

)
and the corresponding mirror symmetric pairs(

Z([1 2],[4 3]),Z([1 3],[2 4])
)
/
(
Z([1 4],[3 2]),Z([3 4],[2 1])

)
.

facet spans is compatible, a result that we state as the following
lemma.

Lemma 2. Let J, J′ ∈ C2(〈K〉), I ∈ P (〈K〉 \ J), and
I′ ∈ P (〈K〉 \ J′). Then, Z(J,I) and Z(J′,I′) are compatible
iff Z(J,̃I) and Z(J′,Ĩ′) are compatible.

Now, let K be a set of pairwise compatible facet spans, and
let TK = {P(J,I)

l | l ∈ 〈K−2〉,Z(J,I) ∈ K } be the collection of
all parallelepipeds making up the facet spans of K . Observing
that every pair of parallelepipeds in TK is compatible, we see
that the number of distinct parallelepipeds in the collection is
N (TK ) ≤

(
K
3

)
and the distinct parallelepipeds are essentially

disjoint. If N (TK ) =
(
K
3

)
, we say that the set K is maximal.

Maximal sets produce gamut tilings as we establish in the
following Lemma.

Lemma 3. The collection of parallelepipeds TK defined by a
maximal set K is a gamut tiling.

Lemma 3 motivates the question on whether every gamut
tiling can be obtained from a maximal set, which we answer
next.

C. Gamut Tilings as Maximal Sets

A maximal set is called a complete set, if K includes a
facet span for every primary pair, i.e., it has

(
K
2

)
facet spans,

Figure 5 illustrates examples of maximal and complete sets
for the K = 4 primary system P

(4)
e .

Z([2 4],[3 1])

Z([1 3],[4 2]) Z([2 3],[4 1]) Z([1 2],[3 4]) Z([1 4],[3 2]) Z([2 4],[3 1]) Z([3 4],[1 2])

Z([1 2],[3 4]) Z([1 4],[3 2]) Z([3 4],[1 2])

K b

K a
K c

Z([1 3],[4 2])

Fig. 5. Examples of complete and maximal sets of compatible facet spans
for the K = 4 primary display system P

(4)
e . The sets of compatible facet

spans K a (top), K b (bottom left) and K c (bottom right) are all maximal
sets because the N (TK a ) = N (TK b ) = N (TK c ) =

(K
3

)
= 4; the

associated collections of parallelepipeds are therefore gamut tilings. The set
K a is complete because it includes a facet span for each pair (J) of primaries.
For this example, K b,K c ⊂ K a, thus, TK a = TK b = TK c .

Lemma 4. Maximal sets satisfy the following properties:
1) The mapping h : K 7→ TK defines a bijection from

complete sets to gamut tilings, i.e., there is a one-to-
one correspondence between complete sets and gamut
tilings.

2) Every maximal set is a subset of one and only one
complete set.

3) Every facet span belongs to some complete set.
4) A set K of facet spans is maximal iff the set K̃ =
{Z(J,̃I) | Z(J,I) ∈ K } is maximal.

Fig. 6 shows the collection of (all) complete sets for the for
the K = 4 primary system P

(4)
e . Each of the two complete sets



RODRÍGUEZ-PARDO AND SHARMA: GEOMETRY OF MULTIPRIMARY DISPLAY COLORS II 6

200
0

50

150

200

200

50

200
0

50

150

200

200

50

200
0

50

150

200

200

50

200
0

50

150

200

200

50

200
0

50

150

200

200

50

200
0

50

150

200

200

50

Z([1 2],[3 4]) Z([3 4],[1 2]) Z([1 3],[4 2]) Z([2 3],[4 1]) Z([1 4],[3 2]) Z([2 4],[3 1])

200
0

50

150

200

200

50

200
0

50

150

200

200

50

200
0

50

150

200

200

50

200
0

50

150

200

200

50

200
0

50

150

200

200

50

200
0

50

150

200

200

50

Z([1 2],[4 3]) Z([3 4],[2 1]) Z([1 3],[2 4]) Z([2 3],[1 4]) Z([1 4],[2 3]) Z([2 4],[1 3])

Fig. 6. The collection of complete sets for the four-primary system P
(4)
e is comprised of two complete sets delimited by the two boxes. Note that for the

complete set K shown in the top row, the mirror symmetric complete set K̃ is shown in the bottom row.

is comprised of six facet spans. The facet spans in Figure 6
are organized to highlight the symmetric relationship between
the two complete sets: for the complete set K in the top half,
the mirror symmetric complete set K̃ = {Z(J,̃I) | Z(J,I) ∈ K }
is shown in the bottom half. In particular, for the facet span
Z(J,I) ∈ K , the mirror symmetric facet span Z(J,̃I) ∈ K̃ is
located below it. From Lemma (4), every facet span belongs
to a complete set. In Fig. 6, the symmetry of the complete sets
K , K̃ implies that K

⋂
K̃ = φ and the union K

⋃
K̃ contains

all the facet spans for P
(4)
e . Therefore, Figure 6 also shows

each of the facet spans for P(4)
e without repetition, which can

be seen by comparing against Fig. 4. A richer set of examples
illustrating all facet spans, all complete sets of compatible
facet spans and associated tilings are provided in Section S.I
of the Supplementary Materials for five-primary systems that
illustrate several aspects that cannot be seen in the four primary
case.

As a consequence of Lemma 4, every gamut tiling can be
obtained from some maximal set and is uniquely associated
with one complete set. We note here that Clause 9 of Theo-
rem 1 in the companion Part I Paper [1] identifies the complete
set associated with the corresponding progressive tilings ob-
tained using the methodology developed there. Complete sets
provide the link between tilings and the MCS, as we show
next.

D. Gamut Tilings and the vertices of the MCS

A tiling T of the gamut G includes a parallelepiped
P
(
cP,P[P]

)
∈ T for each P ∈ C3 (〈K〉), where cP denotes

the origin of the parallelepiped. Now, for any P ∈ C3 (〈K〉),
it can be seen that for each J ∈ C2 (〈K〉) , J ⊂ P, the facet
span Z(J,I) in the complete set associated with the tiling T ,
induces the same control vector αP such that cP = PαP + t0
where αP ∈ {0, 1}K and αP

l = 0, for all l ∈ P. We
obtain the tiling CCF CT associated with the tiling T by
defining CT (t) = αP + IK [P]P−1[P]

(
t− cP

)
, for every

P ∈ C3 (〈K〉) and every t ∈ P
(
cP,P[P]

)
. The tiling CCF

CT is continuous over G and is (piece-wise) linear over each
of the parallelepipeds in the tiling T and uniquely associates t

with the tiling control vector CT (t). The properties of maximal
sets allows us to establish the relationship between gamut
tilings, the tiling control vectors and the vertices of the MCS
as follows

Theorem 2. For a tristimulus t ∈ G, ω is a vertex of the MCS
Ω(t) if an only if ω is a tiling control vector.

One of the examples included in Section S.I of the Supple-
mentary Materials provides all tilings (and associated complete
sets) for the K = 5 primary system P

(5)
w that was used

in Fig. 2(a). As required by Lemma 2, the clear vertex in
Fig. 2(a), which did not have an associated progressive tiling
control vector does have an associated tiling control vector
among the full set of tilings, which is also identified in
Section S.I of the Supplementary Materials.

Theorem 2 characterizes the vertices of the MCS as control
vectors obtained from gamut tilings, linking the geometry of
MCS with the geometry of gamut representations. To complete
this characterization, we highlight how the tilings can be
enumerated efficiently.

V. EFFICIENT ENUMERATION OF GAMUT TILINGS

We outline a methodology for efficient enumeration of
gamut tilings by exploiting the inter-relations between gamut
tilings, complete sets, and maximal sets, and the symmetry
properties of facet spans.

A. Maximal Set Construction for Enumeration of Tilings

From Lemma 4, it can be readily seen that facet spans
within a complete set satisfy additional constraints, which
we characterize as strong compatibility (s-compatibility). We
say that a pair of compatible facet spans Z(J,I) and Z(J′,I′)

are s-compatible if, whenever l, l′ ∈ 〈K − 2〉 are such that
(J ∪ I[l])

⋂
(J′ ∪ I′[l′]) = J̄ ∈ C2(〈K〉), i.e., the pair of

parallelepipeds P(J,I)
l ∈ Z(J,I) and P(J′,I′)

l′ ∈ Z(J′,I′), are
spanned by two common primaries indexed by J̄, then, both
P(J,I)
l and P(J′,I′)

l′ are parallelepipeds in a facet span Z(J̄,̄I), for
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some Ī ∈ P(〈K〉 \ J̄). The following corollary is a then direct
consequence of the relation between maximal and complete
sets stated in Lemma 4.

Corollary 2. A pair of facets spans in a maximal set are s-
compatible.

We evaluate s-compatibility between pairs of facet spans to
efficiently construct maximal sets, which we use, in turn, for
efficiently enumerating the collection of complete sets, using a
methodology that we construct in the remainder of this section.

