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I. MATHEMATICAL MODELING

A. Submodels of phytochrome dynamics

An experimental fluence rate response curve always exhibits the same characteristic

features: the hypocotyl growth inhibition seems to be insensitive for rather low and high

light intensities. However, for intermediate light intensities, the hypocotyl growth shows a

rather sensitive inhibition profile. Furthermore, over-expression lines exhibit rather strong

hypocotyl growth inhibition in response to high fluences (Beggs et al., 1980; Wagner and

Quail, 1995). Therefore, an appropriate theoretical description of light growth should

mimic the characteristic fluence rate response behavior as well as the strong inhibition of

over-expression lines for high fluences.
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We investigated two submodels of the phytochrome dynamics according to their fluence

rate response behavior. The simplest model comprises synthesis, degradation (kdr) and

the photochemistry with light intensity (Nλ) dependent transition rates k1 = Nλσr and

k2 = Nλσfr of cytosolic phytochrome, cf. Fig. 6A main text with the corresponding rescaled

ODEs

Ṗ rc = kdr − (k1 + kdr)P rc + k2P frc (S1)

Ṗ frc = k1P rc − (k2 + kdfr)P frc.

To set up a fluence rate responses curve, one has to calculate the amount of P fr for different

values of the light intensity Nλ. The P fr steady state level, as a function of Nλ, is given by

P̄ fr(Nλ) =
kdrk1

kdr(k2 + kdfr) + k1kdfr
=

kdrσr
kdrkdfr +Nλ(kdrσfr + kdfrσr)

where σr/fr represent the photoconversion cross-sections (Lagarias et al., 1987). For large

light intensities, i.e., for Nλ →∞, the P fr steady state level saturates to

P̄ fr(Nλ →∞) =
kdrσr

kdrσfr + kdfrσr
. (S2)

If we consider the simple photochemistry-model, we can fit the following experimental data

simultaneously: red light induced P fr-degradation, fluence rate response curve for Columbia

wild type (Col WT), and time-resolved hypocotyl growth in darkness. Then, we predict

the fluence rate response curve for the over-expressor phyB-GFP-1 (main text Fig 6C, red

dashed line, squares). It can be deduced from the fluence rate response curve that the range

of the hypocotyl inhibition for increasing light intensities of the experimental data and the

fit and prediction does not match. For very small light intensities, the model of Eqn. (S1)

already shows a hypocotyl growth inhibition.

The simplest extension of (S1) is to consider the inactivation step of P frc via dark rever-

sion at rate constant kr, main text Fig. 6B. The rescaled equations become

Ṗ rc = kdr − (k1 + kdr)P rc + (k2 + kr)P frc (S3)

Ṗ frc = k1P rc − (k2 + kdfr + kr)P frc.

Again, we calculate the amount of P fr for different values of the light intensity Nλ. The P fr
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steady state level, as a function of Nλ, is given by

P̄ fr(Nλ) =
kdrk1

kdr(k2 + kdfr + kr) + k1kdfr

=
kdrσr

kdr(kdfr + kr) +Nλ(kdrσfr + kdfrσr)
.

For Nλ → ∞, the P fr steady state level saturates to the same level as Eqn. (S2), but for

small and intermediate light intensities, the impact of the dark reversion rate kr cannot be

neglected. If dark reversion is taken into account, we also have to consider the data in the

multi-experiment fit, such that we fit the following experiments simultaneously: red light

induced P fr-degradation, dark reversion, fluence rate response curve for Col WT, and time-

resolved hypocotyl growth in darkness. Again, the prediction is the fluence rate response

curve for the over-expressor phyB-GFP-1 (main text Fig. 6C, red dashed line, circles). The

fitted and predicted fluence rate response curves for Col WT and phyB-GFP-1, respectively,

mimic the sensitivity range of the experimental data much better, especially showing little

inhibition for very low fluences.

With the full protein dynamics of Eqns. (1) of the main text, we estimated the param-

eter combinations by simultaneous nonlinear least-square fitting to the experimental data

for all possible P fr(t) pools and their combinations to represent the signaling player u(t),

i.e., assuming the single pools P frc, P frn, P frns, or the sum of the pools, P frn + P frns,

P frc + P frn + P frns triggering the physiological response. Since all submodels have the

same amount of parameters and number of data points, the standard methods for models

selection, the Akaike Information Criterion (AIC, (Akaike, 1974)) or the Baysian Information

