SUPPORTING MATERIAL

The systematic approach to describing conformational

rearrangements in G-quadruplexes

Vladimir Tsvetkov*, Galina Pozmogova, Anna Varizhuk.*

*<u>v.b.tsvetkov@gmail.com</u> (V. Tsvetkov), <u>annavarizhuk@gmail.com</u> (A. Varizhuk)

PDB	GQ description (number of	Quartets and their	Quartet	Twist
entry	tetrads, molecularity, folding	relative polarities ^a	COM dist.,	angle,
	type)		angstrom	degree
2JSM	Human telGQ hybrid 1 (3-tetrad,	1 and 2 - opposite	3.7	10
	monomolecular, mixed)	2 and 3 - similar	3.9	23
1HAO	TBA GQ (2-tetrad,	1 and 2 - opposite	3.5	6
	monomolecular, antiparallel)			
1HUT	TBA GQ (2-tetrad,	1 and 2 - opposite	3.5	9
	monomolecular, antiparallel)			
1JPQ	Oxytricha telomeric GQ (4-tetrad,	1 and 2 - opposite	3.5	10
	bimolecular, antiparallel)	2 and 3 - opposite	3.5	44
		3 and 4 - opposite	3.5	11
1KF1	Human telGQ in the presence of	1 and 2 - similar	3.4	28
	K+ ions (3-tetrad,	2 and 3 - similar	3.4	29
	monomolecular, parallel)			
352D ^b	$d(TG_4T)^b$ (4-tetrad,	1 and 2 - similar	3.4	33
	tetramolecular, parallel)	2 and 3 - similar	3.3	28
		3 and 4 - similar	3.3	28

Table S1. Relative quartet positions in various types of GQs.

^a Quartet numeration begins from the 5'-terminus. In the case of bimolecular/tetramolecular structures, it is the 5' terminus of strand 1 the PDB file.

^b Two distinct stacking arrangements are noted for GQ. COM distances and the twist angles in the table represent average values.

Figure S1. Quartet integrity (A-C) and planarity (D-F) in telGQ. A: Distances between the telGQ and Gua_1^1 -Gua $_4^1$ COMs; B: distances between the telGQ and Gua_1^2 -Gua $_4^2$ COMs; C: distances between the telGQ and Gua_1^3 -Gua $_4^3$ COMs. D: Angles between the normals to the Gua planes in quartet 1; E: angles between the Gua planes in quartet 2; F: angles between the Gua planes in quartet 3.

Figure S2. Relative Gua rotation in telGQ. A: Quartet 1; B: Quartet 2; C: Quartet 3.

Triazole-TBA – schematic representation

MD snapshots

Figure S3. Triazole-TBA and MD simulation snapshots for its complex with thrombin. Quartet 1 is blue; quartet 2 is yellow. The triazole fragment in the modified internucleotide linkage is green. A: Model 1 at 0 ns. The quartets are intact and parallel. B: Model 1 at 9.5 ns. Insignificant "lateral" bending in quartet 2. C: Model 1 at 30 ns. Insignificant "lateral" bending in quartet 1. D: Model 1 at 35 ns. The quartet 1 lateral bending was maintained. However, the GQ core was generally intact, and the bonds with thrombin were retained. E: Model 2 at 0 ns. The quartets are intact and parallel. F: Model 2 at 27 ns. The beginning of major GQ distortions. Gua₂¹ and Gua₃¹ deviate from quartet 1. Gua₃² deviates from quartet 2. G: Model 2 at 33 ns. Profound "lateral" bending in quartets 1 and 2. H: Quartets 1 and 2 maintain "lateral" bending. Most of the binding contacts with the protein were not retained.

Figure S4. Basic GQ-related parameters and their fluctuations during triazole-TBA MD simulation. A: gyration radii; B: twist angles; C: distances between quartet COMs; D: the dihedral angles of the N1 atoms in each of the two quartets.

Figure S5. Relative Gua rotation in the triazole-TBA quartets 1 (A and C) and 2 (B and D)

Figure S6. Quartet planarity in the triazole-TBA GQ models 1 (A-D) and 2 (E-H). A and E: Angles between the normals to the Gua planes in quartet 1 and axis Z (models 1 and 2, respectively; Z is a vector that joins the quartet 1 and 2 COMs; it does not strictly coincide with a normal to quartet 1); B and F: angles between the normal to the Gua planes in quartet 2 and axis Z (models 1 and 2, respectively); C and G: angles between the Gua planes in quartet 1 (models 1 and 2, respectively); D and H: angles between the Gua planes in quartet 2 (models 1 and 2, respectively).

Figure S7. Quartet bending in triazole-TBA GQ. A and C: "Lengthwise" and "diagonal" bending in quartet 1 (models 1 and 2, respectively). B and D: "Lengthwise" and "diagonal" bending in quartet 2 (models 1 and 2, respectively).