Let K be the collection of all complete sets, and let
J1, J2, . . . , J(K

2 ) be a sequence of all pairs in C2(〈K〉). For

j ∈ 〈
(
K
2

)
〉, let

Aj=
{
{Z(J1,I1), . . . ,Z(Jj ,Ij)}

∣∣∣Ii∈P(〈K〉\ Ji), for all i ≤ j,

and Z(J1,I1), . . . ,Z(Jj ,Ij) are s-compatible
}

(9)

be the collection of all sets of j s-compatible facet spans that
includes a facet span for each of the index pairs J1, J2, . . . , Jj .
Thus, K ∈ Aj has cardinality N (K ) = j, every K ∈ A(K

2 ) is
a complete set, and A(K

2 ) = K.
Observing that A1 is the set of all facet spans indexed by

the index pair J1, the set Aj+1 can be constructed from the set
Aj by identifying for each K ∈ Aj , enlargements that add a
facet span Z(Jj+1,I) for I ∈ P(〈K〉\Jj+1) that is s-compatible
with the facet spans already included in K ,

Aj+1=
⋃

K∈Aj

{
K ∪ Z(Jj+1,I)

∣∣∣I ∈ P(〈K〉 \ Jj+1) and

Z(Jj ,I) is s-compatible with all Z∈K
}
. (10)

Thus, we obtain K after
(
K
2

)
recursions2 of (10). We use

the property of maximality to reduce the number of recursions
needed to enumerate K as follows.

1) Maximal Sets for Enumeration of Tilings: Let j ∈ 〈
(
K
2

)
〉.

Because any two K ,K ′ ∈ Aj have facet spans for the common
index pairs, J1, . . . , Jj , the parallelepipeds in the associated
parallelepiped collections TK and TK ′ are exactly the ones that
are spanned by the primary combinations P = Ji ∪ k for 1 ≤
i ≤ j and k ∈ 〈K〉\Ji and we can see that N (TK ′) = N (TK ).
It follows that if one element of Aj is maximal, all elements
are maximal. The recursive construction of the sets further
ensures that if elements of Aj are maximal then all elements
of Am are also maximal for m ≥ j.

Given the sequence J1, J2, . . . , J(K
2 ) of index pairs, let M

be the smallest integer j such that the collection of index
triples

⋃j
i=1{Ji ∪ k | k ∈ 〈K〉 \ Ji} = C3(〈K〉). Then, it

can be seen that M is the smallest integer j such that Aj

is a collection of maximal sets. Note that M is determined
by the specific choice of ordering of the index pairs in the
sequence J1, J2, . . . , J(K

2 ), so we refer to M as the maximality
threshold of J1, J2, . . . , J(K

2 ). Also note that, the definition of
M also readily allows us to order the sequence of indices
J1, J2, . . . , J(K

2 ) to ensure the smallest possible value for the

2However, note that the number of operations can vary significantly among
the recursions, as N

(
A

(J1,I)
j

)
varies with j.

maximality threshold M . Example orderings that minimize
the maximality threshold M are provided in Table II for K =
3, 4, . . . 9.

Let AM (·) : K → AM be the function de-
fined for every complete set K ∈ K as AM (K ) ={
Z(Jj ,Ij) | Z(Jj ,Ij) ∈ K , j ∈ 〈M〉

}
, i.e., the set of the M facet

spans of K corresponding to J1, J2, . . . JM . Recalling from
Lemma 4 that a maximal set is a subset of one and only one
complete set, we see that for K ,K ′ ∈ K, AM (K ) = AM (K ′)
implies K = K ′, and that every element of AM is a set of the
first M facet spans of one complete set, therefore, AM (·) is
one-to-one and onto, thus, a bijection between AM and K, so
N (AM ) = N (K), therefore, enumerating K is equivalent to
enumerating AM , which we obtain with M recursions of (10).

Next, we introduce a partition of AM into disjoint collec-
tions of maximal sets that allows us to exploit the properties
of symmetry of facet spans to reduce by half the number
of operations for the construction of AM and subsequent
enumeration of gamut tilings

2) Partitioning of Complete/Maximal Sets: Let
I1, . . . , I(K−2)! be an enumeration of the elements of
P(〈K〉 \ J1) such that Ii+(K−2)!/2 = Ĩi. Because every facet
span indexed by J1 belongs to a complete set, and every
complete set includes only one facet span indexed by the
index pair J1, the collection of complete sets K is a disjoint
union, K =

⋃(K−2)!
i=1 K(J1,Ii), where K(J1,Ii) is the set of all

complete sets containing the facet span Z(J1,Ii). Recalling
that AM (·) is a bijection between AM and K, we express
AM = AM (K) =

⋃(K−2)!
i=1 AM

(
K(J1,Ii)

)
=
⋃(K−2)!

i=1 A
(J1,Ii)
M ,

where A
(J1,I)
j = {K ∈ Aj | Z(J1,I) ∈ K } is the collection of

all sets of j s-compatible facet spans that include Z(J1,I) and
a facet span for each of the index pairs J2, . . . , Jj .

From Lemma 4, we see that A(J1,Ii+(K−2)!/2) = A(J1 ,̃Ii) and
N
(
A(J1 ,̃Ii)

)
= N

(
A(J1,Ii)

)
, therefore,

AM =

(K−2)!/2⋃

i=1

A
(J1,Ii)
M ∪ A

(J1 ,̃Ii)
M , (11)

and

N (K) = N (AM ) = 2

(K−2)!/2∑

i=1

N
(
A

(J1,Ii)
M

)
. (12)

And analogous to Aj , for I ∈ P(〈K〉 \ J1), the collection
A

(J1,Ii)
j for j = 1, 2, . . .M can be recursively constructed as

A
(J1,Ii)
1 = {Z(J1,Ii)}, and

A
(J1,Ii)
j+1 =

⋃

K∈A(J1,Ii)
j

{
K ∪ Z(Jj+1,I)

∣∣∣I ∈ P(〈K〉 \ Jj+1), and

Z(Jj+1,I) is s-compatible with all Z∈K
}
. (13)

The algorithmic description for building the collections of
maximal sets using the recursion in (13) is described next.

3) Algorithmic Enumeration of Gamut Tilings: Let
J1, J2, . . . , J(K

2 ) ∈ C2(〈K〉) be a sequence index pairs with
the smallest maximality threshold M , let I1, . . . , I(K−2)! be
a sequence of all the permutations in P(〈K〉 \ J1) such that
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K M J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16

3 1 [1 2] − − − − − − − − − − − − − − −
4 2 [1 2] [3 4] − − − − − − − − − − − − − −
5 4 [1 2] [3 4] [1 5] [2 5] − − − − − − − − − − − −
6 6 [1 2] [3 4] [1 5] [2 5] [3 6] [4 6] − − − − − − − − − −
7 9 [1 2] [3 4] [5 6] [1 7] [2 7] [3 5] [4 6] [3 6] [4 5] − − − − − − −
8 12 [1 2] [3 4] [5 6] [7 8] [1 3] [2 4] [5 7] [6 8] [2 3] [1 4] [5 8] [6 7] − − − −
9 16 [1 2] [3 4] [5 6] [7 8] [1 9] [2 9] [3 5] [3 6] [4 6] [4 5] [1 7] [8 9] [1 8] [2 7] [2 8] [7 9]

TABLE II
EXAMPLE INDEX ORDERINGS J1, . . . , JM THAT MINIMIZE THE MAXIMALITY THRESHOLD M FOR K = 3, 4, . . . 9.

Ii+(K−2)!/2 = Ĩi. Taking as inputs J1, J2, . . . , JM , and Ii, with
i ∈ 〈(K − 2)!/2〉, and via a depth-first search methodology
described in Algorithm 1, we obtain mi = N

(
A

(J1,Ii)
M

)
and a

sequence of maximal sets M (J1,Ii)
1 , . . . ,M (J1,Ii)

mi enumerating
A

(J1,Ii)
M .
The depth-first search strategy is implemented with a stack

of s-compatible facet spans K 1, . . . ,K n, n ≥ 0, where the
stack is initialized with K 1 = {Z(J1,Ii)}. In the depth-
first search, the set K = K n is retrieved from the stack;
K ∈ A

(J1,Ii)
j where j = N (K ); and we search and push

into the stack, all the s-compatible sets resulting from en-
larging K by a facet span indexed by Jj+1. The process is
repeated until the extensions become maximal and elements
of A

(J1,Ii)
M , and thus, part of the of the sequence of maximal

sets M (J1,Ii)
1 , . . . ,M (J1,Ii)

mi .
We execute Algorithm 1 for all i ∈ 〈(K − 2)!/2〉, thus

enumerating A
(J1,Ii)
M , and by the properties of symmetry, enu-

merating A
(J1 ,̃Ii)
M , which allows us to enumerate the collection

of complete sets K and all gamut tilings, and from (12), to
conclude that N (K) = 2

∑(K−2)!/2
i mi.