Criterion (BIC, (Schwarz, 1978)), reduce to the classical χ2-values to give the ‘goodness-of-

fit’, which are summarized in Table S1. Based on this we exclude the cytosolic P frc pool

to be the signaling player. The χ2-values of all other submodels, assuming nuclear pools to

be the signaling player, are rather similar, such that we cannot discriminate between these

submodels on the basis of the given experiments. This similarity can also be understood

on the basis of the mechanistic pool model: Fig. S1 shows the P fr-pool levels, relative to

Ptot, for different fluences. It can be deduced by the simulations that the pools at different

fluences are separated by a scaling factor, such that for the multi-experiment fit the pa-

rameters of the hypocotyl growth model can be adapted accordingly. The scaling factor for

all fluences can be roughly determined by the kinetic parameters k3 and k4, since all other

3



10
-4

10
-3

10
-2

10
-1

10
0

10
1

Light intensity [µmol/(m
2
s)]

0

0,2

0,4

0,6

0,8

1

%
 o

f 
P

 t
o

t

FIG. S1 Simulated P fr-levels, relative to Ptot, for different fluence rates. A scaling factor links

the different pools of P frn (black circle), P frns (red square) and P frn + P frns (blue diamond).

process are slow compared to the nuclear body (NB) formation and dissociation. There-

fore, the ratio P frn/P frns is given by k4/k3, P frn/(P frn + P frns) is given by k4/(k3 + k4),

and P frns/(P frn + P frns) is given by k3/(k3 + k4). Therefore, the multi-experiment fit for

different submodels yields similar χ2-values.

TABLE S1 Model selection using Bayesian Information Criterion (BIC), reduce to the standard

χ2-value, because all submodels have the same amount of parameters and number of data points,

which is given by N = 111.

Signaling pool χ2

P frc 435.82

P frn 254.21

P frns 254.25

P frc + P frn + P frns 254.25

P frn + P frns 254.24
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FIG. S2 Synthesis and degradation of phyB-GFP-1. The phyB accumulation (cross) was measured

via immunoblot analysis (see Section II.A). The errorbars indicate the standard error of three

biological replicates. The solid line represents the fit of Eqn. (S4) to the experimental data.

B. Phytochrome synthesis and degradation

Phytochrome is synthesized in its inactive, cytosolic P rc form. The overall synthesis

unifies the processes of transcription, translation, and protein association to the chromophore

forming the active photoreceptor. To determine the P r degradation rate kdr on the basis

of the transient accumulation dynamics, the level of the total amount of phytochrome was

measured via immunoblot analysis, see Section II.A. The phytochrome level can be measured

for the first time around 12h after germination induction. Therefore, the determination of

the kinetic rates has to be adjusted using the experimental initial conditions y0 = x(t0)

with t0 =12 h. The corresponding rescaled ordinary differential equation for phytochrome

accumulation for P rc in darkness reads

Ṗ rc(t) = Θ(t− tsyn)zkdr − kdrP rc(t) (S4)

where Θ(t) represents a step function, Θ(t − tsyn) = 1 for t > tsyn and Θ(t − tsyn) = 0

otherwise. The estimated time point after germination induction when the measurable

synthesis of phytochrome starts is given by tsyn = 648 min. The photoreceptor abundance

of Col WT, PCol
0 , is normalized to unity such that the photoreceptor abundance of over-

expression lines can be written as PMutant
0 = zPCol

0 , where z ∈ R+ represents the over-

expression strength. Fig. S2 represents the experimental data and the fit for total amount

of phytochrome in darkness for the over-expression line phyB-GFP-1.
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C. Determination of kinetic rates from FRAP experiments

The simultaneous record of a non-bleached reference nuclear body revealed that after

bleaching a loss of fluorescence of the non-bleached NB was also observed (main text Fig. 2D,

red line). Therefore, for a determination of the recovery curve of the bleached NB, the

fluorescence of all remaining NBs and the diffuse fluorescence in the nucleus has to be taken

into account.

We consider the following model, where C denotes the nuclear body which is bleached

during the FRAP experiment, and R describes the remaining non-bleached NBs. We assume

that we have A NBs of approximately the same size. The mean number of NBs, A, can

be determined by counting the NBs after continuous red light irradiation. The diffuse

fluorescence in the nucleus can be expressed in terms of the total fluorescence, Ntot, and the

NBs, i.e. Ndif = Ntot−C −R. The following system of ODEs can be derived that describes

the association and dissociation dynamics of all NBs

Ṙ = k3(A− 1)Ntot − (k3(A− 1) + k4)R− k3(A− 1)C

Ċ = k3Ntot − (k3 + k4)C − k3R. (S5)

