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In this appendix, we summarize the spatial Bayesian variable selection model on functional

magnetic resonance imaging (fMRI) data proposed by Lee et al. (2014) and specify the model

formulations for the StarPlus data set that we are interested in.

1 Spatial Bayesian variable selection model

For voxel v = 1, . . . , N , let {yv,i; i = 1, . . . , t} be the BOLD image intensities at t time points.

Although other alternatives are possible, a conventional voxelwise regression analysis assumes a

linear model with a balance between model complexity and computational feasibility (Friston

et al., 1995; Smith and Fahrmeir, 2007),

yv,i = zTi av + xv,iβv + εv,i.

Linear combination zTi av is the baseline trend to remove stimulus-independent effects. βv is the

activation amplitude and xv,i is the transformed stimulus (see Figure 1). In many experiments,

the external stimulus {si; i = 1, . . . , t} alternates activation/inactivation in a 0-1 ’boxcar’ pattern.

However, instead of proceeding in a 0-1 ’boxcar’ function, the brain produces a fairly fixed, stereo-
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typed blood flow response with delay dv every time a stimulus hits it, where dv is estimated in a

preprocessing step. The so-called hemodynamic response function (HRF) is used to characterizes

this process. There are several formulations of HRF (see e.g. Friston et al., 1998; Glover, 1999;

Gössl et al., 2001).
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Figure 1: The transformed stimulus is obtained by convolving the original 0-1 ’boxcar’ stimulus
and the HRF.

One approach is to use a canonical HRF consisting of a difference of two gamma functions

(Lindquist et al., 2009),

h(t) = A

(
tα1−1βα1

1 e−β1t

Γ(α1)
− ct

α2−1βα2
2 e−β2t

Γ(α2)

)
,

where α1 = 6, α2 = 16, β1 = β2 = 1 and c = 1/6. The only unknown parameter, i.e. the

amplitude A, is estimated in a preprocessing step. We can transform the orignal ’boxcar’ stimulus

by a convolution with the HRF,

xv,i =
i−dv∑
k=0

h(k)si−dv−k.

The measurement error is denoted by εv,i. Appropriate distributional assumptions about εv,i can

be made to incorporate temporal correlation and specific priors can be chosen to reflect spatial
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dependence.

In this article, we consider the spatial Bayesian variable selection models for single subject

(Lee et al., 2014). This approach is shown to incorporate temporal-spatial correlation and allow

for the task-related changes in BOLD response while mitigates the computational burden. It also

possesses the ability to account for anatomic prior information. A general MCMC algorithm is

designed to perform the large dimensional posterior inference. Here we summarize the model

formulation and estimation process from Lee et al. (2014). An interested reader is directed to

their paper for more details.

Denote yyyv = (yv,1, . . . , yv,t)
T as the BOLD image intensity at time i = 1, . . . , t for voxel

v = 1, . . . , N . Let Xv be a t× p design matrix of transformed stimulus and βββv = (βv,1, . . . , βv,p)
T

be a vector of p regression coefficients for each voxel. We formulate a linear regression mode,

yyyv = Xvβββv + εεεv, εεεv ∼ Nt

(
000, σ2

vΛv

)
. (1)

Notice that the detection of voxel activation is equivalent to the identification of nonzero βββvs.

To this end, we introduce 0/1 binary indicators γγγv = (γv,1, . . . , γv,p), v = 1, . . . , N , such that

βv,j = 0 if γv,j = 0 and βv,j 6= 0 if γv,j = 1. The γv,j is used to indicate whether the voxel v is

activated by input stimulus j. Given γγγv, let βββv (γγγv) be the vector of nonzero regression coefficients

and Xv (γγγv) be the corresponding design matrix. Then, the model (1) can be rewritten as

yyyv = Xv (γγγv)βββv (γγγv) + εεεv.