The time efficiency of the enumeration process can be
further improved by observing that: (a) the proposed method-
ology is suitable for parallelization because the computation
of A

(J1,Ii)
M is independent for every i ∈ 〈(K − 2)!/2〉, (b)

checking whether a pair of parallelepipeds intersect each other,
a fundamental and time-demanding step in the evaluation of s-
compatibility in Algorithm 2, can be efficiently implemented
using a methodology that exploits the gamut representation
introduced in the companion Part I paper [1], as detailed
in Appendix E, and (c) a significant reduction of repetitive
operations is achieved by pre-computing the s-compatibility
between the pairs of facet spans, which in-turn, benefits
from pre-computing the s-compatibility between all possible
parallelepiped pairs. The gains in time are at the cost of
increased memory requirements. Because, at any iteration of
Algorithm 2, there are at most (K − 2)! enlargements of
K = K n by one facet span, and K admits at most (M − 2)
additional facet spans to produce a s-compatible set that is
not maximal, the depth-search methodology guarantees that
the stack has at most (M − 2)(K − 2)! elements.

B. Tiling Enumerations for Some Primary Configurations

We use our methodology to enumerate the gamut tilings for
some primary configurations. We first enumerate gamut tilings

Algorithm 1: Enumeration of the set A
(J1,I)
M used to

determine the number of distinct gamut tilings.
given : Primary matrix P and maximality threshold

M
input : Sequences of: (a) distinct index pairs

J1, J2 . . . , JM and (b) I ∈ P (〈K〉 \ J1)

output: m = N
(
A

(JM ,I)
M

)
and sequence

M (J1,I)
1 , . . . ,M (J1,I)

m of maximal sets
enumerating A

(J1,I)
M

1 begin
/* Initialization */
/* Obtain all facet spans using (8) */

2 Obtain Z(J̄,̄I), for all J̄∈C2(〈K〉), Ī∈P
(
〈K〉\J̄

)

/* Initialize stack that stores strongly-compatible facet span sets
for which maximal extensions are yet to be tested */

3 n← 1
4 K n←{Z(J1,I)} // K 1 = {Z(J1,I)}, so, A(J1,I)

1 = {K 1}
5 m← 0 // The sequence M (J1,I)

1 , . . . ,M (J1,I)
m is initially

empty
6 while n > 0 do // Enumeration
7 K←K n // Pop K n from stack
8 n← n− 1
9 j ← N (K )

/* Find all enlargements K ∪ Z(Jj+1,I′) ∈ A
(J1,I)
j+1 */

10 foreach I′ ∈ P (〈K〉 \ Jj+1) do
11 Using Algorithm. 2, compute compatibility

indicator κ ((Jl, Il), (Jj+1, I′)) for each
Z(Jl,Il) ∈ K

12 ζ ← ∏

Z(Jl,Il)∈K

κ ((Jl, Il), (Jj+1, I′))

13 if ζ = 1 then // K ∪ Z(Jj+1,I′) ∈ A
(J1,Ii)
j+1

14 if j + 1 < M then
// K ∪ Z(Jj+1,I′) /∈ A

(J1,I)
M

/* Push K ∪ Z(Jj+1,I′) onto stack */
15 n← n+ 1

16 K n←K ∪ Z(Jj+1,I′)

17 else // K ∪ Z(Jj+1,I′) ∈ A
(J1,I)
M

/* Add to output maximal set sequence */
18 m← m+ 1

19 M (J1,I)
m ← K ∪ Z(Jj+1,I′)



RODRÍGUEZ-PARDO AND SHARMA: GEOMETRY OF MULTIPRIMARY DISPLAY COLORS II 9

Algorithm 2: Strong-Compatibility Check for Facet
Spans

given : Primary matrix P
input : Ordered pairs (J, I), (J, I′), with

J, J′∈ C2 (〈K〉) and I ∈ P (〈K〉 \ J),
I′ ∈ P (〈K〉 \ J′)

output: Binary variable κ((J, I), (J′, I′)) = κ, which
takes a value of 1 if Z(J,I) and Z(J′,I′) are
s-compatible and 0 otherwise

1 begin
/* Initialization */
/* Obtain all facet spans using (8) */

2 Obtain Z(J̄,̄I), for all J̄∈C2(〈K〉), Ī∈P
(
〈K〉\J̄

)

/* Compute parameters of parallelepipeds in each Z(J̄,̄I) */

3 c
(J̄,̄I)
m ,P(J̄,̄I)

m ← origin, primary index of P(J̄,̄I)
m in

Z(J̄,̄I)

4 V(J̄,̄I)
m ← set of vertices of P(J,I)

m // Lemma 1 in Part I [1]
5 κ← 1 // Initialize as s-compatible

6 foreach P(J,I)
l ∈ Z(J,I) do // s-compatibility violation

tests

7 foreach P(J′,I′)
l′ ∈ Z(J′,I′) do

8 if P(J,I)
l = P(J′,I′)

l′ and c
(J,I)
l 6= c

(J′,I′)
l′ then

// Parallelepipeds share all primaries, not the
origin

9 κ← 0

10 else if P(J,I)
l ∩P(J′,I′)

l′ = J̄∈C2(〈K〉) and no
Z(J̄,̄I) contains both P(J,I)

l , P(J′,I′)
l′ then

// Parallelepipeds share J̄-primaries but are not
together in any J̄-facet-span

11 κ← 0

12 else // Parallelepipeds share at most one primary

13 if Int(P(J,I)
l ) ∩ Int(P(J′,I′)

l′ ) 6= φ then
// P(J,I)

l , P(J′,I′)
l′ not essentially disjoint.

14 κ← 0

15 else if P(J,I)
l ∩ P(J′,I′)

l′ 6=φ then
// Intersection has dimensionality 0 or 1

// At this point, P(J,I)
l ∩P(J′,I′)

l′ is a mutual
face only if there are shared vertices

16 if V(J,I)
l ∩ V(J′,I′)

l′ = φ then
// Intersection is not a face.

17 κ← 0

for families of primary configurations where each primary
enlarges the chromaticity gamut [8, pp. 137]. For this situation,
the chromaticity of each primary is a vertex of the chro-
maticity gamut and, for a given K, all primary configurations
satisfying the stated requirement have the same number of
gamut tilings, which we present for K = 3, 4, 5, . . . 9 in
Table III. The number of tilings for the primary configurations
under consideration match the number of tilings for polar
zonohedra [9]. The enumerations of polar zonohedra tilings
in [10], provides validation of our results for K = 4, 5, 6,
and 7, and, vice versa, our results expand the enumeration of
tilings for the polar zonohedra for the cases of K = 8 and 9.
In Section S.II of the Supplementary Materials, we detail the
computation time required for obtaining these enumerations
and also highlight the speed-up resulting from the efficient
enumeration approach developed in Section V. We note that
the computational requirements for enumerating the tilings
grow rapidly with increasing K and obtaining the number of
tilings for K > 9 is therefore challenging.

Although a full discussion is beyond the scope of the present
paper, we note that three-dimensional zonotopes have been
categorized into classes based on the interconnection structure
of their vertices represented in projective diagrams [11], where
the zonotopes in a given class are known to have the same
number of gamut tilings [10]. Our methodology for enumer-
ating the tilings can also be used to enumerate the number
of tilings for each of these classes under the constraint that
the zonotope is obtained as the linear (or affine) mapping of
[0, 1]K by a 3×K matrix A such that any three columns of A
are linearly independent. Table IV enumerates the number of
tilings for alternative classes of for K = 3, 4, 5, 6, 7, where the
polar configuration results can be seen as one of the specific
subclasses.

K = 3 4 5 6 7 8 9

N (K) = 1 2 10 148 7686 1681104 1881850464

TABLE III
NUMBER OF TILINGS (N (K)) FOR GAMUTS WITH PRIMARIES THAT

INDIVIDUALLY ENLARGE THE CHROMATICITY GAMUT (≡ POLAR
CONFIGURATION)

VI. DISCUSSION

As result of the characterization of the vertices of the MCS
as tiling control vectors in Theorem 2, different properties
of the gamut and control vectors emerge naturally from
our framework with a geometric interpretation. For instance,
the uniqueness of control vectors for points on the gamut
boundary, which is stated and proved in the companion Part I
paper [1] and in [12], can also be seen as the consequence of
the fact that all complete sets share the same boundary repre-
sentation, therefore, all tiling CCFs match on the boundary and
the MCS is a singleton set for all tristimuli on the boundary.

The enumeration of all tiling CCFs follows immediately
from the enumeration of the gamut tilings presented in Sec-
tion V. Because of the convexity of the MCS, we see that every
CCF C can be express at t ∈ G as a convex combination of the
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K Class N. of vertices with valency v N (K)
v = 3 4 5 6 7

3 1 8 - - - - 1
4 1 8 6 - - - 2
5 1 10 10 2 - - 10
6 1 12 16 4 0 - 144

2 12 18 0 2 - 148
3 14 12 6 0 - 148
4 20 0 12 0 - 160

7 1a 14 24 6 0 0 6902
1b 14 24 6 0 0 6932
2 14 26 2 2 0 7220
3 14 28 0 0 2 7686
4a 16 20 8 0 0 7106
4b 16 20 8 0 0 7242
5 16 22 4 2 0 7468
6 18 16 10 0 0 7518
7 18 18 6 2 0 7624
8 20 12 12 0 0 7690
9 22 10 10 2 0 8260

TABLE IV
NUMBER OF TILINGS N (K) FOR ALL POSSIBLE THREE DIMENSIONAL

ZONOTOPE CLASSES GENERATED BY A 3×K MATRIX A SUCH THAT ANY
THREE COLUMNS ARE LINEARLY INDEPENDENT FOR K = 3, 4, . . . 7.

tiling control vectors of t, i.e., C (t) =
∑

K∈K ζK (t)CTK (t),
with

∑
K∈K ζK (t) = 1, where ζK : G → [0, 1] is a weighting

function associated to the tiling TK . This representation char-
acterization can potentially be helpful for CCF analysis and
design.