The steady state of C is given by C = k3Ntot/(Ak3 + k4). Bleaching of the nuclear body C

leads to a loss of the total fluorescence and we denote by θ the fraction of the fluorescence

which is still present after the bleaching. If N ′tot describes the total fluorescence before

bleaching, the total fluorescence after bleaching, Ntot, is given by

Ntot = N ′tot

(
1− (1− θ)k3

Ak3 + k4

)
. (S6)

For the determination of the recovery curve we are interested in the initial conditions directly

after bleaching. Normalization with the steady state of C after bleaching yields the following

initial conditions

C(0) =
θ(Ak3 + k4)

(A− 1 + θ)k3 + k4

and R(0) =
(A− 1)(Ak3 + k4)

(A− 1 + θ)k3 + k4

and the normalized ODE system reads

Ṙ = (A− 1)(Ak3 + k4)− (k3(A− 1) + k4)R− k3(A− 1)C

Ċ = Ak3 + k4 − (k3 + k4)C − k3R. (S7)
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System (S7) is an inhomogeneous, linear system of ODEs whose solution can be calculated

using the method of variation of constants and are given by

R(t) = c1e
−(Ak3+k4)t + c2e

−k4t + (A− 1)(1− e−(Ak3+k4)t) (S8)

C(t) = c1e
−(Ak3+k4)t − c2e−k4t + 1− e−(Ak3+k4)t (S9)

with

c1 =
(A− 1)(C(0) +R(0))

A
=

(A− 1 + θ)(Ak3 + k4)

A[(A− 1 + θ)k3 + k4]
,

c2 =
R(0)− (A− 1)C(0)

A
=

(A− 1)(1− θ)(Ak3 + k4)

A[(A− 1 + θ)k3 + k4]
.

The recovery curve of the bleached NB under consideration can be described by Eqn. (S9),

but the question arises if the parameters k3 and k4 are identifiable. If we find more than one

NB in the nucleus, which is always the case for the phytochrome system, the dynamics of

the recovery curve becomes insensitive to changes of the association rate k3, i.e., k3 cannot

be determined by Eqn. (S9). Fig. S3A shows the recovery curve C(t) varying k3 from 0.001

to 10, i.e., over four orders of magnitude, under the assumption of more than one NB.

The recovery curves for different k3 do not differ significantly. The dissociation rate k4,

however, is identifiable and therefore can be determined by the recovery curve described by

Eqn. (S9) as it can be seen in Fig. S3B. Varying k4 again over four orders of magnitude,

the recovery curves look very different. The non-identifiability of k3 can be explained in

rather rational terms based on Eqn. (S9): for k3 � k4, some large complexes are present

and the transient recovery dynamics of the bleached complex only depends on the release

of fluorescent molecules from the remaining ones; for k3 � k4, a lot of small complexes

are present, such that the exchange of only some fluorescent molecules suffices to reach

the final steady state level given by k3/(k3 + k4). Therefore, the recovery of the bleached

complex almost exclusively depends on the release of fluorescent molecules of the remaining

complexes rather than on the association of diffusive fluorescent molecules to the bleached

complex.

D. Time-resolved hypocotyl growth

In 1838, Verhulst introduced the logistic growth equation to describe growth in the pres-

ence of environmental limitations. The rate of reproduction is proportional to the existing
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FIG. S3 Recovery curves according to Eqn. (S9), assuming θ = 0.29, A = 5.5 and (A) varying

k3 ∈ [0.001, 10]. The recovery curve does not depend on k3. (B) The effect of varying k4 ∈ [0.001, 10]

is reflected by the recovery curve.

population and the amount of available resources. Therefore, a modified logistic growth

function for the description of hypocotyl growth is given by

L̇(t) = (α− βL(t))L(t). (S10)

For small times and small initial hypocotyl length (L0(t0) < α/β) , the hypocotyl grows

exponentially with growth rate α − βL0. For larger times, growth is inhibited by environ-

mental factors, such that the inhibition factor βL(t) dominates and the hypocotyl length

reaches its final steady state level, given by L(t→∞) = α/β. The solution of (S10) reads

L(t) =
αL0

βL0 + e−α(t−t0)(α− βL0)
. (S11)

If L0(t0) < α/β, the solution (S11) describes an increasing, sigmoidal, i.e., S-shaped, and

symmetric curve with inflection point tI = α/(2β). The inflection point of the growth curve

also describes the maximum of the growth velocity function.

