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Abstract

This document describes the supplementary data associated with the
manuscript Climatic controls on ecosystem resilience: post-fire regenera-
tion in the Cape Floristic Region of South Africa (Wilson, Latimer, and
Silander).

1 Posterior Summaries

The data include several geotif files mapping summaries of the posterior
distributions of recovery parameters, including:

γ increase in NDVI from the initial post-fire value (α) to the asymp-
totic value (in NDVI units)

λ: recovery rate (unitless) indicating more rapid recovery with smaller
values

A Amplitude of seasonality (unitless)

ages Estimated post-fire recovery time (years) calculated as the time until
the predicted curve approaches γ+α Here we define ages to be when
the exponential component of the model equals γ−0.005. So solving

γi
(

1 − e
−
agei,t
λi

)
= γ − 0.005 for age, we have

agesi = λi × log
(

200 × γi
)

(1)

frt Fire return intervals (years) estimated using survival model approach
described below.

All parameters include the 2.5%, 50% (median), and 97.5% of the
posterior distributions as separate geotif files. Thus they can be used to
identify the median and 95% credible intervals for each pixel. These are
labeled, for example, as ages Q2.5 which indicates the 2.5 percentile of
the estimated recovery time (in years).

The frt layers are slightly different in that they represent the time
(years) to the indicated fire probability. For example, the frt Q50.tif
indicates the years until the fire risk is estimated to be 50% in that location
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(following the weibull survival model described below). frt scale.tif is the
estimated weibull scale parameter, which can be used to draw ’random’
fire intervals for each location according to the fitted fire return interval
model described below.

1.1 Transformed areas

Much of the habitat in the Fynbos biome of the Cape Floristic Region
has been transformed from its ’natural’ state to other uses such as agri-
culture. The dataset includes predictions into these areas (though limited
to the fynbos biome) and thus represent the ’potential’ post-fire recovery
parameters as if those areas will still under natural vegetation. Another
layer transformed.tif which has the percentage of each cell that has been
’transformed’ from its natural state, is available to mask out those areas
if desired.

2 On the estimation of fire return times
from satellite-derived post-fire ecosystem
recovery

2.1 Background

Fire risk is sensitive to biomass/fuel accumulation rate, which is con-
trolled in large part by climate and soil. We modeled observed fire return
times along a satellite-derived post-fire biomass recovery gradient to make
estimates of fire return distributions.

2.2 Input Data

1. Climate and satellite-derived post-fire ecosystem recovery trajecto-
ries at 500m spatial resolution that represent the rate and magnitude
of post-fire recovery. This is referred to as ”post-fire recovery time.”

2. Burned area polygons from CapeNature and MODIS that have rea-
sonably complete coverage from 1980-2010 (see De Klerk, Wilson,
and Steenkamp 2012; Wilson et al. 2010; Van Wilgen et al. 2010).
The fire data were gridded to the same 500m grid as the post-fire
recovery trajectories and consist of the dates of any fires that burned
each pixel. These data are referred to as ”fire return times.”

2.3 Methods

A survival model was necessary to account for the incomplete (censored)
observations. For example, the fire data cover the period 1980-2010, so
the only way we’d observe a 30 year interval is if it burned in 1980 and
again in 2010, for a 29 year interval it would have to burn in 1981 and
2010, or 1980 and 2009, etc. So the observed intervals will have a bias
towards shorter intervals fires.
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A survival model was fit using the survreg function in R’s Survival
package to the data (including the censored observations) in the following
manner (where surv is an object that indicates survival times and interval
type, rt is the median posterior recovery time for that pixel, and weights
are interval-type specific weights explained below:

survreg(surv~rt,dist="weibull",weights=weights)

2.4 Assumptions

Any pixel with at least one observed fire will have two censored obser-
vations (from before beginning of record to the first fire, and then from
the last fire to the end of the record) in addition to any observed inter-
vals between two observed fires. In this dataset, the number of censored
observations quickly overwhelms the observed intervals, extending the ex-
pected fire return times to unreasonably long intervals (greater than 100
years in some cases). These were dealt with in two ways:

1. The date of initial monitoring of fires in each reserve was not recorded,
so it is unknown when to begin counting the censored intervals prior
to the first observed fire. However, after a fire is recorded for a lo-
cation, it is less likely that future fires will be missed. Since the
probability of missing fires is much higher in the early part of the
record, only the censored observations from the last fire to the end
of the record were included. It is possible to model the timing of the
prior fire (e.g. Wilson et al. 2010), but this was beyond the scope
of this analysis.