Our framework can also support, complement, and provide
additional insight into existing approaches for color control
selection and CCF design. The vertices of the MCS obtained
using our proposed approach can be used to compute and
visualize the centroid of the MCS, which has been proposed as
a method for selecting control values for driving multiprimary
displays [13]. The characterization of the MCS also facilitates
the design of CCFs to optimize a variety of objective functions
modeling display performance using the projected gradient
descent algorithm [14], [15]. This approach was introduced
in [16], where it was used to obtain an optimal CCF that is
perceptually robust to primary variations. When the objective
function is linear, the optimal control vectors, which are
solutions to linear-programming problems over the MCS,
correspond to vertices of the MCS that are characterized
algebraically by Theorem 1 and geometrically by Theorem 2
as tiling control vectors. An important subcase of practical
interest is the design of power consumption minimizing CCFs
for display technologies, such as organic light emitting diodes
(OLEDs), where the power can be modeled as a linear function
of the control vectors [17]. The characterization for control
vectors for optimal power in terms of gamut tilings was
introduced independently and near concurrently in [4], [18].

The orthogonal decomposition and visualization strategy
presented in Section III-A can be used as a tool for supporting
the selection of control vectors, showing the flexibility for
color control through visualizations of the MCS. It can also
be used to visualize and compare alternative CCFs along
specific regions of the gamut, as used in [16] for visualizing
the smoothness of CCFs, a criteria that has motivated several

methodologies for CCF design [13], [19]–[21], and is an
important feature of robustness to primary variations [22].

The concept of a facet span is the fundamental building
block of the framework introduced for characterizing gamut
tilings, and builds upon the infrastructure presented in the
companion Part I paper [1] for characterizing the gamut.
Because the characterization of the gamut boundary (Clause 3,
Theorem 1 in Part I) is applicable for any three dimensional
zonotope, where P is a 3 × K matrix for which any three
columns are linearly independent, the definition of facet span,
and by extension, our characterization of tilings are also
applicable to the aforementioned broader class of zonotopes.
Characterizations of zonotopal tilings have been previously
proposed [2, Chap. 7], and the tilings for particular classes of
zonotopes have been studied [23]–[26], however, enumerations
of zonotopal tilings remains an open problem. The computa-
tional enumeration results for K ≤ 9 presented in Table III
extend those obtained for polar zonotopes for K ≤ 7 in [10].
The results in Table IV also enumerate the possible number of
tilings for all three dimensional zonotopes with K ≤ 8 where
any three columns of the matrix P are linearly independent.

VII. CONCLUSION

The mathematical results we develop and present provide a
complete characterization of MCS for multiprimary displays
by relating the MCS to (parallelepiped) gamut tilings of the
gamut. Specifically, we show that the vertices of the MCS
polytope correspond exactly to the control vectors obtained
from CCFs associated with (parallelepiped) tilings of the
gamut. Our results provide, not only a theoretical framework
interlinking the geometry of the tristimulus gamut with the
geometry of the MCS, but also connect to applications in color
reproduction, providing insight into alternative strategies that
have been proposed for multiprimary display color control.
Additionally, the characterizations of tilings and the efficient
enumeration methodology that we provide also applies broadly
to zonotopes in R3 whose generating line segments satisfy the
mild constraint that any subset of three is linearly independent.
Computational results obtained using the proposed approach
also extend known results on enumeration of tilings for zono-
topes in R3. This paper and the companion Part I paper offer a
unified and comprehensive framework for the characterization
of the gamut and color control for multiprimary display design,
modeling, and color management.
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APPENDIX A
PROOF OF THEOREM 1

Let t ∈ G, ω = [ω1, . . . , ωK ]T ∈ Ω(t). For K = 3 the the-
orem holds trivially. Assume K ≥ 4, let m, with 0 ≤ m ≤ K,
be the number of vector components of ω with values in (0, 1),
and assume without loss of generality that said vector compo-
nents correspond to the first m entries of ω (otherwise, simply
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re-order the primaries in P). We shall prove the contrapositive
statement: m > 3 iff ω is not a vertex of Ω(t). Assume first
that m > 3. Because p1, . . . ,pm are linearly dependent, there
exist ν1, . . . , νm ∈ R, not all zero, such that

∑m
k=1 νkpk = 0.

So let ν = [ν1, ν2, . . . , νm, νm+1, . . . , νK ]T , with νk = 0 for
k > m, and let δ = min{ωk, 1− ωk | k ∈ 〈m〉}. Then δ > 0
and (ωk+δ), (ωk−δ) ∈ [0, 1], for all k ∈ 〈m〉. Observing that
ν 6= 0 and δ > 0, we see that the vectors ω− = ω− δν/‖ν‖
and ω+ = ω+δν/‖ν‖, are different from each other, different
from ω, and are inside [0, 1]K . Because Pν = 0, we see that
Pω− = Pω+ = Pω, therefore, ω−,ω+ ∈ Ω(t). Observing
that ω = (1/2) (ω− + ω+), we conclude that ω is the convex
combination of two different vectors in Ω(t), therefore ω is
not a vertex of Ω(t).

To show the converse, assume now that ω is not a vertex of
Ω(t), so ω is the convex combination of two different control
vectors α,γ ∈ Ω(t), so ω = ζα + (1 − ζ)γ, for some ζ ∈
(0, 1). Let ν = α−γ. Recalling that αk, γk ∈ [0, 1], we see for
k > m that αk = γk = ωk ∈ {0, 1}, so νk = 0, and because
α 6= γ, there is some k ≤ m such that νk 6= 0. Observing that∑m

k=1 νkpk = Pν = 0, we see that p1, . . . ,pm are linearly
dependent, and because every set of three (or fewer) primaries
is linearly independent, we conclude that m > 3.

APPENDIX B
PROOFS FOR SECTION IV LEMMAS AND THEOREM

A. Proof of Lemma 1

Obviously, I = I′ implies Z(J,I) = Z(J,I′). We prove the
converse by showing its contrapositive statement: I 6= I′ im-
plies Z(J,I) 6= Z(J,I′). Assume I 6= I′, and let l be the smallest
integer such that I[l] 6= I′[l] (note, l ≥ 1). We see from (7)

that dJ+
l−1(I) = dJ+

l−1(I′) indicating that F (J,I)
l−1 = F(J,I′)

l−1

is a common facet for P(J,I)
l and P(J,I′)

l . Assume, without
loss of generality, that uT

J d
J+
l (I) ≤ uT

J d
J+
l (I′) (otherwise

simply swap I and I′). Consider the vertices v1 = dJ+
l (I) =

dJ+
l−1(I′) + sgn

(
uT
J pI[l]

)
pI[l] and v2 = v1 + pJ[1] + pJ[2]

of the facet F (J,I)
l We show that at least one of v1 or v2

is not contained in P(J,I′)
l and Z(J,I′), a situation that is

illustrated in Fig. 7. Because P[J I′[l]] is full rank, there exists

a unique ν ∈ R3 such that v1 = c
(J,I′)
l +P[J I′[l]]ν, whereby

v2 = v1 +pJ[1] +pJ[2] = c
(J,I′)
l +P[J I′[l]]ν′ where ν′ = ν+

[1, 1, 0]T . Through algebraic manipulation we see that c(J,I′)
l +

P[J I′[l]]ν = v1 = dJ+
l−1(I′) + sgn

(
uT
J pI[l]

)
pI[l] is equiv-

alent to sgn
(
uT
J pI[l]

)
pI[l] =

(
χ−
(
uT
J pI′[l]

)
+ ν3

)
pI′[l] +

ν1pJ[1] + ν2pJ[2]. From the linear independence of any set
of three primaries, the preceding expression implies that both

ν1, ν2 6= 0. Now if v1 ∈ P(J,I′)
l , then 1 > ν1, ν2 > 0

which implies ν′1, ν
′
2 > 1 and v2 /∈ P(J,I′)

l . Conversely, if

v2 ∈ P(J,I′)
l , then 0 < ν′1, ν

′
2 < 1 and ν1, ν2 < 0 and

v1 /∈ P(J,I′)
l . Now choose t ∈ {v1,v2} such that t /∈ P(J,I′)

l .
Then uT

J d
J+
l−1(I) < uT

J t = uT
J d

J+
l (I) ≤ uT

J d
J+
l (I′) <

uT
J d

J+
l+1(I′) < uT

J d
J+
l+2(I′) < · · · < uT

J d
J+
K−2(I′), where

we have used the fact that the sequences {uT
J d

J+
m (I)} and

{uT
J d

J+
m (I′)} are strictly increasing with m. Thus we can

conclude that t /∈ P(J,I′)
i ,∀i ∈ 〈K − 2〉. It follows that

t /∈ ⋃K−2
i=1 P

(J,I′)
i = Z(J,I′), therefore, Z(J,I) 6= Z(J,I′).

v2=v1+pJ[1]+pJ[2]

P (J,I)
l F

(J,I
)

l

F
(J,I

′ )

l

P (J,I′)
l

d
J+ l−

1
(I
)
=

d
J+ l−

1
I′

F
(J,I

)

l−1

v1=dJ+
l (I) dJ+

l (I′)

Fig. 7. For the facet spans Z(J,I),Z(J,I′) with I 6= I′, the figure shows

the first pair of parallelepipeds P(J,I)
l (green) and P(J,I′)

l (magenta), for

which I[l] 6= I′[l]. Note that F(J,I)
l−1 = F(J,I′)

l−1 (blue) is a common facet for

P(J,I)
l and P(J,I′)

l and of the two vertices v1 and v2 for the facet F(J,I)
l ,

v1 ∈ P
(J,I′)
l and v2 /∈ P

(J,I′)
l , whereby v2 /∈ Z(J,I′).