However, experimental investigations in the late 19th and early 20th centuries of growth pat-

terns revealed that in general, a growth curve is not symmetric with respect to the inflection

point (for a detailed overview see Backman (1931)). Julius von Sachs described in 1874 the

growth pattern as a “large period of growth”, being characterized by an initially increasing

growth velocity that reaches a maximum and is followed by a finite decrease of the growth

velocity. Therefore, in 1943 Backman introduced the so-called “organic time”, meaning that

the growth rate decreases with increasing age of the organism. The growth cycle again can
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be described by an S-shaped function, which is – in contrast to Verhulst’s logistic growth

function – not symmetric with respect to the inflection point, cf. Fig. S4A. Therefore, the

corresponding velocity function is an asymmetric bell-shaped function, reflecting that the

period of increasing velocity is of greater amplitude than the period of decreasing velocity,

cf. Fig. S4B. In 1965, Hock and Mohr used a modified version of the “organic time”, but

estimated some model parameters for dark and light growth separately, since the effect of

phyotchrome on hypocotyl growth was completely unknown. Using the ideas of Backman,

and Hock and Mohr, we describe the growth function for dark grown seedlings by

L̇(t) =
Θ(t− tgrowth)

1 + γt
(α0 − βL(t))L(t). (S12)

Before deriving the growth function for light grown seedlings, we give some characteristic

features of the introduced factor γ, and set tgrowth = 0. For γ = 0, we obtain the logistic

growth function described by (S10). An increase of γ for γ > 0 makes the growth curve less

steep (cf. Fig. S4A), which seems to be a better description of experimental growth patterns

(Backman, 1943). If we ignore environmental limitations, i.e., if β = 0, the solution of

(S12) is given by L(t) = L0(1 + γt)α0/γ. Therefore the fraction α0/γ determines the type of

growth for small times, i.e., for α0 > γ we obtain exponential growth, for α0 = γ we obtain

linear growth, and for α0 < γ the growth is sublinear, cf. Fig. S4C.

The intuitive and most simple ansatz would be to modify the growth rate α0 to α(t) =

α0/(1 + Ku(t)), where u(t) represents the rescaled signaling phytochrome component as

described in the main text. All experiments for the multi-experiment fit can be described

rather well with the above growth rate. However, the prediction of the high fluences of the

over-expression line phyB-GFP-1 lies far above the experimental data (Fig. S5, red dashed

line). Therefore, we modify α0 to α(t) = α0/(1 + K2u2(t)). Since all rescaled phytochrome

components depend linearly on the over-expression strength z of the phytochrome abundance

PCol
0 , the modified growth rate α(t) is a decreasing function for an increasing amount of

phytochrome, being rather insensitive to small amounts of phytochromes, z � 1. For

intermediate over-expression of the photoreceptor abundance, the growth rate diminishes

and converges to zero for strong over-expression of the photoreceptor abundance. In the

absence of active phytochrome α(t) reduces to the originial α0, cf. Eqn. (S12). Therefore,
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FIG. S4 (A) Growth curves and (B) growth velocity functions for different values of γ (γ = 0,

blue circle; γ = 0.2, green square; γ = 0.4, red plus; γ = 0.6, cyan diamond). The greater γ, the

more asymmetric is the growth velocity function and the later reaches the growth curve the steady

state. (C) The fraction α0/γ determines the shape of the growth function for small times t. For

α0 > γ (blue circle), the initial growth is rather exponential; for α0 = γ (green square), the growth

is linear; for α0 < γ (red plus), the initial growth is sublinear.

the hypocotyl growth of light grown seedlings can be described by the following function

L̇(t) =
Θ(t− tgrowth)

1 + γt

(
α0

1 +K2u2(t)
− βL(t)

)
L(t) = µ(t)L(t)− ν(t)L(t)2 (S13)

with

µ(t) =
Θ(t− tgrowth)

1 + γt

α0

1 +K2u2(t)
and ν(t) =

Θ(t− tgrowth)β

1 + γt
.

The hypocotyl grows, if α0/β−1 > K2u2(t), such that the general solution of (S13) is given

by

L(t) =
L0e

R t
0 µ(t′)dt′

1 + L0

∫ t
0
e

R t
0 µ(t′′)dt′′ν(t′)dt′

. (S14)

Due to the experimental observation that phytochrome synthesis can be observed approx.

