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I: Derivation for (6).
, according to its definition in Case II, is 
       .    (A-1)
Furthermore,  . Then, 
 
 
 
.                                                                                 (A-2)
  is defined in (10). 
Also, 
 
.                               (A-3)
Expanding the block matrix multiplication within the trace and simplifying the result, we can get:
                  .            (A-4)
 is defined in (9). Inserting (A-4) and (A-2) into (A-1) and re-organizing the terms, (6) can be obtained. 
II: Proof of Theorem 1.
(5) is a convex optimization, which can be solved by a Block Coordinate Descent (BCD) algorithm. We consider two coordinates in our problem, old domains  as a whole and the new domain, respectively. Then, BCD works by alternately optimizing each coordinate. Specifically, at the -the iteration, , BCD solves the following two optimizations:
                                 ,                                             (A-5)
                                    .                                               (A-6)
(A-5) is to optimize the new domain, , treating old domains as fixed by using estimates from the previous iteration, .  (A-6) then optimizes the old domains, , treating the new domain as fixed by using the estimate from (A-5), .  
The objective function in (5), i.e., , consists of a non-differentiable term, . According to the seminal work by Tseng (2001), when a convex objective function includes a non-differentiable term, BCD will converge to the optimal solution if the term is separable according to the coordinates. This is exactly our case, i.e., . Therefore, the BCD in (A-5) and (A-6) will converge to the global optimal solution  (i.e., the solution to (5) in Case I). Furthermore, the convergence enjoys a monotone property (Tseng, 2001), i.e., 
.  (A-7)
Let the initial values, , be the knowledge of old domains in Case II, i.e., . Then, (A-7) gives: 
                                                         .                                                (A-8)
Next, according to (A-5),  is
. The second “=” follows from (6).  is dropped in the last equation because it is a constant. Comparing (A-8) and (11), we get . Therefore, (A-8) becomes . When , it means that BCD attains the optimal solution in one coordinate (the old domains). Then, it must attain the optimal solution in the other coordinate (the new domain), i.e., . This completes the proof for Theorem 1. 
III: Proof of Theorem 2.
Both (12) and (13) can be solved analytically, i.e.,  and  Let and  . Then, it can be derived that . Using  and , we can show that . Therefore,




.       (A-9)
In the last equation in (A-9), the cross-product, , is omitted. This is because , as an ordinary least squares estimator, is unbiased, and therefore . Continuing the derivation in (A-9), we can obtain:



.                                                (A-10)
Perform an eigen-decomposition for , i.e., .  is a diagonal matrix of eigenvalues .  consists of corresponding eigenvectors. Then the  in (A-10) can be shown to be:
                               and .                                          (A-11)
Furthermore, let  and denote the elements of  by . Then, the last term in (A-10) can be shown to be:
                                .                                           (A-12)
Inserting (A-12) and (A-11) into (A-10), 


                          .                                                                                           
When ,  . To show that  at some , we only need to show that there exists a   such that  for .  To make , a sufficient condition is to make every term in the summation smaller than zero, i.e., , or equivalently, . This proves the existence of  and thereby proves Theorem 1. 
IV: Proof of Theorem 3.
According to (A-10), for a fixed ,  changes only with respect to . The smaller the , the smaller the . According to Definition 1,  is the transfer learning distance . Therefore, the smaller the transfer learning distance, the smaller the . This gives 
                            .                                                     (A-13)
Let  and . Then, . The second inequality follows from (A-13). This completes the proof for Theorem 3.
V: Proof of Theorem 4
Lemma 1: The optimization in (17) is equivalent to:
            (A-14)
Proof: To prove Lemma 1 is to prove . Start from the left-hand side. Write , where  is a diagonal matrix of the nodes’ degrees, i.e., .  is matrix of the edge weights, i.e., . The diagonal elements of  are zero. Then, 
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Plugging in the definition that , (A-15) becomes
 
 
 
.   (A-16)
Because the graph is unidirectional, , (A-16) becomes
 
 
 
 .
The  can be absorbed by .                         
Next, we prove Theorem 4. Denote the objective function in (A-14) by , i.e., 
 .  
Because  and  are solutions to the optimization problem in (A-14) and they are non-zero, they should satisfy:   and , i.e., 
,        (A-17)
 .         (A-18)
Focusing on (A-17), the third term on the left-hand side can be written into:
 
 
 .                                                                                (A-19)
The last step follows from the given assumption that . Similarly, the third term on the left-hand side of (A-18) can be written into 
.       (A-20)
Considering (A-19) and (A-20) and taking the difference between (A-17) and (A-18),  cancels with  because it is known that , and we get:
              .  (A-21)
.             (A-22)
Furthermore, we can get:
                                .                  (A-23)  
We would like to have an upper bound that does not include . To achieve this, we adopt the following strategy: Because  is the optimal solution,  should be the smallest. Therefore, , i.e., 
 
 .                                                        (A-24)
Then, 
, and
 .                                                              (A-25)
Inserting (A-25) into (A-23), we get
.                                                      
VI: Obtaining (24) by the gradient method. 
Given , the optimization problem in (24) with respect to  and  is:

Using the gradient method, set the partial derivatives of  to be zero:
                                                          , 
i.e., 
                ,             (A-26)
.             (A-27)
From (A-26), we can get:
                        .                  (A-28)
Inserting (A-28) into the third term of (A-27) and through some algebra, we can get:
                                    .                                            (A-29)
According to (22), . Using this in (A-29),
                                                          .                                                         (A-30)
Furthermore, according to (A-28),
 
 
.
Using (A-30) in the second term, we can get .                   
Finally, in order to prove that the  and  are optimal solutions for a minimization problem, we will need to show . “ ” denotes a matrix being positive definite. It can be derived that:
.
Furthermore, 
, 
where  and . So .
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