B. Proof of Lemma 2

We start by establishing a relation between corresponding
tristimuli in Z(J,I) and Z(J,̃I); specifically, we show that, for
any l ∈ 〈K − 2〉, t ∈ P(J,I)

l , iff the tristimulus t̃ = t1 −
(t− t0) ∈ P(J,̃I)

K−1−l. Using the fact that Ĩ[K − 1 − l] = I[l],
we denote by P(J,I)

l = J∪ I[l] = J∪ Ĩ[K−1− l] the indices of

the three primaries spanning both P(J,I)
l and P(J,̃I)

K−1−l. Through
algebraic manipulation, we can see that respective origins of

P(J,I)
l and P(J,̃I)

K−1−l are

c
(J,I)
l =t0+

l−1∑

m=1

χ+
(
uT
JpI[m]

)
pI[m]+

K−2∑

m=l+1

χ−
(
uT
JpI[m]

)
pI[m],

c
(J,̃I)
K−1−l=t0+

l−1∑

m=1

χ−
(
uT
JpI[m]

)
pI[m]+

K−2∑

m=l+1

χ+
(
uT
JpI[m]

)
pI[m].

Noting that

t1 =t0 +

K∑

k=1

pk = t0 +

K∑

m=1
m 6=l

χ+
(
uT
J pI[m]

)
pI[m]+

K∑

m=1
m6=l

χ−
(
uT
J pI[m]

)
pI[m] + P[P(J,I)

l ]1, (14)

we can relate the origins of the parallelepipeds P(J,I)
l and

P(J,̃I)
K−1−l as,

c
(J,̃I)
K−1−l = t1 − c

(J,I)
l −P[P(J,I)

l ]1 + t0. (15)

Now, t ∈ P(J,I)
l iff t = c

(J,I)
l + P

[
P(J,I)
l

]
ν, with

ν ∈ [0, 1]3, iff t̃ = t0 +
(
t1 − c

(J,IJ)
l −P

[
P(J,IJ)
l

]
ν
)

=

t0 +
(
t1 − c

(J,IJ)
l −P

[
P(J,IJ)
l

]
(1− ν̃)

)
, and from (15), iff
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t̃ = c
(J,̃I)
K−1−l + P

[
P(J,I)
l

]
ν̃, iff t̃ ∈ P(J,̃I)

K−1−l, where ν̃ =

1 − ν ∈ [0, 1]3. Moreover, t is in a proper face of P(J,I)
l iff

ν has at least one vector component in {0, 1}, iff ν̃ has at
least one vector component in {0, 1}, iff t̃ is in a proper face

of P(J,̃I)
K−1−l. Analogous statements follow for the relationship

between the tristimuli of the parallelepipeds P(J′,I′)
l and

P(J′ ,̃I′)
K−1−l of the facet spans Z(J′,I′) and Z(J′ ,̃I′). Therefore,

for every l, l′ ∈ 〈K − 2〉, P(J,I)
l ∩P(J′,I′)

l′ is a common d-face

of P(J,I)
l and P(J′,I′)

l′ iff P(J,̃I)
K−1−l ∩ P

(J′,Ĩ′)
K−1−l′ is a common d-

face of P(J,̃I)
K−1−l and P(J′,Ĩ′)

K−1−l′ , where 0 ≤ d ≤ 3 denotes the
dimensionality of the face. It follows that Z(J,I) and Z(J′,I′)

are compatible iff Z(J,̃I) and Z(J′,Ĩ′) are compatible.

C. Proof of Lemma 3

Let K be a maximal set. We shall establish that TK is a
gamut tiling by showing that the set A =

⋃
P∈TK

P is the
gamut G. Because every P ∈ TK is a subset of a facet span,
we see that P ⊆ G, therefore, A ⊆ G. Now, let T ′ be a
progressive tiling of the gamut. Observing that both TK and T ′,
are collections of essentially disjoint parallelepipeds having
exactly one parallelepiped spanned by primaries indexed by
every P ∈ C3 (〈K〉), we see that every P ∈ TK is a
displacement of some P ′ ∈ T ′. Furthermore, because TK and
T ′ are collections of essentially disjoint parallelepipeds, we
have V (A) =

∑
P∈TK

V (P) =
∑
P′∈T ′K

V (P ′) = V (G).
Now A and G are both closed sets with identical volume with
A ⊆ G and G is convex, whereby we can conclude that A = G,
therefore, TK is a gamut tiling.

D. Proof of Lemma 4

We start by showing the one-to-one correspondence between
the complete sets and the gamut tilings. For K = 3 the result
is direct, so assume K ≥ 4. Because for a complete set K , the
collection TK of all parallelepipeds making up the facet spans
of K is a gamut tiling, the mapping h : K 7→ TK is a function
from complete sets to gamut tilings. We first prove that h
is one-to-one. Let K and K ′ be two different complete sets.
Because K and K ′ are sets with a facet span for every pair of
primaries, there is J ∈ C2 (〈K〉) for which the corresponding
facet spans Z(J,I) ∈ K and Z(J,I′) ∈ K ′ are different,
where I, I′ ∈ P (〈K〉 \ J). And because Z(J,I) 6= Z(J,I′), we
conclude from Lemma 1 that I 6= I′. The situation is illustrated
in Fig. 8. Let l be the smallest integer such that I[l] 6= I′[l].
We see from (7) that dJ+

l−1(I) = dJ+
l−1(I′) indicating that

F (J,I)
l−1 = F(J,I′)

l−1 is a common facet for P(J,I)
l and P(J,I′)

l . As-
sume, without loss of generality, that uT

J d
J+
l (I) ≤ uT

J d
J+
l (I′)

(otherwise simply swap I and I′), and let l < l′ ≤ (K − 2)
be the index such that I′[l′] = I[l]. Note that l′ is well defined
because I, I′ ∈ P (〈K〉 \ J). Then, the parallelepipeds P(J,I)

l

and P(J,I′)
l′ are both spanned by the primaries indexed by

P = J ∪ I[l] = J ∪ I′[l′]. Using I[l] = I′[l′], we see that

the difference between the origins of P(J,I)
l and P(J,I′)

l′ is the

vector c(J,I′)
l′ − c

(J,I)
l = dJ+

l′ (I′)− dJ+
l (I). Because l < l′, we

have uT
J d

J+
l (I) ≤ uT

J d
J+
l (I′) < uT

J d
J+
l′ (I′), where we have

used the fact that the sequence {uT
J d

J+
m (I′)} is strictly in-

creasing with m. It follows that uT
J

(
dJ+
l′ (I′)− dJ+

l (I)
)
6= 0,

thus, dJ+
l′ (I′) − dJ+

l (I) 6= 0, so c
(J,I′)
l′ 6= c

(J,I)
l , therefore,

P(J,I′)
l′ 6= P(J,I)

l . Because P(J,I)
l and P(J,I′)

l′ are the only
parallelepipeds that are spanned by P in the collections TK

and TK ′ , respectively, we see that P(J,I)
l /∈ TK ′ , P(J,I′)

l′ /∈ TK ,
therefore, TK 6= TK ′ , so h maps different complete sets to
different gamut tilings, establishing that h is one-to-one.

dJ+
l (I)

P (J,I)
l

F
(J,I

′ )

l

F
(J,I

′ )

l′−1

dJ+
l′−1(I

′)

· · ·

dJ+
l−1(I) dJ+

l (I′)

F
(J,I

)

l−1

P (J,I′)
l′

dJ+
l′ (I′)

P (J,I′)
l

F
(J,I

′ )

l
F
(J,I

)

l

Fig. 8. For the facet spans Z(J,I),Z(J,I′) with I 6= I′, the figure shows the

first pair of parallelepipeds P(J,I)
l (green) and P(J,I′)

l (magenta), for which

I[l] 6= I′[l], which share the facet F(J,I)
l−1 = F(J,I′)

l−1 (blue). The parallelepiped

P(J,I′)
l′ (magenta), which is spanned by the same primaries as P(J,I)

l is also

shown. It can be seen that (see text) P(J,I)
l and P(J,I′)

l′ cannot be part of the
same tiling.