12 h after germination induction (estimated tsyn = 648 min) whereas the hypocotyl starts to

grow approx. 35 h after germination induction (tgrowth = 2111 min), the protein dynamics

reaches the steady state very fast in comparison to hypocotyl growth. Therefore, the time-

dependent solution of the rescaled signaling component u(t) becomes time-independent with

ū as the steady state level, and the modified growth reads α′ = α0/(1+K2ū2). The solution

for (S13) with t > tgrowth then reads

L(t) =
α′L0(1 + γt)α

′/γ

α′ − βL0 + βL0(1 + γt)α′/γ
. (S15)
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FIG. S5 Prediction of the fluence rate response curve of the phyB-GFP-1 over-expressor (red

dashed line) and the corresponding experimental data, when assuming the modified growth rate

to be α(t) = α0/(1 + Ku(t)). The fluence rate response curve for Col WT (black solid line) was

subject to the multi-experiment fit described in the main text.

The read-out of most of the experiments is an end-point of the hypocotyl. This end-point

either describes the steady state level of the hypocotyl (for t > tc) or an intermediate

hypocotyl length (for t < tc) for some critical time tc = [(α′/(βL0) + 1)γ/α
′ − 1]/γ and is

given by

L(t) =
α′

β
=

α0

β(1 +K2ū2)
for t� tc (S16)

L(t) = L0e
α′
γ

ln(1+γt) for tgrowth < t < tc. (S17)

II. EXPERIMENTAL SUPPORTING INFORMATION

A. Phytochrome synthesis and degradation

PhyB accumulation was determined with phyB specific monoclonal antibodies in seedlings

at the age of 12 h up to four days. In the first days of seedling development growth is

achieved by water uptake, thus the water content of the seedlings is increasing. To com-

pensate this difference between the samples we used exactly the same number of seeds per

sample, weighed the seeds prior to imbibition and directly before harvesting. Thus we could

caluclate the water uptake of each sample. By using always the same volume of extraction

buffer and taking the water uptake into account, the dilution factor of each protein extract

caused by seedling‘s water uptake was obtained. Afterwards SDS-PAGE gel was loaded
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FIG. S6 Time-resolved hypocotyl growth in darkness (A) and in continuous red light of 3.8

µmol/(m2s) (B) for phyB-9 mutant (orange square), Col WT (black circle) and phyB-GFP-1

(red cross). The experimental set-up is described in the Materials and Methods in the main text.

with 20 µl of the earliest sample (12 h) and 20 µl multiplied with the dilution factor for the

following extracts. The first measurable phytochrome signal appeared around 12 to 24 h

after germination induction. Up to the third day the phyB amount increased, at the fourth

day it reached a slightly lower plateau.

B. Time-resolved hypocotyl growth

In addition to the dark growth curve presented in Fig. 4D in the main text, we measured

time-resolved seedling growth in continuous red light of 3.8 µmol/(m2s). Experimental setup

for growth curves is explained in Materials and Methods in the main text. Fig. S6A shows

the dark growth curves of 3 genotypes, phyB-9 mutant, Col WT and 35S:phyB:GFP over-

expressing line (phyB-GFP-1). As indicated in the main text, the S-shaped dark growth

curves of the analyzed genotypes were very similar and did not show diurnal rhythm. Contin-

uous irradiation with 3.8 µmol/(m2s), as expected, resulted in a dramatic difference between

the growth of the analyzed genotypes, Fig. S6B. Light grown phyB-9 mutant seedlings did

not show any difference to dark growth. However, the maximal growth of Col WT was

strongly reduced and the maximal growth of phyB-GFP-1 was even more reduced. Again,

the light grown seedlings did not show rhythmic changes of growth velocity in our experi-

mental conditions.
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FIG. S7 Using fluorescence microscopy, the P rns (red circle) and P frns (blue cross) dissociation

was determined over time indirectly by counting the mean amount of nuclear bodies after a NB-

inducing treatment that was ended either with (red circle) or without (blue cross) a P r creating

RG9 pulse, followed by darkness.

C. Counting experiments on fluorescent nuclear bodies

Using fluorescence microscopy, we counted the mean number of NBs in the Arabidopsis

35S:PHYB:GFP expressing line after a nuclear body inducing light treatment that was ended

with or without a P r creating RG9 pulse, followed by darkness. If the light treatment was

ended without an RG9 pulse, the P fr NBs were visible over at least 9 hours of prolonged

darkness, Fig. S7 (blue cross). In contrary, if an RG9 pulse was given at the end of the light

treatment, the P r NBs already dissolved within 1 hour of darkness, Fig. S7 (red circle).

To describe the counting experiments of the NBs after different irradiation scenarios, a

comprehensive model for the coagulation dynamics of the phytochrome molecules, and the

connection to the pool dynamics with rate constant k5 is needed. This descriptions goes far

beyond the goal of the present manuscript and will be discussed elsewhere.
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