2. After discarding the intervals at the beginning of the record, there
were still nearly four times as many censored observations as com-
plete observations. To prevent these from continuing to overwhelm
the observed intervals, the censored observations were given a weight
of 0.25, while the complete observations were weighted at 0.75 (lead-
ing to approximately equal influence of observed and censored inter-
vals in the model fitting).

2.5 Results

The observed fire return intervals show an increasing trend with estimated
recovery time (Figure 1), but the censored observations show interesting
patterns (the pre-fire intervals show the opposite trend, while the post-fire
censored intervals show a similar positive trend).

The survival model, fit using only right and observed intervals, identi-
fied that recovery time is significantly related to observed fire return time:
Call:

survreg(formula = with(tfrt, Surv(time = time, event = event)) ~ rt,

data = tfrt, weights = tfrt$weights, dist = "weibull")

Value Std. Error z p

(Intercept) 2.7087 0.01332 203.4 0.00e+00

rt 0.0178 0.00120 14.9 5.16e-50

Log(scale) -0.8156 0.00955 -85.5 0.00e+00
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Scale= 0.442

Weibull distribution

Loglik(model)= -21897.8 Loglik(intercept only)= -22013.4

Chisq= 231.18 on 1 degrees of freedom, p= 0

Number of Newton-Raphson Iterations: 8

n= 36595

So there is a significant and positive relationship between recovery
time (rt) and the probability of fire. The intercept (2.7087) and weibull
shape parameter (0.442, see help file for survreg for more information) is
assumed to be constant across the region in this model. With this fitted
model, it is possible to estimate the Weibull distribution of fire return
times for each pixel for any recovery time (Figures 2 & 3). The model can
also be used to estimate the time to any desired probability of fire (Figure
4).

2.6 Discussion

The scale parameter has been transformed from the model output as fol-
lows (m3 is the model object, rt is the recovery time for each pixel):

exp(coef(m3)[1]+(rt*coef(m3)[2]))

To use the map of estimated scale values (frt scale.tif) to draw ran-
dom fire intervals for a pixel in R, use the following formula (where scale
represents the value from the pixel as encoded in the raster):

rweibull(1,scale=scale,shape=1/0.442)

The shape parameter must be inverted because of differences in the
way the survival package reports weibull parameters and the way the
weibull function expects them.

2.7 Caveats

1. This approach ignores the uncertainties in the underlying recovery
time estimates (which are quite uncertain in some areas). Instead
only the median posterior recovery time is used and is treated as
data in the model.

2. This also ignores important covariates (climate, topography, spatial
effects, etc.) except to the extent that they are incorporated in the
post-fire recovery time.

3. The final values are sensitive to the weights used to downweight
the censored observations. However, removing the first interval
and downweighting the right censored observations to approximately
equal weighting with the observed observations produces reasonable
fire return distributions.
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Figure 1: Boxplots of fire return times vs (binned) estimated recovery time.
”Left” indicates the length of the intervals from 1980 to the first observed fire,
”Right” indicates the length of the intervals from the last observed fire to 2011,
and ”Observed” indicates the length of observed intervals. Note the increasing
trend in both right and observed intervals, but decreasing trend in left intervals
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Figure 2: Observed and modeled fire survival probabilities across the CFR as a
function of time since fire and post-fire recovery. The ”Observed” curve is from
survfit() in R with no covariates and represents the overall mean (nonparamet-
ric) survival curve. The blue line shows a weibull curve fitted to the observed
data using survreg and no covariates. The red lines show the predicted survival
curves for three recovery times (3 years, 20 years, and 40 years) estimated using
survreg with recovery time as the single covariate. Note that the lines with
longer recovery times also have longer expected fire return times.
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Figure 3: Estimated (Weibull) fire return distributions for three example recov-
ery times (in years). So a pixel with a recovery time of 3 years would be expected
to have a distribution of fire return intervals shown with the thin line (mean of
14 years), while an area with a recovery time of 30 years has an expected fire
return time of 23 years.
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Figure 4: Time for fire probability to reach 50% as a function of post-fire recov-
ery.

Figure 5: Spatial distribution of the estimated Weibull scale parameter which
can be used to estimate fire return time distributions.
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