Next we show that h is onto. Let T be a gamut tiling. We
construct a complete set K such that TK = T as follows.
Let J ∈ C2 (〈K〉), let TJ be the subset of parallelepipeds
from T with facets spanned by the pair of primaries P[J].
Because T is a gamut tiling, it includes one parallelepiped
for each P ∈ C3 (〈K〉), and we see that TJ has (K − 2)
parallelepipeds, one per index triple J∪ i, for all i ∈ 〈K〉 \ J.
Next, consider the following recursive procedure for arranging
the parallelepipeds in TJ in a sequence P1, . . . ,PK−2 and for
creating an associated sequence of indices I ∈ P (〈K〉 \ J).
Let F0 = F

(
dJ−,P[J]

)
and let v0 = dJ− denote the origin

of F0. Because T is a gamut tiling, it follows that there is
a parallelepiped P1 ∈ T for which F0 is one of its facets,
whereby P1 ∈ TJ. Let F1 be the companion facet of F0 in
P1, i.e., the facet that is also spanned by P[J] and congruent
with F0. Now denote by P1 the index triple for the primaries
spanning P1, and set I[1] = P1 \ J (note I[l] ∈ 〈K〉 \ J).
Then v1 = v0 + sgn

(
uT
J pI[1]

)
pI[1] is the origin of F1 and

uT
J d

J− = uT
J v0 < uT

J v1 < uT
J d

J+. For 2 ≤ l ≤ K − 2
select Pl ∈ TJ \ {P1, . . . ,Pl−1} and set I[l] as follows. Let
t ∈ Int(Fl−1). Because uT

J d
J− < uT

J vl−1 < uT
J d

J+, we
see that Fl−1 is not a gamut facet, so t ∈ Int(G). Observing
that uT

J v0 < uT
J v1 < · · · < uT

J vl−1 = uT
J t and because

T is a gamut tiling, there exists Pl ∈ T \ {P1, . . . ,Pl−1}
such that t ∈ Pl ∩ Pl−1, where Pl ∩ Pl−1 is a face
of Pl and Pl−1. Because Fl−1 is the only face of Pl−1

containing t, we see that Pl ∩ Pl−1 = Fl−1, so Fl−1 is
also a facet of Pl, therefore, Pl ∈ TJ. Let Pl the index
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triple for the primaries spanning Pl, and set I[l] = Pl \ J
(note I[l] ∈ 〈K〉 \ J is distinct from I[0], I[1], . . . I[l − 1]).
Let Fl be the companion facet of Fl−1 in Pl and then
vl = vl−1 + sgn

(
uT
J pI[l]

)
pI[l] is the origin of Fl, and for

l < (K − 2), uT
J vl−1 < uT

J vl < uT
J d

J+, which establishes
that the recursive procedure can continue until l = (K − 2)

at which point vK−2 = v0 +
∑K−2

j=1 sgn
(
uT
J pI[j]

)
pI[j] =

dJ− +
∑

j∈〈K〉\J sgn
(
uT
J pj

)
pj = dJ+, and FK−2 =

F
(
dJ+,P[J]

)
. Because the process selects (K − 2) distinct

parallelepipeds from the set TJ with (K−2) distinct elements,
the choice at each stage of the recursion is unique. It follows
that I ∈ P (〈K〉 \ J), and the set

⋃
P∈TJ P =

⋃K−2
l=1 Pl

constitutes the facet span Z(J,IT ), where IT = I with the
subscript added to indicate the dependence in subsequent
discussion.

Repeating the preceding process for each J ∈ C2 (〈K〉), we
obtain the set of facet spans K = {Z(J,IT ) =

⋃
P∈TJ P | J ∈

C2 (〈K〉)}. Because T is a gamut tiling, the facet spans in
K are compatible, making K a complete set, with TK = T .
Therefore, h is onto, and a bijection between complete sets
and gamut tilings.

We now show that every maximal set is a subset of
one and only one complete set. Let K be a maximal set
with TK denoting the associated tiling as per our notational
convention. Now from our preceding result, K ′ = h−1 (TK )
is the unique complete set associated with the tiling TK and
TK ′ = h (K ′) = TK . Now, via the recursive construction
procedure used in the preceding part, the parallelepipeds in
the gamut tiling TK = TK ′ yield a unique facet span for each
J ∈ C2 (〈K〉), it follows that every facet span in K is a facet
span of K ′ and therefore, K ⊆ K ′. And because h is one-to-
one, K ′ is the only complete set such that TK ′ = TK , therefore,
the only complete set containing K .

We now establish that every facet span belongs to a com-
plete set using induction on the number of primaries K. The
result follows immediately for K = 3. Next, let M ≥ 4. We
assume that the result holds for all systems with K ≤ (M−1)
primaries and show that it holds for K = M . For the M pri-
mary system, denote by P the 3×M primary matrix, t0 ∈ R3

the display black, and G the gamut. Let Z(J0,I0) be a facet
span, with J0 ∈C2(〈M〉) and I0 ∈P (〈M〉 \ J0), and assume
without loss of generality, that M is the last index of I0, that is,
I0[M−2] = M (otherwise, permute the columns in P accord-
ingly). We will show that Z(J0,I0) belongs to a complete set.
Let P̌ = P[〈M − 1〉] and ť0 = t0 + χ−

(
uT
J0
pM

)
pM , which

together define a (M −1)-primary display system with gamut
Ǧ =

{
P̌α̌+ ť0 | α̌ ∈ [0, 1](M−1)

}
. To simplify the ensuing

discussion, we extend the convention implicit in our preceding
definitions and denote by x̌ and x corresponding variables
associated with the (M − 1) and M primary systems, respec-
tively. Now, let Ǐ0 = I0[1, 2, . . . , (M − 3)]. Then observing
that dJ0− = t0 +PχJ0− = t0 +χ−

(
uT
J0
pM

)
pM +P̌χ̌J0− =

ť0 + P̌χ̌J0− = ďJ0−, we see that Ž(J0 ,̌I0) =
⋃M−3

l=1 P̌
(J0 ,̌I0)
l

is a facet span for the (M − 1) primary system, where

P̌(J0 ,̌I0)
l = P(J0,I0)

l , l = 1, 2, . . . (M − 3).
Then, via the induction hypothesis, there is a complete

set Ǩ of facet spans in Ǧ with associated gamut tiling TǨ ,
such that Ž(J0 ,̌I0) ∈ Ǩ . We extend the facet spans in Ǩ
to obtain a set of compatible facet spans for the M -primary
system. The process is illustrated in Fig. 9. Specifically, for
J ∈ C2(〈M − 1〉) if χ−

(
uT
J pM

)
= χ−

(
uT
J0
pM

)
, define

I = [̌I,M ], otherwise define I = [M, Ǐ]. In both cases, it can be
seen that the collection of facet spans Z(J,I), J∈C2(〈M − 1〉)
is a set of compatible facet spans for GM with Z(J0,I) =
Z(J0,I0). Specifically, if χ−

(
uT
J pM

)
= χ−

(
uT
J0
pM

)
, we have

ďJ− = ť0 + P̌χ̌J− = t0 + χ−
(
uT
J0
pM

)
pM + P̌χ̌J− =

t0 + χ−
(
uT
J pM

)
pM + P̌χ̌J− = t0 + PχJ− = dJ−,

and we see that ďJ+
l (Ǐ) = dJ+

l (I) and P̌(J,̌I)
l = P(J,I)

l ,
for l ∈ 〈M − 3〉, and Z(J,I) = Ž(J,̌I)⋃P(J,I)

M−2. On
the other hand, if χ−

(
uT
J pM

)
6= χ−

(
uT
J0
pM

)
, we have

χ−
(
uT
J0
pM

)
= χ+

(
uT
J pM

)
, thus, ďJ− = ť0 + P̌χ̌J− =

t0 + χ−
(
uT
J0
pM

)
pM + P̌χ̌J− = t0 + χ+

(
uT
J pM

)
pM +

P̌χ̌J− = t0 + PχJ− +
(
χ+
(
uT
J pM

)
− χ−

(
uT
J pM

))
pM =

dJ−+sgn
(
uT
J pM

)
pM = dJ−+sgn

(
uT
J pI[1]

)
pI[1]. It follows

that ďJ+
l (Ǐ) = dJ+

l+1(I) and P̌(J,̌I)
l = P(J,I)

l+1 , for l ∈ 〈M − 3〉,
and Z(J,I) = P(J,I)

1

⋃ Ž(J,̌I).

t0
0

p
M

Z(J0,I0)

G

(a)

p
M

ť0

0
t0

Ǧ

(b)

ť0

p
M

Ǧ

0

Ž(J0 ,̌I0)

t0

(c)

t0

p
M

Gť0

Z (J0,I0)

0

(d)

Fig. 9. Induction step for illustrating that every facet span belongs to a
complete set. See description in text.