Further, we assume the independence among σ2
v and set its prior π (σ2

v) ∝ 1/σ2
v . Zellner’s

g-prior on βββv (γγγv) |γγγv is placed to undertake variable selection or model averaging. The parameter

g is adjusted to obtain similar results with those if BIC were used,

βββv (γγγv) |yyyv, σ2
v ,Λv, γγγv ∼ N

(
β̂ββv (γγγv) , Tvσ

2
v

[
XT
v (γγγv) Λ−1v Xv (γγγv)

]−1)
,

where

β̂ββv (γγγv) =
[
XT
v (γγγv) Λ−1v Xv (γγγv)

]−1
XT
v (γγγv) Λ−1v yyyv. (2)
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Define the corresponding sum of squares for posterior inference

S (ρv, γγγv) =
(
yyyv −Xv (γγγv) β̂ββv (γγγv)

)T
Λ−1v

(
yyyv −Xv (γγγv) β̂ββv (γγγv)

)
.

We incorporate the temporal dependence between observations on a given voxel through the

specification of the structure of Λv. The AR(1) dependence, i.e. Λv (i, j) = ρ
|i−j|
v , is an effective

compromise between inferential efficacy and computational efficiency. We specify a point mass

prior for ρρρ = (ρ1, . . . , ρN) at a fixed point ρ̂ρρ using maximum likelihood methods.

We incorporate the spatial dependence, as well as the anatomical information, by using a

binary Markov random field (MRF) prior, i.e. the Ising prior, on γγγv. Let γγγ(j) = (γ1,j, . . . , γN,j)
T

be the vector of indicators for regressor j over all voxels. Then, let wv,k be pre-specified constants

that weigh the interaction between voxels v and k and let νj be parameter to measure the strength

of the interaction between voxels for regressor j. We denote v ∼ k, if two voxels v and k are defined

as neighbors by the user. In this article, we employ a widely used three-dimensional structure

containing the six immediate neighbors: 1 above, 1 below and 4 adjacent. The weight wv,k is set

to be the reciprocal of the Euclidean distance between voxel v and k. Then, the spatial interaction

is described as νj
∑N

v=1

∑
v∼k wv,kI (γv,j = γk,j), where I(x) is the usual 0/1 indicator function. A

linear ”external field”
∑N

v=1 αv,jγv,j is specified to incorporate anatomical prior information, where

αv,j is chosen to reflect prior knowledge.

We consider the prior on γγγ to be π (γγγ|ννν) =
∏p

j=1 π
(
γγγ(j)|νj

)
, where

π
(
γγγ(j)|νj

)
∝ exp

{
N∑
v=1

αv,jγv,j + νj

N∑
v=1

∑
v∼k

wv,kI (γv,j = γk,j)

}
.

The remaining prior to be addressed is the distribution of ννν = (ν1, . . . , νp). A uniform prior

is placed π (ννν) ∝
∏p

j=1 I (0 < νj < νmax), where Moller and Waagepetersen (2003) suggests to use

νmax ≤ 2.0.

The posterior density is characterized by

q
(
βββ (γγγ) , γγγ,ρρρ,ννν,σσσ2|y

)
∝ p

(
y|βββ (γγγ) , γγγ,σσσ2,Λ

)
× π

(
βββ (γγγ) |y,σσσ2,Λ, γγγ

)
π (γγγ|ννν) π (ρρρ) π

(
σσσ2
)
π (ννν) .

We follow the two-step component-wise Metropolis-hastings algorithm designed by Lee et al.
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(2014) to update γγγ and ννν. Particularly, we are interested in estimating the posterior mean of

θθθ = {γγγ,ννν}.

1.1 Model the Starplus dataset

Based on the settings of the StarPlus experiment, we rewrite the linear model (1) as

yyyv = α0zzz0 + α1zzz1 + β1xxx1 + β2xxx2 + εεεv,

where αi, zzzis are the baseline signal, βis are the activation amplitude corresponding to the two

tasks ”Semantic” and ”Symbol”, respectively, The binary indicator γv = {1, 1, γv,3, γv,4} is used

in the variable selection problem described previously. Notice that we assume all αis nonzero and

set νmax = 1.0 as in Lee et al. (2014). Figure 2 visualize the design matrix for this linear model

as we described previously.
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Figure 2: The visualization of the design matrix for the experimental dataset.
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