To establish that the extensions are compatible facet spans,
for all J∈C2(〈M − 1〉), we denote by PJ

def
= Z(J,I) \ Ž(J,̌I)

the parallelepiped added in the extension Z(J,I). Let J, J′ ∈
C2(〈M − 1〉), J 6= J′. Observing that Ž(J,̌I) and Ž(J′ ,̌I′)

are compatible facet spans, and PJ and PJ′ are spanned by
different primaries, we shall establish that Z(J,I) and Z(J′,I′)

are compatible by checking that PJ
⋂PJ′ , PJ

⋂ P̌(J′ ,̌I′)
l , and

P̌(J,̌I)
l

⋂PJ′ , for all l ∈ 〈M−3〉, are faces for both of the par-
allelepipeds included in the corresponding intersections. Let
C = PJ

⋂PJ′ . If C = φ, then C is clearly a common face of PJ
and PJ′ . Assume C 6= φ. Observing that PJ and PJ′ share with
Ǧ the facets F̌J = PJ

⋂ Ǧ and F̌J′ = PJ′
⋂ Ǧ, respectively, we

see that PJ = {ť+ζsgn
(
uT
J0
pM

)
pM | ť ∈ F̌J, ζ ∈ [0, 1]} and

PJ′ = {ť+ζsgn
(
uT
J0
pM

)
pM | ť ∈ F̌J′ , ζ ∈ [0, 1]}, therefore,

C = {ť + ζsgn
(
uT
J0
pM

)
pM | ť ∈ F̌J ∩ F̌J′ , ζ ∈ [0, 1]}. Be-

cause F̌J and F̌J′ are gamut facets, it follows that F̌J
⋂ F̌J′ is a

common face for F̌J and F̌J′ , thus, a common face for PJ and
PJ′ , therefore, the intersection C is a common face for PJ and

PJ′ . Now, let l ∈ 〈M − 3〉 and C = PJ
⋂ P̌(J′ ,̌I′)

l . We can see
that for some m ∈ {1,M−3}, F̌J = PJ

⋂ Ǧ = PJ
⋂ Ž(J,I) =

PJ
⋂ P̌(J,̌I)

m is a common facet for PJ, P̌(J,̌I)
m , and P̌(J,̌I)

m

is the only parallelepiped in the gamut tiling TǨ for which
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F̌J is a facet. Because P̌(J,̌I)
m , P̌(J′ ,̌I′)

l ∈ TǨ , the intersection

P̌(J,̌I)
m ∩P̌(J′ ,̌I′)

l is a common face for P̌(J,̌I)
m and P̌(J′ ,̌I′)

l , and

because C ⊆ Ǧ, we see that C = C∩Ǧ =
(
PJ ∩ Ǧ

)⋂ P̌(J′ ,̌I′)
l =

PJ
⋂ P̌(J,̌I)

m
⋂ P̌(J′ ,̌I′)

l =
(
PJ ∩ Ǧ

)⋂(P̌(J,̌I)
m ∩ P̌(J′ ,̌I′)

l

)
=

F̌J
⋂(P̌(J,̌I)

m ∩ P̌(J′ ,̌I′)
l

)
is a common face for F̌J, P̌(J,̌I)

m and

P̌(J′ ,̌I′)
l , and therefore, a common face for PJ and P̌(J′ ,̌I′)

l .
Using analogous arguments, we see that the intersection C =

P̌(J,̌I)
l

⋂PJ′ , is a common face for P̌(J,̌I)
l and PJ. Therefore,

the set of extensions A = {Ž(J,̌I)⋃PJ | Ž(J,̌I) ∈ Ǩ } is a set
of compatible facet spans for the M -primary system, with one
facet span for each J∈C2(〈M−1〉), and associated collection
of parallelepipeds TA = TǨ

⋃{PJ | J∈C2(〈M−1〉)}. Because
N
(

TǨ
)

=
(
M−1

3

)
and no parallelepiped PJ is in TǨ , we see

that N (TA) = N
(

TǨ
)

+
(
M−1

2

)
=
(
M
3

)
, therefore, A is a

maximal set, thus, there is a complete set K containing A.
Because Z(J0,I0) ∈ A, it follows that Z(J0,I0) ∈ K .

Finally, from Lemma 2, we see that K is a set of compatible
facet spans iff K̃ is a set of compatible facet spans. Observing
that N

(
TK̃

)
= N (TK ) we can conclude that K is maximal

iff K̃ is maximal, in which case, N
(

TK̃

)
= N (TK ) =

(
K
3

)
.

E. Proof of Theorem 2

Let t ∈ G and ω ∈ Ω(t). Assume first that ω ∈ VΩ(t),
then, from Theorem 1, ω has at most three components in
(0, 1), and we denote by P ∈ C3 (〈K〉) a set of indices that
includes these components. We then have the decomposition
ω = α + IK [P]ν, where ν = [ωP[1], ωP[2], ωP[3]]

T ∈ [0, 1]3,
and α ∈ {0, 1}K , with αP[1] =αP[2] =αP[3] = 0 and αk =ωk,
for k ∈ 〈K〉\P. Then, t = Pω+t0 = P[P]ν+(Pα+ t0) =
P[P]ν + v, where v = Pα + t0. Because the primaries
P[P] are linearly independent, ν = P−1[P] (t− v) and t
is in the parallelepiped P (v,P[P]) ⊆ G, which we will
show belongs to a gamut tiling. Let J ∈ C2 (〈P〉) and let
I1 = {k ∈ 〈K〉 \ P | χ+

(
uT
J pk

)
= αk}, I2 = {k ∈

〈K〉 \ P | χ−
(
uT
J pk

)
= αk}, I = [I1,P \ J, I2], and

l = N (I1) + 1 (where the orderings within the subsequences
I1 and I2 can be chosen arbitrarily); note that 1 ≤ l ≤
K − 2. Then, through algebraic manipulation, we can see
that P(J,I)

l , the lth parallelepiped of the facet span Z(J,I),
is spanned by primaries P[P], and has the origin c

(J,I)
l =

t0 +
∑l−1

i=1 χ
+
(
uT
J pI[i]

)
pI[i] +

∑K−2
i=l+1 χ

−
(
uT
J pI[i]

)
pI[i] =

t0+
∑

m∈〈K〉\P αmpm = t0+
∑K

m=1 αmpm = Pα+t0 = v,

therefore, P(J,I)
l = P (v,P[P]). Now, from Lemma 4, Z(J,I) ∈

K , for some complete set K , with an associated gamut tiling
TK and tiling CCF CTK . Because P (v,P[P]) ∈ TK , we see that
ω = α + IK [P]ν = α + IK [P] (P[P])

−1
(t− v) = CTK (t),

therefore, ω is a tiling control vector.
To show the converse, assume now that ω is a tiling

control vector. Then, there is a tiling T with tiling CCF
CT and a parallelepiped P ∈ T spanned by P[P], with
P ∈ C3 (〈K〉), with origin v, such that t ∈ P and ω =
CT (t) = α + IK [P] (P[P])

−1
(t− v), where α ∈ {0, 1}K

is a control vector for v, with αP[1] = αP[2] = αP[3] = 0.
Therefore, ωk = αk, for k ∈ 〈K〉 \ P, and only the three
vector components ωP[1], ωP[2], ωP[3] may be in (0, 1), so from
Theorem 1, ω ∈ VΩ(t).

APPENDIX C
PRIMARY SYSTEMS USED IN EXAMPLES

Table V lists the tristimulus values corresponding to the
columns of the primary matrices used as examples in the
paper and in the subsequent appendices. The four primary
system P

(4)
e is identical to the one used in the companion

Part I Paper [1] and the five-primary system P
(5)
e is an

extension of the four primary system P
(4)
e , with the fifth

column as an added primary, viz. P
(5)
e = [P

(4)
e |p5]. Both

P
(4)
e and P

(5)
e are chosen in order to generate convenient

renderings of gamuts and facet spans for the visualizations
and also use a value of t0 = [35, 35, 35]T to improve the
visualizations by distancing the axes from the gamut facets
and edges. The five-primary system P

(5)
w is chosen to illustrate

that not all MCS vertices are progressive tiling control vectors
and is obtained as an extension of the four primary design
from the companion Part I Paper [1, Sect. C], which was
designed to optimize gamut volume under a total power
constraint. In particular, the fifth primary of P

(5)
w is defined

as p5 = (1/4)
∑4

k=1 pk, so p5 has the chromaticity of the
display white t1 and accounts for 20% of the luminance of
t1. For aiding visualization, the multiprimary system P

(5)
w is

used in conjunction with t0 = [15, 15, 15]T . The six primary
system P

(6)
V is the six primary design from the companion

Part I Paper [1, Appendix. C], designed to optimize gamut
volume under a total power constraint (and has an associated
value of t0 = [0, 0, 0]T ).

p1 p2 p3 p4 p5 p6

P
(4)
e

X 0.03 1.74 118.69 86.47
Y 20.32 85.49 3.65 76.53
Z 114.68 58.16 22.78 31.18

P
(5)
e

X 0.03 1.74 118.69 86.47 10.30
Y 20.32 85.49 3.65 76.53 35.03
Z 114.68 58.16 22.78 31.18 14.79

P
(5)
w

X 16.88 0.78 5.67 71.82 23.79
Y 0.49 19.81 53.59 26.11 25.00
Z 80.98 22.86 5.17 0.00 27.25

P
(6)
V

X 14.56 2.48 0.14 2.88 5.24 69.87
Y 0.42 6.57 18.63 34.20 14.79 25.40
Z 69.62 25.31 9.70 4.11 0.22 0.00

TABLE V
CIE XYZ TRISTIMULI OF THE PRIMARIES FOR THE MULTIPRIMARY

SYSTEMS USED FOR THE EXAMPLES

APPENDIX D
CBS-BASED MCS VISUALIZATION: PARAMETERS &

SYMMETRY

The CBS based visualization strategy described in Sec-
tion III-A relies on the selection of an orthonormal basis B for
the CBS. For a primary matrix P, we obtain B conveniently
from the SVD decomposition [5, pp. 411], P = USVT of P,
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where S is a 3 × K diagonal matrix containing the singular
values of P, and U, V are 3 × 3 and K × K orthogonal
matrices. Denoting V = [v1, . . . ,vK ], we note that the last
(K−3) columns of V form an orthonormal basis for the null
space (CBS) of P [27]. Therefore, we set the basis matrix
B

def
= [b1, . . . ,bK−3], with b1 = v4, . . . ,bK−3 = vK . The

bases for the primary systems we obtain for each primary
system in Section C using this procedure are listed in Table VI.

b1 b2 b3

B
(5)
w

−0.25 −0.23
0.89 −0.21
−0.38 −0.23

0.06 −0.22
0.07 0.90

B
(6)
V

0.27 0.11 −0.16
−0.63 −0.19 0.66
−0.49 −0.24 −0.70

0.50 −0.17 0.25
−0.20 0.92 0.02
−0.04 −0.08 −0.00

TABLE VI
ORTHONORMAL BASES OF THE CBS OF THE MULTIPRIMARY SYSTEMS

P
(5)
w AND P

(6)
V

Figure 2 described how the MCS polytope can be con-
veniently visualized using it CBS representation Ξ(t) and
demonstrated examples for the five and six primary systems
P

(5)
w and P

(6)
V . The visualizations presented in Fig. 2 for

these two systems used the bases specified in Section C and
corresponded to the tristimulus t = [51.47, 75.35, 101.18]T

for the five primary system P
(5)
w and the tristimulus t =

[89.53, 82.42, 97.20]T ; for the six primary system P
(6)
V , in

both cases, t0 = 0. We note here that MCSs also exhibit
symmetry that is induced by the symmetry of the control space
and the gamut. Specifically, the feasible control space [0, 1]K

is a polytope that is centrally symmetric [2] about the center
αc = (1/2)1, i.e., for any ν ∈ RK , αc + ν ∈ [0, 1]K iff
αc − ν ∈ [0, 1]K . Correspondingly, the control vectors α
and α̃ def

= 1 − α are referred to as the (centrally) symmetric
images of each other. Because G is an affine mapping of
[0, 1]K into R3, G is also centrally symmetric [2], with center
tc = (1/2) (t0 + t1), and it follows that the symmetric image
of t ∈ G is t̃

def
= t1 − (t− t0). Now, observing that for

t ∈ G, α ∈ Ω(t) iff t = t0 + Pα and α ∈ [0, 1]K ,
iff t̃ = t0 + P (1−α) = t0 + Pα̃ ∈ G, iff α̃ ∈ Ω(t̃),
where α̃ def

= 1−α is the symmetric image of α. It follows
that Ω(t̃) = {α̃ | α ∈ Ω(t)} is the symmetric image
of Ω(t). Similarly, we see that the coordinate representation
of [0, 1]K in terms of the CBS orthonormal basis B is the
zonotope A = {BTα | α ∈ [0, 1]K} in RK−3, which
is centrally symmetric with center BTαc, so the symmetric
image of β ∈ A is β̃ = BT1 − β. Therefore, the coordinate
representation of Ω(t̃) with respect the CBS basis B is
Ξ(t̃) = {BT α̃ | α ∈ Ω(t)} = {BT (1−α) | α ∈ Ω(t)} =
{BT1 − BTα | α ∈ Ω(t)} {BT1 − β | β ∈ Ξ(t)},
which is the symmetric image of Ξ(t). Figure 10 illustrates

0 0.4 0.8

-0.4

0

0.4

(a) K = 5

0

-0.6

-0.3

0

0.3

0.4 -0.40

(b) K = 6

Fig. 10. MCS polytopes Ξ(t̃) for the symmetric tristimuli corresponding
to the MCS polytopes shown in Fig. 2 for the K = 5, 6 primary systems
P

(5)
w ,P

(6)
V . The MCS polytopes are shown using (K− 3)-dimensional CBS

coordinate representations developed in Section III-A.

the MCS for the symmetric tristimuli t̃ corresponding to the
tristimuli t shown in Fig. 2, where it can be appreciated that
the each of the symmetric images Ξ(t̃) can be obtained by
flipping the corresponding Ξ(t) about the coordinate axes and
translating the resulting polytope, as indicated by the preceding
mathematical relation.

APPENDIX E
PARALLELEPIPED INTERSECTION CHECK

The strong-compatibility check introduced in Algorithm 2
relies on checking whether or not two parallelepipeds from
two different facet spans intersect each other. In this section,
we describe a method for efficiently performing this check by
exploiting the characterization of parallelepipeds in Lemma 1
of the companion Part I Paper [1]. We refer the reader to
Lemma 1 and to Section II of the Part I paper, for the results
and notation that we use in the rest of this section.

For the parallelepiped P = P (v,A) spanned by a 3 × 3
nonsingular matrix A and origin v ∈ R3, we denote by WP
the set of edges of P . Each edge of P is a line segment
E = E(w,a), where the vector a ∈ R3 is a column of A and
w ∈ R3 is a vertex of P . Then, the following lemma follows
immediately.

Lemma 5. For a pair of parallelepipeds P and P ′ with sets
of edges WP and WP′ , respectively, the following properties
hold:

1) P ∩P ′=φ, iff, P ∩ E ′ = P ′ ∩ E=φ, for every E ∈WP
and every E ′∈WP′ .

2) Int(P)∩ Int(P ′) = φ, iff, Int(P)∩ Int(E ′) = Int(P ′)∩
Int(E)=φ, for every E ∈WP and every E ′∈WP′ .

Because a parallelepiped has 12 edges, Lemma 5 allows
one to perform the parallelepiped intersection check as the
evaluation of 24 different intersection checks between a line
segment and a parallelepiped. Thus, the three-dimensional
problem of checking the intersection of parallelepipeds is
simplified to the evaluation of one-dimensional intersections.

For a parallelepiped P , a line segment E(w,q) and t ∈ R3,
we see that t ∈ E(w,q), iff, t = w + ζq for some ζ ∈ [0, 1],
and from Clause 1 of Lemma 1 in the Part I Paper [1], we
see that t ∈ P , iff, τ J ≤ uT

J t ≤ νJ, for all J ∈ C2(〈3〉).
Therefore, P ∩ E 6= φ iff there exists a ζ ∈ [0, 1] such that
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τ J ≤ uT
J w + ζuT

J q ≤ νJ, for all J∈C2(〈3〉). Now, for each
index pair J∈C2(〈3〉), and for w,q ∈ R3, with uT

J q 6= 0, we
define the functions,

LJ(w,q) =
χ+
(
uT
J q
)
τ J + χ−

(
uT
J q
)
νJ − uT

J w

uT
J q

,

UJ(w,q) =
χ−
(
uT
J q
)
τ J + χ+

(
uT
J q
)
νJ − uT

J w

uT
J q

,

which we use to express necessary and sufficient conditions
for a non-empty intersection of a parallelepiped and a line
segment in the following lemma.

Lemma 6. For a parallelepiped P and a line segment E(w,q),
let Jq = {J ∈ C2 (〈3〉) | uT

J q = 0}. Then,
1) P ∩ E 6= φ, iff, (a) for all J ∈ Jq, τ J ≤ uT

J w ≤ νJ,
and (b) for all J ∈ C2 (〈3〉) \ Jq, LJ(w,q) ≤ 1, 0 ≤
UJ(w,q) and LJ(w,q) ≤ UJ(w,q).

2) Int(P)∩ Int(E) 6= φ, iff, (a) for all J ∈ Jq, τ J < uT
J w <

νJ, and (b) for all J ∈ C2 (〈3〉) \ Jq, LJ(w,q) < 1,
0 < UJ(w,q) and LJ(w,q) < UJ(w,q).

Proof: We start by showing Clause 1. Note that P∩E 6= φ,
iff, there is a t ∈ R3 such that t ∈ P∩E , iff, there is ζ ∈ [0, 1]
such that τ J ≤ uT

J w + ζuT
J q ≤ νJ, for all J∈C2(〈3〉), iff:

• for all J ∈ Jq, τ J ≤ uT
J w ≤ νJ, and

• for all J ∈ C2 (〈3〉) \ Jq, τ J − uT
J w ≤ ζuT

J q ≤ νJ −
uT
J w, i.e., LJ(w,q) ≤ ζ ≤ UJ(w,q), and ζ ∈ [0, 1].

Which is possible iff, LJ(w,q) ≤ 1, 0 ≤ UJ(w,q) and
LJ(w,q) ≤ UJ(w,q).

Because Int(P)∩Int(E) 6= φ iff, there is t ∈ R3 such that t ∈
P∩E , iff, there is ζ ∈ (0, 1) such that τ J < uT

J w+ζuT
J q < νJ,

for all J∈C2(〈3〉), analogous arguments establish Clause 2.

Now, based on Lemma 5 and Lemma 6, checking whether
two parallelepipeds or their interiors intersect can be per-
formed as stated in Algorithm 3.
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